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Abstract. The conformance testing problem for dynamical systems asks,
given two dynamical models (e.g., as Simulink diagrams), whether their
behaviors are “close” to each other. In the semi-formal approach to con-
formance testing, the two systems are simulated on a large set of tests,
and a metric, defined on pairs of real-valued, real-timed trajectories, is
used to determine a lower bound on the distance. We show how the
Skorkhod metric on continuous dynamical systems can be used as the
foundation for conformance testing of complex dynamical models. The
Skorokhod metric allows for both state value mismatches and timing
distortions, and is thus well suited for checking conformance between
idealized models of dynamical systems and their implementations. We
demonstrate the robustness of the system conformance quantification by
proving a transference theorem: trajectories close under the Skorokhod
metric satisfy “close” logical properties. Specifically, we show the result
for the timed linear time logic TLTL augmented with a rich class of
temporal and spatial constraint predicates. We provide a window-based
streaming algorithm to compute the Skorokhod metric, and use it as
a basis for a conformance testing tool for Simulink. We experimentally
demonstrate the effectiveness of our tool in finding discrepant behaviors
on a set of control system benchmarks, including an industrial challenge
problem.

1 Introduction

A fundamental question in model-based design is conformance testing: whether
two models of a system are equivalent. For discrete systems, this question is well-
studied [25, 16, 17, 26], and there is a rich theory of process equivalences based
on similarity and bisimilarity. For continuous and hybrid systems, however, the
state of the art is somewhat unsatisfactory. While there is a straightforward
generalization of process equivalences to the continuous case, in practice, equiv-
alence notions such as bisimilarity are always too strong and most systems are
not bisimilar. Since equivalence is a Boolean notion, one gets no additional in-
formation about the systems other than they are “not bisimilar,” and even if
two dynamical systems are bisimilar, they may still differ in many properties
that are of control-theoretic interest. Thus, classical notions for equivalence and
conformance have been of limited use in industrial practice.

In recent years, the notion of bisimulation has therefore been generalized to
metrics on systems, which quantify the distance between them. For example,
one approach is that of ε-bisimulation, which requires that the states of the two
systems remain “close” forever (within an ε-ball), rather than coincide exactly.
Under suitable stability assumptions on the dynamics, one can prove results



about ε-bisimulation [14, 15]. Unfortunately, proving the pre-requisites for the
existence of ε-bisimulations for complex dynamical models, or coming up with
suitable and practically tractable bisimulation functions, is extremely difficult
in practice. Thus, these notions have also been of limited practical use.

Instead, a more pragmatic semi-formal approach has gained prominence in
industrial practice. In this approach, the two models are executed on the same
input sequences and a metric on finite trajectories is used to evaluate how close
these trajectories are. The key to this methodology is the selection of a good
metric, with the following properties:

– Transference. Closeness in the metric must translate to preserving an inter-
esting class of logical specifications between systems, and

– Tractability. The metric should be efficiently computable.

In addition, there is the more informal requirement of usability : the metric should
classify systems, that the engineers consider close, as being close, and conversely.

A number of metrics have been proposed recently. The simplest is a pointwise
metric that computes the maximum pointwise difference between two trajecto-
ries, sometimes generalized to apply a constant time-shift to one trajectory [12].
Unfortunately, for many practical models, two trajectories may be close only un-
der variable time-shifts. This is the case, for example, for two dynamical models
that may use different numerical integration techniques (e.g., fixed step versus
adaptive step) or when some component in the implementation has some jitter.
Thus, the pointwise metric spuriously report large distances for “close” mod-
els. More complicated hybrid distances have been proposed [1]. The transference
properties of these metrics w.r.t. common temporal logics for dynamical systems
are not yet clear.

In this work we present a methodology for quantifying conformance between
real-valued dynamical systems based on the Skorokhod metric [11]. The Sko-
rokhod metric allows for mismatches in both the trace values and in the time-
line, and quantifies temporal and spatial variance of the system dynamics under
a unifying framework. The distortion of the timeline is specified by a retiming
function r which is a continuous bijective strictly increasing function from R+ to
R+. Using the retiming function, we obtain the retimed trace x (r(t)) from the
original trace x(t). Intuitively, in the retimed trace x (r(t)), we see exactly the
same values as before, in exactly the same order, but the time duration between
two values might now be different than the corresponding duration in the origi-
nal trace. The amount of distortion for the retiming r is given by supt≥0|r(t)− t|.
Using retiming functions, the Skorokhod distance between two traces x and y is
defined to be the least value over all possible retimings r of:

max

(
sup
t∈[0,T ]

|r(t)− t|, sup
t∈[0,T ]

D
(
x (r(t)) , y(t)

))
,

where D is a pointwise metric on values. The Skorokhod distance thus incorpo-
rates two components: the first component quantifies the timing discrepancy of
the timing distortion required to “match” two traces, and the second quantifies
the value mismatch (in the metric space O) of the values under the timing dis-
tortion. The Skorokhod metric was introduced as a theoretical basis for defining



the semantics of hybrid systems by providing an appropriate hybrid topology [8,
7]. We now demonstrate its usefulness in the context of conformance testing.

Transference. We show that the Skorokhod metric gives a robust quantification
of system conformance by relating the metric to TLTL (timed LTL) enriched
with (i) predicates of the form f(x1, . . . , xn) ≥ 0, as in Signal Temporal Logic, for
specifying constraints on trace values; and (ii) freeze quantifiers, as in TPTL [4],
for specifying temporal constraints (freeze quantifiers can express more complex
timing constraints than bounded timing constraints, e.g of MTL). This logic
subsumes the MITL-based logic STL [12]. We prove a transference theorem:
flows (and propositional traces) which are close under the Skorokhod metric
satisfy “close” TLTL formulae for a rich class of temporal and spatial predi-
cates; where the untimed structure of the formulae remains unchanged, only the
predicates are enlarged.
Tractability. We improve on recent polynomial-time algorithms for the Sko-
rokhod metric [22] by taking advantage of the fact that, in practice, only re-
timings that map the times in one trace to “close” times in the other are of
interest. This enables us to obtain a streaming sliding-window based monitoring
procedure which takes only O(W ) time per sample, where W is the window size
(assuming the dimension n of the system to be a constant).

Usability. Using the Skorokhod distance monitoring procedure as a subroutine,
we have implemented a Simulink toolbox for conformance testing. Our tool inte-
grates with Simulink’s model-based design flow for control systems, and provides
a stochastic search-based approach to find inputs which maximize the Skorokhod
distance between systems under these inputs.

We present three case studies from the control domain, including industrial
challenge problems; our empirical evaluation shows that our tool computes sharp
estimates of the conformance distance reasonably fast on each of them. Our input
models were complex enough that more theoretically appealing techniques such
as ε-bisimulation function generation could not be applied. In particular, we
demonstrate how two models that only differ in the underlying ODE solver can
nevertheless deviate enough to invalidate system requirements on settling time.

We conclude that the Skorokhod metric can be an effective foundation for
semi-formal conformance testing for complex dynamical models.

Related Work. The work of [1, 2] is closely related to ours. In it, robust-
ness properties of hybrid state sequences are derived with respect to a trace
metric which also quantifies temporal and spatial variance. Our work differs in
the following ways. First, we guarantee robustness properties over flows rather
than only over (discrete) sequences. Second, the Skorokhod metric is a stronger
form of of the (T, J, (τ, ε))-closeness degree1 (for systems which do not have hy-
brid time); and allows us to give stronger robustness transference guarantees.
The Skorokhod metric requires order preservation of the timeline, which the
(T, J, (τ, ε))-closeness function does not. Preservation of the timeline order al-
lows us to (i) keep the untimed structure of the formulae the same (unlike in

1 Instead of having two separate parameters τ and ε for time and state variance, we
pre-scale time and the n state components with n + 1 constants, and have a single
value quantifying closeness of the scaled traces.



the transference theorem of [1]); (ii) show transference of a rich class of global
timing constraints using freeze quantifiers (rather than only for the standard
bounded time quantifiers of MTL/MITL). However, for implementations where
the timeline order is not preserved, we have to settle for the less stronger guar-
antees provided by [1]. The work of [12], in terms of robustness, deals mainly
with spatial robustness of STL; the only temporal disturbances considered are
constant time-shifts for the entire signal where the entire signal is moved to the
past, or to the future by the same amount. The Skorokhod metric incorporates
time-shifts which are variable along the timeline.

2 Preliminaries

Traces. A (finite) trace or a signal π : [Ti, Te] 7→ O is a mapping from a finite
closed interval [Ti, Te] of R+, with 0 ≤ Ti < Te, to some topological space O. If
O is a metric space, we refer to the associated metric as DO. The time-domain
of π, denoted tdom(π) is the time domain [Ti, Te] over which it is defined. The
time-duration of π, denoted as tlen(π), is sup (tdom(π)). The t-suffix of π for
t ∈ tdom(π), denoted by πt, is the trace π restricted to the interval (tdom(π) ∩
[t, tlen(π)]. We denote by π↓T ′

e
the prefix trace obtained from π by restricting

the domain to [Ti, T
′
e] ⊆ tdom(π).

Systems. A (continuous-time) system A :
(
R[ ]

+ 7→ Oip

)
7→
(
R[ ]

+ 7→ Oop

)
, where

R[ ]
+ is the set of finite closed intervals of R+, transforms input traces πip :

[Ti, Te] 7→ Oip into output traces πop : [Ti, Te] 7→ Oop (over the same time do-
main). We require that if A(πip) 7→ πop, then for every min tdom(π) ≤ T ′e <
max tdom(π), the system A maps πip↓T ′

e
to πop↓T ′

e
. Thus, we only consider causal

systems. Common examples of such systems are (causal) dynamical, and hybrid
dynamical systems [6, 27].

Conformance. A system A′ conforms to the system A over an input trace πip
if A′(πip) = A(πip), i.e. if the behavior of A′ on the input trace πip is the same as
that of A. The system A′ conforms to the system A over the input trace set Πip

if conformance holds for each input trace in Πip. Given a metric D over input
traces, and an input trace set Πip, the quantitative conformance of A′ to A over
Πip is defined as the quantity supπip∈Πip

D (A′ (πip) ,A (πip)) . If Πip is the set of
all input traces, this quantity is the analogue of the refinement distance.

Retimings. A retiming r : I 7→ I ′, for closed intervals I, I ′ of R+ is an or-
der preserving continuous bijective function from I to I ′; thus if t < t′ then
r(t) < r(t′). Let the class of retiming functions from I to I ′ be denoted as RI 7→I′ ,
and let I be the identity retiming. Intuitively, retiming can be thought of as fol-
lows: imagine a stretchable and compressible timeline; a retiming of the original
timeline gives a new timeline where some parts have been stretched, and some
compressed, without the timeline having been broken. Given a trace π : Iπ → O,
and a retiming r : I 7→ Iπ; the function π ◦ r is another trace from I to O.

Definition 1 (Skorokhod Metric). Given a retiming r : I 7→ I ′, let || r−I ||sup
be defined as || r−I ||sup = supt∈I | r(t) − t|. Given two traces π : Iπ 7→ O and
π′ : Iπ′ 7→ O, where O is a metric space with the associated metric DO, and a



retiming r : Iπ 7→ Iπ′ , let ‖π − π′ ◦ r‖sup be defined as

‖π − π′ ◦ r‖sup = sup
t∈Iπ

DO

(
π(t) , π′ (r(t))

)
.

The Skorokhod distance2 between the traces π() and π′() is defined to be:

DS(π, π′) = inf
r∈RIπ 7→I

π′

max(‖r−I‖sup , ‖π − π′ ◦ r‖sup).

Intuitively, the Skorokhod distance incorporates two components: the first
component quantifies the timing discrepancy of the timing distortion required to
“match” two traces, and the second quantifies the value mismatch (in the metric
space O) of the values under the timing distortion. In the retimed trace π ◦ r, we
see exactly the same values as in π, in exactly the same order, but the times at
which the value are seen can be different.

Polygonal Traces. A polygonal trace π : Iπ 7→ O where O is a vector space with
the scalar field R is a continuous trace such that there exists a finite sequence
min Iπ = t0 < t1 < · · · < tm = max Iπ of time-points such that the trace segment
between tk and tk+1 is affine for all 0 ≤ k < m, i.e., for tk ≤ t ≤ tk+1 we have
π(t) = π(tk) + t−tk

tk+1−tk ·(π(tk+1)− π(tk)). Polygonal traces are obtained when

discrete-time traces are completed by linear interpolation. We remark that after
retiming, the retimed trace π ◦ r need not be piecewise linear (see [21] for an
example).

Theorem 1 (Computing the Distance between Polygonal Traces [22]).
Let π : Iπ 7→ Rn and π′ : Iπ′ 7→ Rn be two polygonal traces with mπ and mπ′

affine segments respectively. Let the Skorokhod distance between them (for the
L2 norm on Rn) be denoted as DS(π, π′).
1. Given δ ≥ 0, it can be checked whether DS(π, π′) ≤ δ in time O (mπ ·mπ′ ·n).
2. Suppose we restrict retimings to be such that the i-th affine segment of π can

only be matched to π′ affine segments i−W through i+W for all i, where
W ≥ 1. Under this retiming restriction, we can determine, with a streaming
algorithm, whether DS(π, π′) ≤ δ in time O ((mπ +mπ′)·n·W ).

3 Skorokhod Distance based Conformance Testing

In conformance testing, we test for the variance in behavior of two given systems
A1 and A2 under the same input3. Given the same input, the two systems produce
potentially differing output traces; the goal is to quantify this difference, and to
determine an input signal that causes the corresponding output signals to exceed
a user provided bound on the maximum tolerable output trace distance.

Algorithm 1 is a standard optimization-guided testing algorithm in which
we have used the Skorokhod distance between two output traces as the cost
function. In such algorithms, it is common to define a finite parameterization
of the input space, represented by the tuple (P, F,B), where P = {p1, . . . , pk}
2 The two components of the Skorokhod distance (the retiming, and the value differ-

ence components) can be weighed with different weights – this simply corresponds
to a change of scale.

3 It is also possible to extend our approach to allow inputs that are within some
bounded Skorokhod distance.



Algorithm 1: Algorithm to determine lower bound on max
y1,y2

DS(y1, y2)

Input: System A1, Model A2, Bound δ, Input Parameterization (P, F,B), Time
Horizon T

Output: u(t) s.t. y1 = A1(u), y2 = A2(u), and DS(y1, y2) > δ
1 u← random(P, F,B)
2 maxCost ←∞, m← 0
3 while (maxCost < δ) or (m < maxIterations) do
4 y1 ← simulate(M1, u, T )
5 y2 ← simulate(M2, u, T )
6 cost ← DS(y1, y2)
7 if cost > maxCost then
8 cost ← maxCost
9 end

10 u← pickNewInputs(cost)
11 m← m+ 1

12 end

represents a set of parameters, F = {f1, . . . , fk} represents a finite set of basis
functions from [0, T ] to Rn, where T is some finite time-horizon, and for each
pi ∈ P , there is a bi ∈ B that is a closed interval in R over which pi is assumed to
take values. An input signal u is defined such that, for all t, u(t) =

∑
i pi · fi(t).

A valid input signal has the property that for all i, pi ∈ bi.
In each step, the algorithm picks an input signal u and computes the Sko-

rokhod distance between the corresponding outputs y1 = A1(u) and y2 = A2(u).
Based on heuristics that rely on the current cost, and a possibly bounded his-
tory of costs, the procedure then picks a new value for u. For instance, in a
gradient-ascent based procedure, the new value of u is chosen by estimating the
local gradient in each direction in the input-parameter space, and then picking
the direction that has the largest (positive) gradient. In our implementation, we
use the Nelder-Mead (or nonlinear simplex) algorithm.

The algorithm terminates when a violation is found (i.e., a pair of inputs
that exceed the user-provided Skorokhod distance bound), or when the number
of iterations is exhausted. The Skorokhod distance bound δ is chosen based on
engineering requirements, e.g., based on the maximum allowed weakening of the
temporal logical properties that have been verified/tested on one system.

Sampling and Polygonal Approximations. In practice, the output behav-
iors of the systems are observed with a sampling process, thus in implementa-
tions of Algorithm 1, entities y1 and y2 on lines 4, 5 are time-sampled output
trace sequences, from which the Skorokhod distance algorithm of Theorem 1
constructs (continuous time) signals using linear interpolation. Given a timed
trace sequence tseq, let [[tseq]]LI denote the continuous time trace obtained from
tseq by linear interpolation. Let tseqπ, tseqπ′ be two corresponding samplings of
the traces π, π′. Since the Skorokhod distance is a metric, we have that

DS(π, π′) ≤ DS ([[tseqπ]]LI, [[tseqπ′ ]]LI) + DS ([[tseqπ]]LI, π) + DS ([[tseqπ′ ]]LI, π
′) .

If ∆samerr is a bound on the distance between a trace, and an interpolated
completion of its sampling, we have that DS(π, π′) ≤ DS ([[tseqπ]]LI, [[tseqπ′ ]]LI) +



2·∆samerr. Thus, in a sampling framework, a value of 2·∆samerr needs to be added
to the Skorokhod distance between the polygonal approximations.

Section 4 presents a theory of (quantifiable) transference of logical properties.
Section 5 presents results on our implementation of Algorithm 1. We also discuss
several case studies, providing rationale for choosing the appropriate δ value, and
present results on the computation time and the conformance distance found.

4 Transference of Logical Properties

In this section, we demonstrate transference of logical properties. If two traces
are at a distance of δ, and one trace satisfies a logical specification φ, we derive
the “relaxation” needed (if any) in φ so that the other trace also satisfies this
relaxed logical specification. The logic we use is a version of the timed linear
time logic TLTL [4] (a timed version of the logic LTL). We show that the
Skorokhod distance provides robust transference of specifications in this logic:
if the Skorokhod distance between two traces is small, they satisfy close TLTL
formulae. We first present the results in a propositional framework, and then
extend to Rn-valued spaces.

4.1 The Logic TLTL

Let P be a set of propositions. A propositional trace π over P is a trace where the
topological space is 2P , with the associated metric: D(σ, σ′) =∞ if σ 6= σ′, and
0 otherwise for σ, σ′ ∈ 2P . We restrict our attention to propositional traces with
finite variability: we require that there exists a finite partition of tdom(π) into
disjoint subintervals I0, I1, . . . , Im such that π is constant on each subinterval.
The set of all timed propositional traces over P is denoted by Π(P).

Definition 2 (TLTL(FT) Syntax). Given a set of propositions P, a set of
(time) variables VT, and a set FT of functions, the formulae of TLTL(FT) are
defined by the following grammar.

φ := p | true | fT(x) ∼ 0 | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 U φ2 | x.φ where

– p ∈ P and x ∈ VT, and x = (x1, . . . , xl) with xi ∈ VT for all 1 ≤ i ≤ l;
– fT ∈ FT is a function, and ∼ is one of {≤, <,≥, >}.

We say that the variable x is bound in φ if φ is x.Ψ , otherwise it is free. The
quantifier “x.” is known as the freeze quantifier, and binds the variable x to the
current time. A formula is closed if it has no free variables.

Definition 3 (TLTL(FT) Semantics). Let π : I 7→ 2P be a timed propositional
trace, t0 = min(I), and let E : V 7→ I be the time environment mapping the
variables in V to time values in I. The satisfaction of the timed sequence π with
respect to the TLTL(FT) formula φ in the time environment E is written as
π |=E φ, and is defined inductively as follows (denoting t0 = min tdom(π)).

π |=E p for p ∈ P iff p ∈ π(t0); π |=E true; π |=E ¬Ψ iff π 6|=E Ψ ;

π |=E φ1 ∧ φ2 iff π |=E φ1 and π |=E φ2; π |=E φ1 ∨ φ2 iff π |=E φ1 or π |=E φ2;

π |=E fT(x1, . . . , xl) ∼ 0 iff fT(E(x1), . . . , E(xl)) ∼ 0 for ∼∈ {≤, <,≥, >};
π |=E x.ψ iff π |=E[x:=t0] ψ where E [x := t0] agrees with E for all z 6= x, and maps x to t0;

π |=E φ1 U φ2 iff πt |=E φ2 for some t ∈ I and πt
′
|=E φ1 ∨ φ2 for all t0 ≤ t′ < t.



A timed trace π is said to satisfy the closed formula φ (written as π |= φ) if there
is some environment E such that π |=E φ.

The definition of additional temporal operators in terms of these base op-
erators is standard: the “eventually” operator ♦φ stands for trueU φ; and the
“always” operator �φ stands for ¬♦¬φ. TLTL(FT) provides a richer framework
than MTL for expressing timing constraints as: (i) freeze quantifiers allow spec-
ification of constraints between distant contexts, which the bounded temporal
operators in MTL cannot do; and (ii) the predicates fT() ∼ 0 for fT ∈ FT allow
the specification of complex timing requirements not expressible in MTL.

Example 1 (Freeze quantifiers; TLTL(FT) subsumes MTL). Let FT be the set
of two variable functions of the form f(x, y) = x − y + c where c is a rational
constant. Then TLTL(FT) subsumes MTL. The MTL formula QU [a,b]R can
be written as

x.
(
QU y.

(
(y ≤ x+ b) ∧ (y ≥ x+ a) ∧R

))
.

We parse the formula as follows. We assign the “current” time tx to the variable
x, and some future time ty to the variable y. The values tx and ty are such that
at time ty, we have R to be true, and moreover, at all times between tx and ty,
we have Q∨R to be true. Furthermore, ty must be such that ty ∈ [tx+a, tx+ b],
which is specified by the term (y ≤ x+ b) ∧ (y ≥ x+ a).

Example 2 (Temporal Constraints). Suppose we want to express that whenever
the event Q occurs, it must be followed by a response R, and then by S. In
addition, we have the following timing requirement: if εQR, εRS , εQS are the
time delays between Q and R, between R,S, and between Q and S respectively,
then: we must have ε2QR + ε2RS + ε2QS ≤ d for a given positive constant d. This
can be written using freeze quantifiers as the TLTL formula φ:

x.
(
Q→ ♦

(
y.
(
R ∧ ♦

[
z.
(
S ∧

(
(y − x)2 + (z − y)2 + (z − x)2 ≤ d

))]) ))
.

4.2 Transference of TLTL Properties for Propositional Traces

We show in this section that if a timed propositional trace π satisfies a TLTL(FT)

formula φ, then any timed trace π′ that is at most δ distance away from π
satisfies a slightly relaxed version of the formula φ, the degree of relaxation
being governed by δ; and the variance of the functions in FT over the time
interval containing the time domains of π and π′.

Recall that the distance between two sets of propositions σ, σ′ is∞ if σ 6= σ′,
and 0 if σ = σ′. The distance between two propositional traces is defined to be
the Skorokhod distance with the aforementioned metric on 2P .

Next, we define relaxations of TLTL(FT)formulae. The relaxations are de-
fined as a syntactic transformation on formulae which do not have negations,
except on the prepositions. Every TLTL(FT)formula can be expressed in this
negation free form. To remove negations from the until operator, we use the
waiting for operator, W , defined as:

π |=E φ1W φ2 iff either (1) πt |=E φ1 for all t ∈ I; or (2) πt |=E φ2 for

some t ∈ I; and πt
′ |=E φ1 ∨ φ2 for all t0 ≤ t′ < t.



It can be showed that every TLTL(FT) formula can be rewritten using the W
operator such that negations appear only over the prepositions (the procedure
is given in the Appendix).

Definition 4 (δ-relaxation of TLTL(FT) formulae). Let φ be a TLTL(FT)

formula in which negations appear only on the prepositional symbols; and let FT

be a set of functions f(x1, . . . , xl) to R, where each xi has domain IFT
for IFT

a closed interval of R+. The δ relaxation of φ (for δ ≥ 0) over IFT
, denoted

rxδIFT
(φ), is defined as follows.

rxδIFT
(p) = p

rxδIFT
(¬p) = ¬p

rxδIFT
(φ1 ∧ φ2) = rxδIFT

(φ1) ∧ rxδIFT
(φ2)

rxδIFT
(x.ψ) = x. rxδIFT

(ψ)

rxδIFT
(φ1 U φ2) = rxδIFT

(φ1)U rxδIFT
(φ2)

rxδIFT
(true) = true

rxδIFT
(false) = false

rxδIFT
(φ1 ∨ φ2) = rxδIFT

(φ1) ∨ rxδIFT
(φ2)

rxδIFT
(φ1W φ2) = rxδIFT

(φ1)W rxδIFT
(φ2)

rxδIFT
(fT(x1, . . . , xl)) ∼ 0) =

{
fT(x1, . . . , xl) + KfT(δ) ∼ 0 if ∼∈ {>,≥}
fT(x1, . . . , xl) − KfT(δ) ∼ 0 if ∼∈ {<,≤},

where KfT : [0,max tdom(IFT
) − min tdom(IFT

)] 7→ R+, and

KfT(δ)
def
= sup

t1, . . . , tl ∈ IFT

t′1, . . . , t
′
l ∈ IFT



fT(t1, . . . , tl)

−
fT(t′1, . . . , t

′
l)

 s.t. |ti − t′i| ≤ δ for all i


Thus, instead of comparing the fT() values to 0, we relax by comparing in-

stead to ±KfT(δ). The other cases are defined inductively. The functions KfT(δ)
define the maximal change in the value of fT that can occur when the input
variables can vary by δ. The role of IFT

is the above definition is to restrict the
domain of the freeze quantifier variables to the time interval IFT

(from R+) in
order to obtain the least possible relaxation on a given trace π (we do not care
about the values of a function in FT outside of the domain tdom(π) of the trace).

Example 3. Recall Example 2, and the formula φ presented in it. Suppose a
flow π satisfies φ; and let π′ be δ close to π, for a finite δ, under the Skorokhod
metric (for propositional traces). Our robustness theorem ensures that (i) π′ will
satisfy the same untimed formula Q → ♦ (R ∧ ♦S); and (ii) it gives a bound
on how much the timing constraints need to be relaxed in φ in order to ensure
satisfaction by π′; it states that π′ satisfies the following relaxed formula φ′:

x.
(
Q→ ♦

(
y.
(
R ∧ ♦

[
z.
(
S ∧

(
(y − x)2 + (z − y)2 + (z − x)2 ≤ d+ 12·δ2

))]) ))
.

Example 4 (δ-relaxation for Bounded Temporal Operators – MTL). We demon-
strate how δ-relaxation operates on bounded time constraints through an exam-
ple. Consider an MTL formula φ = QU [a,b]R. This can be written as a TLTL

formula, and relaxed using the rxδR+
function. The relaxed TLTL formula is

again equivalent to an MTL formula, namely QU [a−2·δ , b+2·δ]R. The details are
explained in Example 8 in the Appendix.



Theorem 2 (Transference for Propositional Traces). Let π, π′ be two
timed propositional traces such that D(π, π′) < δ for some finite δ. Let φ be a
closed TLTL(FT) formula in negation free form. If π |= φ, then π′ |= rxδIπ,π′ (φ)

where Iπ,π′ is the convex hull of tdom(π) ∪ tdom(π′).

4.3 Transference of TLTL properties for Rn-valued Signals

A timed Rn-valued trace π is a function from a closed interval I of R+ to Rn.
For α = (α0, . . . , αn) ∈ Rn, we denote the k-th dimensional value αk as α[k].
The π projected function onto the k-th R dimension is denoted by πk : I 7→ R.

In order to define the satisfaction of TLTL formulae over timed Rn-valued
sequences, we use booleanizing predicates µ : Rn 7→ B, as in STL [12], to trans-
form Rn-valued sequences in to timed propositional sequences. These predicates
are part of the logical specification. In this work, we restrict out attention to
traces and predicates such that each predicate varies only finitely often on the
finite time traces under consideration.

Definition 5 (TLTL(FT,FS) Syntax). Given a set of variables VT (the freeze
variables), a set of ordered variables VS (the signal variables), and two sets
FT,FS of functions, the formulae of TLTL(FT,FS) are defined by the grammar:

φ := true | fT(x) ∼ 0 | fS(y) ∼ 0 | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 U φ2 | x.φ where

– x ∈ VT, and x = (x1, . . . , xl) with xi ∈ VT for all 1 ≤ i ≤ l;
– y = (y1, . . . , yd) with yj ∈ VS for all 1 ≤ j ≤ d;
– VT and VS are disjoint;
– fT ∈ FT and fS ∈ FS are functions, and ∼ belongs to {≤, <,≥, >}.

The semantics of TLTL(FT,FS) is straightforward and similar to the propo-
sitional case (Definition 3). The only new ingredients are the booleanizing pred-
icates fS(y) ∼ 0: we define π |=E fS(y1, . . . , yd) ∼ 0 iff fS(πj1 [t0], . . . , πjd [t0]) ∼ 0
for any freeze variable environment E , where t0 = min tdom(π), and yi is the
ji-th variable in VS (i.e., yi refers to the ji-th dimension in the signal trace). We
require that for a timed Rn-valued trace π to satisfy φ, the arity of the functions
in FS occurring in φ should not be more than n, that is, functions should not
refer to dimensions greater than n for an Rn trace.

δ relaxation of TLTL(FT,FS). Let IVS
be a mapping from VS to closed intervals

of R such that IVS
(z) denotes the domain of z ∈ VS. The relaxation function

rxδIFT
,IVS

which operates on TLTL(FT,FS) formulae is defined analogous to the

relaxation function rxδIFT
in Definition 4. We omit the similar cases, and only

present the new case for the predicates formed from FS (the full definition can
be found in the appendix).

rxδIFT
,IVS

(fS(z1, . . . , zl)) ∼ 0) =

{
fS(z1, . . . , zl) + KfS(δ) ∼ 0 if ∼∈ {>,≥};
fS(z1, . . . , zl) − KfS(δ) ∼ 0 if ∼∈ {<,≤}

where KfS :
[
0, maxz∈VS

|max IVS
(z) − min IVS

(z)|
]
7→ R+ is a function s.t.

KfS(δ) = sup
zi ∈ IVS

(zi); z
′
i ∈ IVS

(z′i)
for all i



fS(z1, . . . , zl)

−
fS(z′1, . . . , z

′
l)

 s.t. |zi − z′i| ≤ δ for all i

 .



The functions KfS(δ) define the maximal change in the value of fS that can occur
when the input variables can vary by δ. The role of IVS

in the above definition is
to restrict the domain of the signal variables in order to obtain the least possible
relaxation bounds on the signal constraints; as was done in Definition 4 for the
freeze variables.

Theorem 3 (Transference for Rn-valued Traces). Let π, π′ be two Rn-
valued traces such the Skorokhod distance between them is less than δ for some
finite δ. Let φ be a closed TLTL(FT,FS) formula in negation free form. If π |= φ,
then π′ |= rxδIπ,π′ ,IVS

(φ), where

– Iπ,π′ is the convex hull of tdom(π) ∪ tdom(π′); and
– IVS

(z) is the convex hull of {π(t)[k] | t ∈ tdom(π)}∪{π′(t)[k] | t ∈ tdom(π′)};
where z is the k-th variable in the ordered set VS.

Example 5 (Spatial Constraints and Transference). Recall Example 2, suppose
that the events Q,R, S are defined by the following predicates over real variables
α1 and α2. Let Q ≡ α1 + 10 ·α2 ≥ 3; the predicate R ≡ |α1| + |α2| ≤ 20; and
S ≡ |α1|+ |α2| ≤ 15. Let π satisfy this formula with these predicates, and let π′

be δ close to π, for a finite δ under the Skorokhod metric for R2. Our robustness
theorem ensures that π′ will satisfy the relaxed formula

x.
(
Qδ → ♦

(
y.
(
Rδ ∧ ♦

[
z.
(
Sδ ∧

(
(y − x)2 + (z − y)2 + (z − x)2 ≤ d+ 12·δ2

))]) ))
.

where the relaxed predicates Qδ, Rδ, Sδ are defined as follows: Qδ ≡ α1+10·α2 ≥
3− 22·δ; and Rδ ≡ |α1|+ |α2| ≤ 20 + 4·δ; and Sδ ≡ |α1|+ |α2| ≤ 15 + 4·δ.

5 Experimental Evaluation

5.1 Skorokhod Distance Computation Benchmarking

The Skorokhod distance is computed with the help of a streaming, sliding window
monitoring routine which checks for a fixed δ whether the linear interpolations
of two time-sampled traces are at most δ away from each other. The least such
δ value is computed by binary search over the monitoring routine. The upper
limit of the search range is set to the pointwise metric (i.e assuming the identity
retiming) between the two traces. The traces to the Skorokhod procedure are pre-
scaled, each dimension (and the time-stamp) is scaled by a different constant.
The constants are chosen so that after scaling, one unit of deviation in one
dimension is as undesirable as one unit of jitter in other dimensions. We next
present a benchmarking experiment on the distance computing routine.

Consider the hybrid dynamical system S1 shown in Fig. 1. The system con-
sists of two water tanks, each with an outlet from which water drains at a
constant rate dj . Both tanks share a single inlet pipe that is switched between
the tanks, filling only one tank at any given time at a constant inflow rate of i.
When the water-level in tank j falls below level `j , the pipe switches to fill it.
The drain and inflow rates d1, d2 and i are assumed to be inputs to the system.
Now consider a version S2 that incorporates an actuation delay that is a function
of the inflow rate. This means that after the level drops to `j for tank j, the
inlet pipe starts filling it only after a finite time. S1 and S2 have the same initial



[
ḣ1

ḣ2

]
=
[
i− d1
−d2

] [
ḣ1

ḣ2

]
=
[−d1
i− d2

]
h2 < `2

h1 < `1

Fig. 1. System S1 used for benchmarking Skorokhod Distance computation. Inflow
rate i, Drain rate d1 for tank 1 and d2 for tank 2 are all inputs to the system.

Table 1. Benchmarking the computation of DS(π1, π2), where π1 is a trace of system
S1 described in Fig. 1, and π2 is a trace of system S2, which is S1 with an actuation
delay. D2 is the naive pointwise distance. Both π1 and π2 contain equally spaced 2001
time points over a simulation horizon of 100 seconds.

Window size Avg. DS Avg. Time taken (secs) max D2−DS

D2

Computation Monitoring

20 8.58 0.81 0.13 0.09
40 8.35 1.55 0.26 0.18
60 8.09 2.31 0.39 0.26
80 7.88 3.05 0.52 0.33
100 7.72 3.77 0.64 0.38

water level. We perform a fixed number of simulations by systematically choos-
ing drain and inflow rates d1, d2, i to generate traces (water-level vs. time) of
both systems and compute their Skorokhod distance. We summarize the results
in Table 1.

Recall that DS (the Skorokhod distance) computation involves a sequence of
monitoring calls with different δ values picked by a bisection-search procedure.
Thus, the total time to compute DS is the sum over the computation times
for individual monitoring calls plus some bookkeeping. In Table 1, we make a
distinction between the average time to monitor traces (given a δ value), and
the average time to compute DS. There are an average of 6 monitoring calls per
DS computation. We ran 64 simulations by choosing different input values, and
then computing DS for increasing window sizes. As the window size increases,
the average DS is seen to decrease; this is expected as a better match may
be achieved in a larger window. The computation time is also seen to increase
linearly, as postulated by Theorem 1. Finally, we see that the Skorokhod distance
is less aggressive at classifying traces as distant (as shown by its lower overall
numbers) than a simpler metric D2 (defined as as the maximum of the pointwise
L2 norm4). We can see this discrepancy becomes more prominent with increased
window size (because of better matches being available).

4 Even though the difference is only 38% with respect to the pointwise metric, this
difference is amplified in the original state value domain, as in the experiment, the
input state values to the Skorokhod routine were scaled by 0.1.



5.2 Case Studies

LQR-based pitch Controller for an aircraft model The first case study
is an example of an aircraft pitch control application taken from the openly
accessible control tutorials for Matlab and Simulink [24]. The authors describe a
linear dynamical system of the form: ẋ = (A−BK)x +Bθdes. Here, x describes
the vector of continuous state variables and θdes is the desired reference provided
as an external input. One of the states in the x vector represents the pitch
angle θ, which is the chosen system output. The controller gain matrix K is
computed using the linear quadratic regulator method [5], a standard technique
from optimal control. We provide the system parameters in the appendix.

We are interested in studying the digital implementation of the continuous-
time controller obtained using the LQR method. To do so, we consider sampled-
data control where the controller samples the plant output, computes, and pro-
vides the control input to the plant every ∆ seconds. Further, to model sensor
delay, we add a fixed delay element to the system; thus, the overall system now
represents a delay-differential equation.

Control engineers are typically interested in the step response of a system.
In particular, quantities such as the overshoot/undershoot of the output signal
(maximum positive/negative deviation from reference value) and the settling
time (time it takes for transient behaviors on the signal to converge to some
small percentage of the reference value) are of interest. Given a settling time
and overshoot for the first system, we would like the second system to display
similar characteristics. We remark that both of these properties can be expressed
in STL, see [19] for details. We quantify system conformance (and thereby ad-
herence to requirements) in terms of the Skorokhod distance, or, in other words,
maximum permitted time/space-jitter value δ. For this system, we pick δ such
that the overshoot and settling time of the second system are approximately
within 10% of the original system.

We summarize the results of conformance testing for different values of sam-
pling time ∆ in Table 2. It is clear that the conformance of the systems decreases
with increasing ∆ (which is to be expected). The time taken to compute the Sko-
rokhod distance decreases with increasing ∆, as the number of time-points in
the two traces decreases.

Air-Fuel Ratio Controller for a gasoline engine In [19], the authors present
three systems representing an air-fuel ratio controller for a gasoline engine. Of
interest to us are the second and the third systems. The former has a continuous-
time plant model with highly nonlinear dynamics, and a discrete-time controller
model. In [20], the authors present a version of this system where the con-
troller is also continuous system. We consider this as the system S1. The third
system in [19] is a continuous-time closed-loop system where all the system dif-
ferential equations have right-hand-sides that are polynomial approximations of
the nonlinear dynamics in S1. We call this polynomial dynamical system S2.
The rationale for these system versions is as follows: existing formal methods
tools cannot reason about highly nonlinear dynamical systems, but tools such as
Flow* [9], C2E2 [13] and those based on polynomial zonotopes [3] demonstrate



Table 2. Variation in Skorokhod Distance with changing sampling time for an aircraft
pitch control system with an LQR-based controller. Time taken indicates the total time
spent in computing the upper bound on the Skorokhod distance across all simulations.
We scale the signals such that a time-jitter of 0.5 seconds, is treated the same as a
value-difference of 0.08 radians, and the window size chosen is 150. The system is
simulated for 5 seconds, with a variable-step solver.

Controller Skorokhod Time taken (seconds) Number of
Sample-Time distance to compute DS simulations
(seconds)

0.01 0.012 232 104
0.05 0.049 96 104
0.1 0.11 70 106
0.3 0.39 45 104
0.5 1.51 40 101

Table 3. Conformance testing for closed-loop A/F ratio controller at different engine
speeds. We scale the signals such that 0.5 seconds of time-jitter is treated equivalent
to 10% of the steady-state value (14.7) of the A/F ratio signal. The simulation traces
correspond to a time horizon of 10 seconds, and the window size is 300.

Engine Skorokhod Computation Total Time Number of
speed (rpm) distance Time (secs) Taken (secs) simulations

1000 0.45 218 544 700
1500 0.20 240 553 700
2000 0.27 223 532 700

good capabilities for polynomial dynamical systems. Thus, the hope is to ana-
lyze the simpler systems instead. In [19], the authors comment that the system
transformations are not accompanied by formal guarantees. By quantifying the
difference in the system behaviors, we hope to show that if the system S2 satis-
fies the temporal requirements ϕ presented in [19], then S1 satisfies a moderate
relaxation of ϕ. As before, we choose δ which results in an acceptable relaxation
on control-theoretic requirements such as overshoot and settling time.

The results of conformance testing for these systems are summarized in Ta-
ble 3. In [18], the authors posed a challenge problem for conformance testing.
In this paper, the authors report that the original nonlinear system and the
approximate polynomial system both satisfy the STL requirements specifying
overshoot/undershoot and settling time. We, however, found an input that causes
the outputs of the two systems to have a high Skorokhod distance. Thus, com-
paring the two systems by considering equi-satisfaction of a given set of STL
requirements such as overshoot/undershoot and settling time may not always
be sufficient, and our experiment indicates that the more nuanced Skorokhod
metric may be a better measure of conformance.

Engine Timing Model with closed-loop control The Simulink demo palette
presented by the Mathworks [23] contains a system representing a four-cylinder
spark ignition internal combustion engine based on a model by Crossley and
Cook [10]. This system is then enhanced by adding a proportional plus integral
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Fig. 2. Example of non-conformant behavior found using a simulation-guided opti-
mization algorithm with the Skorokhod distance between system output trajectories
as the cost function.

(P+I) control law. The integrator is used to adjust the steady-state throttle as
the desired engine speed set-point changes, and the proportional term compen-
sates for phase lag introduced by the integrator. In an actual implementation
of such a system, such a P+I controller is implemented using a discrete-time
integrator. Such integrator blocks are typically associated with a particular nu-
merical integration technique, e.g., forward-Euler, backward-Euler, trapezoidal,
etc. It is expected for different numerical techniques to produce slight variation
in the results, and we wish to quantify the effect of using different numerical
integrators in a closed-loop setting. We try to check if the user-provided bound
of δ = 1.0 is satisfied by systems S1 and S2, where S1 is the original system pro-
vided at [23], while S2 is a modified system that uses the backward Euler method
to compute the discrete-time integral in the controller. We try to determine the
input signal that leads to a violation of this δ bound, using a simulation-guided
approach as described before. We find the signal shown in Fig. 2, for which
we find output traces with Skorokhod distance 1.04. The experiment uses 296
simulations and the total time taken to find the counterexample is 677 seconds.

6 Conclusion

Metrics for comparing behaviors of dynamical systems which quantify both time
and value distortions have heretofore been an object of mathematical inquiry,
without enough attention being paid to computational aspects and connections
to logical requirements. We argue that the Skorokhod metric provides a robust
definition of conformance by proving transference of a rich class of temporal logic
properties. We also demonstrate the computationally tractability of the metric
for practical use by constructing a conformance testing tool in a simulation and
optimization guided approach for finding and quantifying non-conformant behav-
ior of dynamical systems. Pinpointing the source of trace deviations is necessary
in many engineering applications; our tool allows for independent weighing of
time and value-dimension distortions in order to achieve this objective.
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Appendix

A. Transference Formalism and Proofs

Example 6 (Freeze Quantification). Suppose we want to express that whenever
the event Q occurs, it is followed later by R, and then by S, such that the
time difference between occurrences of Q and R is at most 5, and also the time
difference between occurrences of Q and S is at most 10. This can be expressed
in TLTL(FT) as

�
(
x.Q→ ♦

(
y.
[
R ∧ (y ≤ x+ 5) ∧ ♦ (z. (S ∧ z ≤ x+ 10))

]))
.

Thus, freeze quantification, by giving a mechanism to bind times to variables,
allows us to relate, with several constraints, far apart events.

Example 7 (Freeze Quantification Functions). Suppose we want to express that
whenever the event Q occurs, it must be followed by a response R within time
λtQ for some λ > 1 where tQ is the time at which Q occurred; thus, the later
Q occurs the more delay we can tolerate in the response time. The requirement
can be expressed as x.

(
Q→ ♦

(
y. (R ∧ 0 ≤ y ≤ λx)

))
.

Example 8 (δ-relaxation for Bounded Temporal Operators – MTL). We demon-
strate how δ-relaxation operates on bounded time constraints through an exam-
ple. Consider an MTL formula φ = QU [a,b]R. The δ-relaxation of this formula
over the closed interval IFT

= R+ is QU [a−2·δ , b+2·δ]R. This can be seen as
follows. The formula φ can be written in TLTL syntax as:

x.QU y. ((y ≤ x+ b) ∧ (y ≥ x+ b) ∧R) .

The δ-relaxation of this formula according to Definition 4 is:

rxδR+
(x.QU y. ((y ≤ x+ b) ∧ (y ≥ x+ a) ∧R)) =

= rxδR+
(x.QU y. ((y − x− b ≤ 0) ∧ (y − x− a ≥ 0) ∧R))

= x.QU y.
(

(y − x− b− 2·δ ≤ 0) ∧
(y − x− a+ 2·δ ≥ 0) ∧R

)
since the Lipschitz constant of y − x− c is 2
for any constant c

= x.QU y. ((y ≤ x+ b+ 2·δ) ∧ (y ≥ x+ a− 2·δ) ∧R)

= QU [a−2·δ,b+2·δ]R.

Thus, the time constraint interval boundaries are relaxed by 2·δ. The factor of
2 arises because there are two contributing factors: the starting time of Q can
be “pulled back” by δ, and the time of R can be postponed by δ; thus, the time
duration in between Q and R increases by 2·δ.

Removing Negation using the W Operator. The following identities hold
relating the W operator to the U operator
1. φ1 U φ2 ≡ ¬ (¬(φ2)W (¬φ1 ∧ ¬φ2) ); and
2. φ1W φ2 ≡ ¬ (¬(φ2)U (¬φ1 ∧ ¬φ2) ).



Informally, the first identity states that ¬(φ1 U φ2) holds iff either (i) φ2 never
holds; or (ii) there is a point where φ1 is false, and at that point and all points
before it, φ2 has remained false. The second identity is similar. The first iden-
tity above allows us to “push” the negations down using the W operator. The
mechanism for the three interesting cases is below.

¬ (fT(x1, . . . , xl) ∼ 0) ≡ fT(x1, . . . , xl) neg(∼) 0,

where, for ∼∈ {≤, <,≥, >} we have

neg(≤) to be >; neg(<) to be ≥;

neg(≥) to be <; neg(>) to be ≤
¬(x.ψ) ≡ x.¬(ψ)

¬ (φ1 U φ2) ≡ ¬(φ2)W (¬φ1 ∧ ¬φ2)

Proposition 1. The function rx is a relaxation on TLTL(FT) formulae, i.e. if a
timed propositional trace π |= φ for a TLTL(FT) formula φ, then π |= rxδIFT

(φ).

Proof. Observe that, over the predicates fT(x1, . . . , xl) ∼ 0, the function rx is in-
deed a relaxation, i.e, if fT(t1, . . . , tl) ∼ 0 for values t1, . . . , tl, then rxδIFT

(fT(t1, . . . , tl)) ∼
0) also holds. The result follows by a straightforward induction argument.

Proof of Theorem 2. Let untime(φ) be the formula where all freeze variable
constraints are replaced by true (e.g. untime(x.(Q ∧ x < 5)) is x.(Q ∧ true)).
Since D(π, π′) < δ, we have that there exists a retiming r : tdom(π) 7→ tdom(π′)
such that

π(t) = π′(r(t)). (1)

This implies that both π and π′ satisfy untime(φ), which can be shown by an
induction argument. The interesting cases are for the U and W operators.
We sketch the argument for the U case (the argument for W is similar). The
time environment E ′ for π′ assigns the time r(tx) to the freeze variable x where
the witnessing freeze variable environment E for π |= φ assigns tx to x. Let
π |=E φ1 U φ2, and let t be the time value which demonstrates this satisfaction
(as in Definition 3), with the corresponding freeze variable environment E . To
show π′ |=E′ φ1 U φ2, we pick the time r(t), with the environment E ′ for π′ which
assigns the time r(tx) to the freeze variable x where E(x) = tx. It can be checked
that, due to Equation 1, we have (i) r(t) ≥ E ′(x), for a freeze variable x in φ1 U φ2
(which was previously bound); (i) π′

r(t) |=E′ φ2; and (ii) for all t′0 ≤ t† < r(t),

we have π′
t† |=E′ φ1 ∨ φ2. Thus, r(t), and E ′ demonstrate that π′ |=E′ φ1 U φ2.

We now check what is the relaxation needed on the original freeze variable
constraints so that π′ satisfies the relaxed constraints. Without loss of generality,
assume that each freeze variable x is only quantified once in φ, i.e. once it is
bound to a value by “x.”, it is not “re-bound” with another application of “x.”.

Let κπ denote an assignment of time values (from I) to the freeze variables
such that all the freeze variable constraints in φ are satisfied, i.e. κπ is an time
environment witness to the satisfaction of φ by π. Consider a free variable as-
signment κπ′ corresponding to κπ, where κπ′(x) = r (κπ(x)). This is a legal vari-
able assignment compatible with some U , W time witnesses which demonstrate



that π′ satisfies untime(φ), as shown previously. Observe that by the existence
of a retiming function, for all freeze variables x occurring in φ, we have that
|κπ′(x)− κπ(x)| < δ.

Since the time values of variables are different in κπ and κπ′ , the original
freeze constraints (e.g. x < 5) in φ might not be satisfied with the assignment
κπ′ . Consider a freeze variable constraint fT(x1, . . . , xl) ∼ 0 in φ. We know that
fT(κπ(x1), . . . , κπ(xl)) ∼ 0 is true. As |κπ′(x)− κπ(x)| ≤ δ for all freeze variables
x occurring in φ, by the definition of relaxation, we have that
1. fT(κπ(x1), . . . , κπ(xl)) +KT(δ) ∼ 0 if ∼∈ {>,≥}; and
2. fT(κπ(x1), . . . , κπ(xl))−KT(δ) ∼ 0 if ∼∈ {<,≤}.

This implies that κπ′ is also a witness to the satisfaction of rxδIπ,π′ (φ) by π′.

Thus, π′ |= rxδIπ,π′ (φ).

Definition 6 (δ-relaxation of TLTL(FT,FS) formulae). Let φ be a TLTL(FT,FS)

formula in which negations appear only on the prepositional symbols . The δ re-
laxation of φ (for δ ≥ 0), denoted rxδIFT

,IVS
(φ) is defined as follows, where IFT

,

a closed subset of reals+, is the domain of the variables in VT; and IVS
is a

mapping from VS to closed intervals of R such that IVS
(z) denotes the domain of

z.

rxδIFT
,IVS

(true) = true; rxδIFT
,IVS

(false) = false;

rxδIFT
,IVS

(φ1 ∧ φ2) = rxδIFT
,IVS

(φ1) ∧ rxδ(φ2);

rxδIFT
,IVS

(φ1 ∨ φ2) = rxδIFT
,IVS

(φ1) ∨ rxδIFT
,IVS

(φ2);

rxδIFT
,IVS

(x.ψ) = x. rxδIFT
,IVS

(ψ);

rxδIFT
,IVS

(φ1 U φ2) = rxδIFT
,IVS

(φ1)U rxδIFT
,IVS

(φ2);

rxδIFT
,IVS

(φ1W φ2) = rxδIFT
,IVS

(φ1)W rxδIFT
,IVS

(φ2)

rxδIFT
,IVS

(fU (z1, . . . , zl)) ∼ 0) =

{
fU (z1, . . . , zl) + KfU (δ) ∼ 0 if ∼∈ {>,≥};
fU (z1, . . . , zl) − KfU (δ) ∼ 0 if ∼∈ {<,≤};

where U ∈ {T,S} with KfU being as in Definition 4;

and KfS :
[
0, max

z∈VS

|max IVS
(z) − min IVS

(z)|
]
7→ R+

is a function such that:

KfS(δ) = sup
zi ∈ IVS

(zi); z
′
i ∈ IVS

(z′i)
for all i



fS(z1, . . . , zl)

−
fS(z′1, . . . , z

′
l)

 s.t. |zi − z′i| ≤ δ for all i



The functions KfS(δ) define the maximal change in the value of fS that can
occur when the input variables can vary by δ. The role of IVS

in the above
definition is to restrict the domain of the signal variables in order to obtain the



least possible bounds relaxation bounds on the signal constraints; as was done
in Definition 4 for the freeze variables.

Proposition 2. The function rxδIFT
,IVS

is a relaxation on TLTL(FT,FS) formu-

lae, i.e. if a timed Rn-valued trace π |= φ for a TLTL(FT,FS) formula φ, then
π |= rxδIFT

,IVS
(φ).

Proof. The proof is similar to the proof of Proposition 1.

Proof of Theorem 3. The proof use the result for the propositional case, The-
orem 2. We construct the propositions pfS defined to be rxδIFT

,IVS
(fS(y)) ∼ 0)

for the constraints over VS in the formula φ; and define the TLTL(FT) formula
φP as that obtained from φ by syntactically replacing each constraint fS(y) ∼ 0
in φ by pfS . Let PS denote all such predicates for φ. We obtain the timed PS

propositional traces πPS
, π′PS

from π, π′ by mapping to propositions. By the def-
inition of the skorokhod distance, the distance between πPS

and π′PS
is less than

δ. By Theorem 2, π′PS
|= φP . This implies π′ |= rxδIFT

,IVS
(φ).

B. Details on Case Studies

LQR-based pitch controller. The aircraft pitch controller system has 3 state
variables, and the state vector x = [α q θ], where α is the angle of attack, q
is the pitch rate, and θ is the pitch angle. The system has a single input δ
(the elevator deflection angle). In deriving the control law, the designers use
the state feedback law to substitute δ = θdes − Kx, where θdes is the desired
pitch angle. The resulting dynamical equations of the system are of the form
ẋ = (A − BK)x + Bθdes, and the output of the system is the state variable
θ. Note that the K matrix is the gain matrix resulting from the LQR control
design technique. The values of the A, B and K matrices are as given below:

A =

−0.313 56.7 0
−0.0139 −0.426 0
0 56.7 0

 B =

0.232
0.0203
0


K = [−0.6435 169.6950 7.0711]

Air-Fuel Ratio Controller. The Air-Fuel (A/F) ratio control systems that we
consider are simplified versions of industrial-scale models. Both versions have 2
exogenous inputs, and 4 continuous states. The inputs are engine speed (mea-
sured in rpm) and the throttle angle (in degrees). The throttle angle is a user
input, and it is common to assume a series of pulses or steps as throttle an-
gle inputs. The engine speed is considered an input to avoid modeling parts
of the powertrain dynamics. In our experiments, we typically hold the engine
speed constant. This is to mimic a common engine testing scenario involving
a dynamometer, which is a device to provide external torque to the engine to
maintain it at a constant speed. Of the 4 continuous states, we assume that 2
of these states are from the plant model (that encapsulates physical processes
within the engine), while 2 states belong to the controller. The plant states p and



λ denote intake manifold pressure and the A/F ratio respectively. The controller
states pe denotes the estimated manifold pressure (with the use of an observer)
used in the feed-forward control, and the state i denotes the integrator state
in the P+I feedback control. We check conformance with respect to the system
output λ. For the dynamical system equations, please refer to [19, 20].


