
Symbolic Deadlock Analysis in Concurrent
Libraries and their Clients

Jyotirmoy Deshmukh
Univ. of Texas at Austin.

jyotirmoy@cerc.utexas.edu

E. Allen Emerson
Univ. of Texas at Austin.
emerson@cs.utexas.edu

Sriram Sankaranarayanan
Univ. of Colorado at Boulder.
srirams@colorado.edu

Abstract

Methods in object-oriented concurrent libraries hide internal synchroniza-
tion details. However, information hiding may result in clients causing thread
safety violations by invoking methods in an unsafe manner. Given such a
library, we present a technique for inferring interface contracts that specify
permissible concurrent method calls and patterns of aliasing among method
arguments, such that the derived contracts guarantee deadlock free execution
for the methods in the library. The contracts also help client developers by
documenting required assumptions about the library methods. Alternatively,
the contracts can be statically enforced in the client code to detect potential
deadlocks in the client. Our technique combines static analysis with a symbolic
encoding for tracking lock dependencies, allowing us to synthesize contracts
using a SMT solver. Our prototype tool analyzes over a million lines of code
for some widely-used Java libraries within an hour, thus demonstrating its
scalability and efficiency. Furthermore, the contracts inferred by our approach
have been able to pinpoint real deadlocks in clients, i.e. deadlocks that have
been a part of bug-reports filed by users and developers of the client code.

1. Introduction

Concurrent programs are prone to a variety of thread-
safety violations arising from the presence of data race
conditions and deadlocks. In practice, data races are abundant
and difficult to debug. Thus, they have garnered considerable
attention from the program analysis community. A knee-jerk
response to avoiding race conditions is evident in the prolific
use of locking constructs in concurrent programs. Languages
such as Java have promoted this by providing a convenient
synchronized construct to specify lock acquisition. Locking
is sometimes naively used as a “safe” practice, rather than as a
requirement. Overzealous locking not only causes unnecessary
overhead, but can also lead to unforeseen deadlocks. Dead-
locks can severely impair real-time applications such as web-
servers, database systems, mail-servers, device drivers, and
mission-critical systems with embedded devices, and typically
culminate in loss of data, unresponsiveness, or other safety
and liveness violations.

In this paper, we focus on deadlocks arising from circular
dependencies in shared resources such as locks. Deadlock
detection is a well-studied problem, and both static and
dynamic approaches have been proposed [1–7]. Typically, such
techniques construct lock-order graphs that track dependencies
between locks for each thread. Lock-order graphs for concur-
rent threads are then merged, and a cycle in the resulting graph
indicates a possibility of a deadlock. Such techniques typically
assume a closed system, and are thus useful for detecting
existing deadlocks in a given application.

However, most software is designed compositionally and
treating individual components as closed systems could lead
to potential deadlocks being undetected. In particular, consider
the now prevalent concurrent libraries, i.e., collections of
modules that support concurrent access by multiple client
threads. Modular design principles mandate that the onus of
ensuring thread safety rests with the developer of such a
library. This has an undesirable side-effect: several details of
synchronization are obscured from the developer of client code
that makes use of this library. Consequently, the developer may
unintentionally invoke library methods in ways that can cause
deadlocks.

Analyzing concurrent libraries for deadlocks has two main
aspects: First of all, we wish to identify if, for any client, there
are library methods that can be concurrently called in a manner
that causes a deadlock. This is termed the deadlockability
problem. Secondly, we wish to use the results of this analysis
to search for the existence of deadlocks in a particular client
that invokes these library methods. Deadlockability analysis
was first introduced by Williams et al. [7]. Therein, the authors
construct a lock-order graph for each library method. The types
of syntactic expressions corresponding to object monitors are
used as conservative approximations for the may-alias infor-
mation between these monitors. The authors show that their
approach helps in identifying important potential deadlocks;
however, their approach is susceptible to false positives, which
have to be then filtered using (possibly unsound) heuristics.

This paper addresses the same underlying problem as that
of Williams et al. [7], under similar assumptions about the
underlying language (Java), concurrent libraries, their clients,
and the use of synchronization. The key contributions of this
paper are as follows:
(a) We reason about possible aliasing patterns between nodes

in a lock graph explicitly rather than use types as approx-
imations.

(b) We reduce the space of possible aliasing patterns between
nodes by using a notion of subsumption between aliasing
patterns. This enables a symbolic approach for enumer-
ating aliases between nodes using SAT-modulo Theory
(SMT) solvers. The focus on aliasing patterns allows us
to rule out infeasible aliases by means of a prior pointer
analysis. Overall, our analysis is just as scalable while
producing fewer false positives.

(c) We synthesize logical expressions involving aliasing be-

public class EventQueue {
EventQueue nextQueue;
void postEventPrivate (Event e) {

. . .
1: synchronized (this) {
2: nextQueue.postEventPrivate(e);

}
. . .

}
void push (EventQueue eq) {

. . .
3: nextQueue = eq;

. . .
}
void wakeup(boolean f) {

. . .
4: synchronized (this) {
5: nextQueue.wakeup(f);

}
. . .

}

Fig. 1: Methods in java.awt.EventQueue

tween the parameters of concurrent method invocations
such that these expressions guarantee deadlock-free exe-
cution of the library methods. These contracts can then be
used to detect deadlocks in a particular client.

1.1. Approach at a Glance

To illustrate the problem with the standard deadlock anal-
ysis techniques (i.e. treating libraries as closed systems),
we use the Java code snippet (shown in Fig. 1) from the
EventQueue class in Java’s awt library. In Lines 1 and 4, the
“synchronized(this)” statement has the effect of acquiring
a lock on the “this” object. The nextQueue variable is a data
member of the EventQueue class, which is set by the push
method (Line 3). By design, the postEventPrivate and
wakeup methods are intended to perform their action on the
EventQueue instance “this”, on which they are invoked, and
then act on “this.nextQueue” (Lines 2 and 5). Consider the
case wherein one client thread (say T1) invokes “a.push(b)”,
while another client thread (say T2) invokes “b.push(a)”.
Subsequently, if T1 invokes “a.postEventPrivate(e)” con-
currently while T2 simultaneously invokes “b.wakeup(true)”,
then this may result in a deadlock. This deadlock can manifest
itself in real client code, as reported by client developers in [8]
(bug-id: 6542185).

Our deadlockability analysis first performs static inspection
of the given concurrent library to identify lock-order graphs
for each method. The lock-order graph for the wakeup method
in Fig. 1 captures the acquisition of the lock for the “this”
object followed by that of the “this.nextQueue” object:

this.wakeup(..):

this this.nextQueue

Similarly, postEventPrivate method first acquires a lock

ob1 ob1.nextQueue

ob2 ob2.nextQueue

T1

T2

Fig. 2: Joint lock-order graph from the postEventPrivate
and wakeup methods.

ob1, ob2.nextQueue ob2, ob1.nextQueue

T1

T2

Fig. 3: Lock-order graph for T1||T2 under aliasing of nodes.

on the “this” object followed by the “this.nextQueue”
object, yielding an identical acyclic lock-order graph:

this.postEventPrivate(..):

this this.nextQueue

Consider a client that performs concurrent calls to the
methods from two different threads on objects: ob1, ob2:

T1 : ob1.wakeup(true) ||
T2 : ob2.postEventPrivate()

Assuming no other lock acquisitions are made by the threads
themselves, no other calls to methods and no aliasing/sharing
between the objects, the lock-order graph of the client is as
shown in Fig. 2.

Normally, the two graphs by themselves are acyclic, and
the method calls by themselves do not seem to cause an
obvious deadlock. However, the lock-order graph above as-
sumes that the objects ob1,2 are not aliased/do not share fields.
Consider, on the other hand, the scenario wherein the object
ob1.nextQueue aliases ob2 and ob2.nextQueue aliases ob1.
Under such a scenario, the lock-order graph of Fig. 2 is
modified by fusing the aliased nodes into a single node to
obtain the graph depicted in Fig. 3.

This graph clearly indicates the possibility of a deadlock.
Furthermore, prior calls to the push methods set up the
required pattern of aliasing along the lines of [8] (bug-
id:6542185). It is important to note that techniques that assume
a closed system would only generate the lock-order graph
shown in Fig. 2, and would thus miss a potential deadlock.

At a broad level, the techniques developed in this paper
provide a practical framework to:
(a) identify potential deadlock situations by efficiently con-

sidering all feasible aliasing/sharing scenarios between
objects at the concurrent call-sites of library methods,

(b) derive an interface contract that characterizes safe aliasing
patterns for concurrent calls to library methods.

Concretely, our technique synthesizes the aliasing sce-
nario described above. For calls to the wakeup and
the postEventPrivate methods, our analysis derives
the contract specifying that at any concurrent call to
a.wakeup () and b.postEventPrivate (), the aliasing be-
tween a,b must satisfy: ¬isAliased(a,b.nextQueue) ∨
¬isAliased(b,a.nextQueue)

This is sufficient to guarantee deadlock-free execution of
these methods assuming that the synchronization operations
of the client cannot “interfere” with that of the library.

The layout of the paper is as follows: In Sec. 2, we
introduce the problem of deadlock detection for concurrent
libraries and discuss the notation. In Sec. 3, we introduce a
symbolic encoding scheme for representing lock acquisition
orders in library methods, given an aliasing pattern spanning
the objects relevant to the methods. In Sec. 4 we show
how we can identify all potential deadlocks for a library
by optimally enumerating all aliasing patterns. Experimental
results obtained by analyzing well-known Java libraries are
discussed in Sec. 5. In Sec. 6, we show how interface contracts
derived for a given library can be used compositionally while
analyzing the client of the library for deadlocks. Finally, we
discuss related work, and conclude in Sec. 7.

2. Preliminaries

We assume that we are given a concurrent library written
in a class-based object-oriented programming language such
as C++ or Java. In the following discussion, we introduce
the type-based semantics and the concurrency model for such
libraries, loosely adhering to the model used in Java.
Library and Types: Formally, we define a library L as a collec-
tion of class definitions 〈C1, . . . Ck〉. Each class Ci denotes a
corresponding reference type Ci. A class definition consists of
definitions for data members (also called fields), and methods
(member functions). We say that C2 is a subtype of C1 if C2

is a subclass of C1.
Data members may have primitive types (int, double,

etc.), or reference types C1, . . . , Ck
1. An object is an in-

stance of a class Ci (of a non-primitive type). Let V =
{ob1, . . . , obk} be a (super-)set of all the object variables
(references in Java terminology) occurring in the methods
of interest in L.

Def. 2.1 (Access Expressions). Given an universe of object
variables V , access expressions are constructed as follows:

(a) A variable obi is an access expression of type Ci.
(b) If ej is an access expression of non-primitive type Cj , and

fk a field of the class Cj of type Ck. Then e : ej .fk is
also an access expression of type Ck.

1. Apart from class types, array types are also classified as reference types,
and while our technique does handle array variables conservatively, we omit
a detailed discussion on array types for brevity.

Informally, access expressions are of the form
ob.f1.f2.fk for some valid sequence of field accesses
f1, . . . , fk. Let Type(e) denote the type of an access
expression e. A runtime environment associates a set of
concrete memory locations and values to each object instance
and its fields.

Def. 2.2 (Aliasing, Sharing). Aliasing is a relationship be-
tween access expressions such that two access expressions e1

and e2 are aliased under runtime environment R, if they refer
to the same object instance.

Two objects obi, obj are said to share in a runtime environ-
ment R if some access expression of the form obi.f1fk

aliases another expression of the form obj .g1gj .
In a type system similar to Java’s type system, we can gen-

erally assume that if e1 and e2 are aliased, then C1 : Type(e1)
is a subtype of C2 : Type(e2) or vice-versa. In this case, we
also assume that if f1, . . . , fk are the common fields between
C1 and C2, then e1.fi aliases e2.fi for all 1 ≤ i ≤ k.

A method mi of class C is associated with a signature
sig(mi) that defines the types for the formal parameters of
mi, and a return type. Every method mi is always executed
on an object of some type Ci. A method body consists of
a sequence of statements, including calls to other member
methods of classes within L. The operational semantics of m
are defined using a control-flow graph (denoted cfg(m)). We
define cfg(m) as a tuple (Vc, Ec, S), where Vc is a set of
program points, and Ec is a set of edges, each labeled with a
unique program statement s ∈ S.

Lock-based synchronization: We seek to analyze object li-
braries that support concurrent accesses to their fields and
methods. Therefore synchronization statements such as lock-
acquisition and lock-release of the form lock(ob) and
unlock(ob) are used to serialize accesses to critical regions.
Following the Java convention, we assume an associated
monitor for every object ob. A thread executing lock(ob)
is blocked unless it can successfully acquire the monitor
associated with ob. The statement unlock(ob) releases the
monitor, returning it to the unlocked state. Note that in Java,
the syntax of a synchronized(ob){· · · } statement ensures
that lock acquisition and release are matched. Other high-
level programming languages also permit synchronization
constructs based on semaphores and rendezvous. However, in
this paper we focus on deadlocks arising from purely lock-
based synchronization. In practice, lock-based synchronization
accounts for a vast majority of synchronization operations used
in Java programs, as well as for most of the bugs caused due
to their misuse. We use a lock-order graph to represent patterns
of nested lock accesses for a given method.

Def. 2.3 (Lock-Order Graph). A lock-order graph for method
m denoted lg(m) is a tuple (V,E), where V is a set of access
expressions, and E is a set of edges. An edge e1 → e2 denotes
a pair of nested lock statements lock(x) followed by lock(y)
wherein x aliases the access expression e1, y aliases the access

expression e2, and the lock acquisitions are nested along some
path in cfg(m) or along a path in the cfg of one of m’s
callees.

Static Computation of lg(m): The standard interprocedural
approach to compute the lock-order graph for the methods
of a given library involves the summarization of each method
within the library. A summary sum(s,mi) is the symbolic
state of mi after executing a program statement s, described
as a data structure: (lg, ls, rs, env), where lg is the lock-order
graph, ls is the set of locks acquired (but not released) by mi,
rs is the set of locks that do not have any predecessors (root
nodes), and env is a mapping that tracks any local variables
that may be aliased to global variables on the heap, and thus
escape the scope of mi.

We closely follow the technique described in [7] for
fixpoint-based summary computation at each statement.
Briefly, for a statement s that acquires a new lock l, we add
edges from every lock in ls to l, and then add l to ls. Releasing
a lock l corresponds to removing l from ls. A branch-merge
corresponds to computing lg1 ∪ lg2, where each lgi is the lg
computed along the ith branch. Upon encountering a call to
a method mj , we concatenate lg(mj) to lg at the invocation
point, while replacing the formal parameters in lg(mj) with
the actual parameters at the call-site. In the presence of
recursive types (classes containing themselves as members,
for instance), and recursion/loops in the CFG, the fixpoint
computation may not terminate. We ensure termination by
artificially bounding the size of access expressions considered
by our approach.

3. Approach

Let m1, . . . ,mk be a set of methods in library L that
are concurrently invoked by k separate threads. For ease of
exposition, we consider the case of two threads (i.e., k = 2).
However, our results readily extend to arbitrary values of k.
Let objects ob1, . . . , obk denote a set of objects on which
the methods m1, . . . ,mk are invoked. Let obk+1, . . . , obn be
the set of parameters to these method calls. Let lg(m1) and
lg(m2) be the lock order graphs for the methods m1 and
m2 after substituting the variables ob1, . . . , obn in lieu of
the “this” object and the parameters of m1 and m2. We
assume that lg(m1) and lg(m2) are themselves cycle free.
Let V1,2 = {e1, . . . , em} denote the set of access expressions
occurring in lg(m1)∪lg(m2). We first characterize the patterns
of aliasing/sharing between the access expressions correspond-
ing to ob1, . . . , obn under some fixed runtime environment R.

Def. 3.1 (Aliasing Pattern). An aliasing pattern α over a set of
access expressions V is a symmetric, reflexive and transitive
relation over V such that if (e1, e2) ∈ α, (e1.fi, e2.fi) ∈ α
for all shared fields fi between Type(e1) and Type(e2).

Given an aliasing pattern α over the nodes of a lock-order
graph G, we fuse the nodes ei, ej of the graph if (ei, ej) ∈ α.
The outgoing and incoming edges to the individual nodes ei, ej

are preserved by the fused node. Let α.G denote the resulting
graph after merging all aliased nodes.

Def. 3.2 (Deadlock Causing Pattern). An aliasing pattern α
is potentially deadlock-causing for m1,m2 iff α . (lg(m1) ∪
lg(m2)) contains a cycle. An aliasing pattern that is not
deadlock-causing is termed safe.

Example 3.1. Consider methods m1 (wakeup) and m2

(postEventPrivate) from the java.awt.EventQueue class,
as shown in Fig. 1. Sec. 1 illustrates the individual lock-
order graphs lg(m1) and lg(m2). Following the notation
established, let ob1, ob2 denote the objects on which methods
m1,m2 are invoked, respectively. The access expressions
involved in the lock graph G : lg(m1) ∪ lg(m2) are V1,2 =
{ob1, ob2, ob1.nextQueue, ob2.nextQueue}. Let α1 be the
aliasing pattern {(ob1, ob2.nextQueue)}. The merged lock
graph α1 . G is shown below:

α1 . G:

ob2 ob2.nextQueue, ob1 ob1.nextQueue
1 2

The pattern α1 does not cause a deadlock. However, the
pattern α2 : {(ob2, ob1.nextQueue), (ob1, ob2.nextQueue)}
considered in Sec. 1 is deadlock-causing.

Def. 3.3 (Deadlockable). A library is termed potentially dead-
lockable if there exists a pair of methods m1,m2, and some
aliasing pattern α amongst the access expressions in V1,2 such
that α . (lg(m1) ∪ lg(m2)) contains a cycle.

A simplistic approach consists of (a) enumerating all possi-
ble aliasing patterns α, and (b) checking every graph α.G for a
cycle. As pointed out in [7], there may exist a huge number of
aliasing/sharing relationships between the parameters, invoked
objects, and their fields. Explicit reasoning over such a large
number of patterns is intractable. Hence, we use a symbolic
representation to encode the graphs and the aliasing patterns
using SAT-Modulo Theory (SMT) solvers to perform the
enumeration efficiently.

3.1. Symbolic Encoding

We first discuss how we encode the cycle detection problem,
given a graph G = lg1∪lg2, and a fixed aliasing pattern α, into
an efficient theory amenable to a SMT solver. In Sec. 4 we will
use this encoding to efficiently enumerate all possible patterns
to detect potential deadlocks and derive interface contracts.

The overall strategy consists of two parts: We first encode a
lock graph G over a set of access expressions VG as a logical
formula Ψ(G). Next, we show how a given alias pattern α
may be encoded as a formula Ψ(α). As a result, we guarantee
that Ψ(α) ∧ Ψ(G) is unsatisfiable if and only if α . G has a
cycle. The formula Ψ(G) represents a topological ordering of
the graph and Ψ(α) places equality constraints on the vertex
numbers based on aliasing. If the result is unsatisfiable then
no topological order can exist, indicating a cycle.

Graph Encoding. Corresponding to each node vi ∈ V ,
we create an integer variable x(vi) representing its rank
in a topological ordering of the node vi. Corresponding to
each edge vi → vj in the graph, we add the constraint
x(vi) < x(vj). The resulting formula Ψ(G) is the conjunction
of all edge inequalities:

Ψ(G) :
∧

(vi,vj)∈E

(x(vi) < x(vj)) . (1)

Example 3.2. Consider once again the running example
from Fig. 1, continuing with the notation established in
Ex. 3.1. The merged lock graph G : lg(m1) ∪ lg(m2) is
recalled in Fig. 2. The constraint Ψ(G) for this graph is as
follows:

x(ob1) < x(ob1.nextQueue) ∧
x(ob2) < x(ob2.nextQueue).

Aliasing Pattern Encoding : Given an aliasing pattern α, we
wish to derive a formula Ψ(α, G) whose satisfiability indicates
the absence of a cycle in α . G (and conversely). This is
achieved by encoding α by means of a set of equalities as
follows:

Ψ(α) :
[∧

(ei,ej)∈α (x(ei) = x(ej))
]

.

In effect, the rank of the access expressions that are aliased is
required to be the same in the topological order.

Example 3.3. Continuing with Ex. 3.2, the aliasing pattern
α1 : {(ob2, ob1.nextQueue)} may be encoded as: Ψ(α1) :
(x(ob2) = x(ob1.nextQueue)).

Given an aliasing pattern α, and a graph G, the formu-
lae Ψ(G) and Ψ(α) are conjoined into a single formula
Ψ(α, G) : Ψ(G) ∧ Ψ(α) that enforces the requirements for
a topological order specified by G, as well as for merging
nodes in accordance with the aliasing pattern α.

Example 3.4. Continuing with Ex. 3.3, we recall Ψ(G) from
Ex. 3.1, below:

Ψ(G) : x(ob1) < x(ob1.nextQueue) ∧
x(ob2) < x(ob2.nextQueue).

and Ψ(α1) : x(ob2) = x(ob1.nextQueue). The combined
formula is satisfiable in the theory of integers, indicat-
ing a topological ordering over Ψ : α1 . G, thus show-
ing that no cycle exists in α1 . G. On the other hand,
consider the formula Ψ(α2, G) obtained from the pattern
α2 : {(ob2, ob1.nextQueue), (ob1, ob2.nextQueue)}:

Ψ(α2) : x(ob2) = x(ob1.nextQueue) ∧
x(ob1) = x(ob2.nextQueue).

The combination of Ψ(G) ∧ Ψ(α2) is clearly unsatisfiable
indicating that α2 . G has a cycle, which in turn shows that
α2 may cause a deadlock.

Theorem 3.1. The formula Ψ(α, G) is satisfiable iff α . G
does not have a cycle.

Constraint Solving: Given an aliasing pattern α, the con-
straint Ψ(α) is a conjunction of equalities, whereas Ψ(G)
is a conjunction of inequalities of the form: vi < vj , i.e.,
unit two variable per inequality (UTVPI) constraint [9]. In
practice, solving Boolean combinations of UTVPI and equality
constraints can be solved quite efficiently using modern SMT
solvers such as Yices and Z3 [10, 11].

We also note that the problem of solving a set of UTVPI
constraints is equivalent to cycle detection in a graph. There-
fore, our reduction in this section has not gained/lost in com-
plexity. On the other hand, encoding the graph cycle detection
problem as a UTVPI constraint in an SMT framework allows
us to efficiently make use of strategies such as incremental
cycle detection and unsatisfiable cores. The subsequent section
shows the use of these primitives to effectively enumerate all
aliasing patterns by computing subsumed and subsuming pat-
terns. The discovery of such patterns reduces the set of aliases
to be examined and speeds up our approach enormously.

4. Aliasing Pattern Enumeration

We now consider the problem of enumerating all possible
aliasing patterns, in order to generate the interface contracts.
The number of such patterns is exponential in the number of
nodes of the lock-order graphs. Following Sec. 3, we need
to enumerate all possible equivalence classes over the sets of
nodes in the lock-order graphs. A naive approach thus suffers
from an exponential blow-up. We avoid this using various key
optimizations:
(a) We prune the lock-order graphs to remove all nodes that

cannot contribute to a potential deadlock.
(b) We restrict the possible aliasing patterns with the help

of a prior alias analysis and typing rules imposed by the
underlying programming language.

(c) Based on the set of aliasing patterns already enumerated,
we remove sets of subsumed or subsuming aliasing
patterns from consideration.

Graph Pruning
Let Ei, Vi represent the edges and vertices of the lock graph
Gi : lg(mi). This pruning strategy is based on the observation
that nested lock acquisitions are relatively uncommon and non-
nested lock acquisitions may be removed from the lock graph.
As a results, nodes without any successors and predecessors
can be trivially removed. This results in a large reduction in
the size.

A terminal node in the graph is defined as one without any
successors. Similarly a node in the lock graph is termed initial
if it has no predecessors. In general, a terminal node ei ∈ V
cannot be removed without missing any potential deadlocks.

Example 4.1. Returning to the lock graph in Fig. 2 we note
that the two terminal nodes may not be removed since their

incoming edges can be used in a potential cycle. The same
consideration applies to initial nodes.

However, a terminal node can be removed if all the other
nodes to which it may alias to are also terminal. Similarly,
an initial node can be removed if all the other nodes to
which it may alias are also initial. The pruning strategy
for removing terminal/initial nodes of the graph utilizes the
result of a conservative may-alias analysis. Let mayAlias(v) =
{u ∈ V | u may-alias v}.
1. Let v be a terminal node such that all nodes in mayAlias(v)

are also terminal. We remove the vertices in mayAlias(v)
from the graph.

2. Let u be an initial node such that all nodes in mayAlias(u)
are also initial. We remove all nodes in mayAlias(u) from
the graph.
The removal of a terminal/initial node from the graph may

create other terminal/initial nodes respectively. Hence, we
iterate steps 1 and 2 until no new nodes can be removed. The
mayAlias relationship can be safely approximated in languages
like Java by type-masking. As a result, we regard two nodes
as aliased for the purposes of lock graph pruning, if the types
of their associated access expressions are compatible (one is
a sub-type of another). Note that no potential deadlocks are
lost in this process. Our experiments indicate that the pruned
lock graph is an order of magnitude smaller than the original
graph obtained from static analysis, making this an important
step in making the overall approach scalable. We now shift
our focus to reducing the number of aliasing patterns to be
enumerated.

Reducing Aliasing Patterns

Given two graphs with n nodes each, the number of possible
aliasing patterns that need to be considered across the nodes
of the two graphs is exponential in n. In our experiments with
Java libraries, we have observed that the extensive use of
locking with the synchronized keyword gives rise to lock-
order graphs containing 100s of nodes, which are reduced to
lock-order graphs with 10s of nodes after pruning. However,
given the exponential number of aliasing patterns that may
exist, we need to impose restrictions on the set of aliasing
patterns that we examine. First of all, it suffices to consider
aliasing patterns that respect the type safety considerations
of the language and the conservative may-alias relationships
between nodes.

Def. 4.1 (Admissible). An aliasing pattern α is admissible
iff for all (u, v) ∈ α, u ∈ mayAlias(v). Once again, type
information can be used in lieu of alias information for
languages such as Java.

Another important consideration for reducing the aliasing
patterns, is that of subsumption. Subsumption is based on the
observation that for a deadlock causing pattern α adding more
aliases to α does not remove the deadlock. Similarly, for a safe
pattern β, removing aliases from β does not cause a deadlock.

Def. 4.2 (Subsumption). A pattern α2 subsumes α1, denoted
α1 ⊆ α2, iff ∀(u, v) : (u, v) ∈ α1 ⇒ (u, v) ∈ α2. In other
words, α1 is a sub-relation of α2.

Lemma 4.1. If α1, α2 are aliasing patterns, and α1 ⊆ α2,
then the following are true:
(A) α1 is deadlock-causing ⇒ α2 is deadlock-causing,
(B) α2 is safe ⇒ α1 is safe.

Note that (B) is simply the contrapositive of (A) and is
stated here in Lemma 4.1 for the sake of exposition.

Def. 4.3 (Maximally Safe/Minimally Unsafe). A pattern α that
causes a deadlock is minimally unsafe iff for any (u, v) ∈ α,
α − {(u, v)} is not deadlock causing. Similarly, a safe (non-
deadlock) pattern α is maximally safe if, for any (u, v) 6∈ α,
α ∪ {(u, v)} is deadlock causing.

Following Lemma 4.1, it suffices to enumerate only the
maximally safe and minimally unsafe patterns. Hence, after
enumerating a pattern α that is safe, we can add previously
unaliased pairs of aliases to α as long as the addition does
not cause a deadlock. The resulting pattern is a maximally
safe pattern. Similarly, upon encountering a deadlock-causing
pattern β, we remove “unnecessary” alias pairs from β as long
as pairs that contribute to some cycle in β .G can be retained.

Example 4.2. Consider the aliasing pattern α0 : ∅ for the
example described in Sec. 1.1. Fig. 2 shows the resulting
graph. We can add the pair (ob1, ob2.nextQueue) to α0

without creating any cycles. The resulting pattern α1 is shown
in Ex. 3.1. However, if the pair (ob2, ob1.nextQueue) were
added to α1 then we obtain a cycle in the graph. As a result,
the pattern α1 is maximally safe.

The explicit enumeration algorithm (Algorithm 1) for alias-
ing patterns maintains a set U of unexplored patterns, sequen-
tially exhausting the unexamined patterns from this set while
updating the set U . The algorithm terminates when U = ∅.
First of all, a previously unexamined pattern α is chosen from
the set U (Line 4), and the graph α . G is examined for
a cycle (Line 5). If the graph is acyclic, we keep adding
previously unaliased pairs (u, v) to α as long as the addition
does not create a cycle in α′ . G, where α′ is the symmetric
and transitive closure of α ∪ {(u, v)}. The result is a pattern
α that is maximally safe, which is then added to the set S
(Line 9). We then remove all patterns β that are subsumed by
α from the graph G, as they are safe (Line 10). On the other
hand, if the graph α . G has cycles, we choose some cycle
C in the graph (Line 12), and the aliases in α that involve
the merged nodes in C. Discarding all the superfluous aliases
not involving nodes in the cycle C yields an alias relationship
α′ ⊆ α that is still deadlock-causing 2 (Line 13). The set U of
unexamined patterns is pruned by removing all patterns that
subsume α′ (such patterns also cause a deadlock) (Line 14).

The application of Algo. 1 on the graph from Fig. 2
enumerates the max. safe/ min. unsafe patterns in Table 1.

2. Note that α′ may not be a minimally unsafe relation.

Algorithm 1: EnumerateAllAliasingPatterns
Input: G : Graph
Result: D : Deadlock Scenarios
begin1

U := all legal aliasing patterns2

while U 6= ∅ do3

Choose element α ∈ U .4

if α . G is acyclic then5

/* Add aliases without creating
a cycle */

foreach (u, v) 6∈ α do6

/* Add (u, v) and compute
closure. */

α′ := Closure({(u, v)} ∪ α)7

if α′ . G is acyclic then α := α′8

/* α maximally safe */
S := S ∪ {α}9

U := U − {β | β ⊆ α}10

else /* α . G has a cycle */11

/* Choose a cycle C */
C := FindACycle(α . G)12

/* Remove aliases that do not
contribute to C */

α′ := α ∩ {(u, v) | u, v ∈ C}13

/* α′ is unsafe */
U := U − {β | α′ ⊆ β}14

D := D ∪ {α′}15

16

end17

TABLE 1: Max. Safe/Min. Unsafe Patterns Enumerated.
{(ob1, ob2), (ob1.nextQueue, ob2.nextQueue)} SAFE
{(ob1, ob2.nextQueue)} SAFE
{(ob2, ob1.nextQueue)} SAFE
{(ob1, ob2.nextQueue), (ob2, ob1.nextQueue)} DL

Symbolic Enumeration Algorithm.

Algorithm 1 relies on explicit representation of the set
U of alias patterns in order to perform the enumeration.
Representing an arbitrary set of relations explicitly is not
efficient in practice. Therefore, we leverage the power of
symbolic solvers to encode aliasing patterns succinctly.
Specifically, we wish to represent the set U of unexamined
aliasing patterns with the help of a logical formula. Let
V = {e1, . . . , ek} be the set of access expressions labeling
the nodes of the graph G. We introduce a set of integer
variables y(ei), such that each y(ei) corresponds to an access
expression ei. We then encode all aliasing patterns with the
help of a logical formula Ψ0 involving the y(ei) variables, as
follows: Ψ0(V) =

Algorithm 2: SymbolicEnumerateAllAliasingPatterns
Input: G : Graph
Result: D : Deadlock Scenarios
begin1

ΨU := Ψ0(V) (encoding all alias patterns)2

while ΨU SAT do3

(y(e1), . . . , y(ek)) := Solution of ΨU .4

α := {(ei, ej) | y(ei) = y(ej)}.5

/* Construct Ψ(α, G) */
if Ψ(α, G) SAT then6

/* Add aliases without creating
a cycle */

foreach (ei, ej) 6∈ α do7

α′ := Closure(α ∪ (ei, ej))8

Ψ(α′, G) := Ψ(α, G) ∧ (x(ei) = x(ej))9

if Ψ(α′, G) SAT then α := α′10

/* α is maximally safe */
ΨU := ΨU ∧

∨
(ei,ej) 6∈α y(ei) = y(ej)11

S := S ∪ {α}12

else /* Ψ(α, G) UNSAT */13

C := MinUnsatCore(Ψ(α, G))14

α′ :=15

{(ei, ej) | x(ei) < x(ej) constraint in C}
/* α′ is unsafe */
ΨU := ΨU ∧

∨
(ei,ej)∈α′ y(ei) 6= y(ej)16

D := D ∪ {α′}17

18

end19

∀ei,ej∈V

∧

ei 6∈mayAlias(ej)
(y(ei) 6= y(ej)) ∧∧

ei.f,ej .f∈V ((y(ei) = y(ej)) ⇒
(y(ei.f) = y(ej .f)))

The formula Ψ0, ensures the consistency of alias patterns

considered in the enumeration process. Specifically, expres-
sions that cannot be aliased to each other according to a
conservative pointer analysis are not considered aliased in any
of the patterns generated. Secondly, if e1, e2 are aliased then
for every field f , e1.f and e2.f must be aliased (provided
the two expressions are in the set V). Algorithm 2 shows the
symbolic version of Algorithm 1. The correspondence between
the two algorithms is immediately observable upon comparing
them. Since we represent sets of aliasing patterns as a logical
formula, a witness to the satisfiability of this formula is an
aliasing pattern α (Line 5). Recall from Sec. 3.1 that we
can encode the problem of cycle detection in a graph using
inequality constraints. Thus, in Line 6 we check the inequality
constraints specified by the graph G (i.e. Ψ(G)) conjoined
with the previously unexamined aliasing pattern α (encoded as
Ψ(α)) for satisfiability. Satisfiability of this formula indicates
that the graph G is cycle-free, and we proceed to compute

a maximally safe aliasing pattern from the given α (Line 7).
Once a maximally safe α is obtained, we remove all aliasing
patterns that are subsumed by α from the set of all aliasing
patterns (represented by ΨU), and add α to S (Line 12).
If the formula is unsatisfiable, then we obtain the minimal
unsatisfiable core (Line 14) and extract the minimally unsafe
aliasing pattern α′ from the constraints represented in this core.
We then remove all aliasing patterns that subsume α′ from ΨU

(Line 16), and add the minimally unsafe α′ obtained (if any)
to the set D (Line 17).

Such a symbolic encoding of sets of aliasing patterns
has many advantages, including: a) the power of constraints
to represent sets of states compactly, and b) the use of
blocking clauses to remove a set of subsumed/subsuming
aliasing patterns. Modern UTVPI solvers such as Yices and Z3
incorporate techniques for fast and incremental cycle detection
upon addition or deletion of constraints [10, 11]. This is
very useful in the context of Algorithm 2. In practice, our
use of subsumption and pruning ensures that a very small
fraction amongst the alias patterns is explored by the symbolic
algorithm.

Deriving a Contract. The enumeration scheme in Algo. 1 and
Algo. 2 can generate a contract that succinctly represents the
set of all safe aliasing patterns. The result of the enumeration is
a set of patterns D such that any aliasing pattern β is deadlock-
causing iff it subsumes a pattern α ∈ D.

Lemma 4.2. An alias pattern α is safe iff for all β ∈ D,
β 6⊆ α.

In practice, contract derivation consists of first compacting
the set D to obtain the minimal deadlock-causing patterns.
The contract for safe calling contexts can then be expressed
succinctly using the fact that any such pattern must not
subsume any element of the set D.

Example 4.3. From Table 1, the only unsafe pattern enumer-
ated is α2 : {(ob1, ob2.nextQueue), (ob2, ob1.nextQueue)}.
The set of safe patterns therefore is specified by the following
set: {

α

∣∣∣∣ (ob1, ob2.nextQueue) 6∈ α or
(ob2, ob1.nextQueue) 6∈ α

}
.

In terms of a contract, this set is expressed as

¬isAliased(ob1, ob2.nextQueue) ∨
¬isAliased(ob2, ob1.nextQueue).

Theorem 4.1. The set D of deadlock-causing alias patterns
for each pair of library methods obtained by the enumer-
ation technique in Algo. 2 yields a contract of the form:∧

α∈D
∨

(ei,ej)∈α ¬isAliased(ei, ej).

Note that the contract is a Boolean combination of proposi-
tions conjecturing aliasing between access expressions. Thus,
such a contract can be both statically and dynamically enforced
in a client, as the concrete aliasing information between access
expressions can be obtained through alias analysis, or may be
available at run-time.

5. Experimental Results

We have implemented a prototype tool for synthesizing
interface contracts for Java libraries. The tool consists of a
summary based lock-order graph analysis for a given Java
library followed by its encoding into logical formulae for sym-
bolic enumeration of alias patterns. We utilize the soot frame-
work for implementing the lock-order graph extraction [12].
Must-aliases for lock objects are tracked across methods using
our own analyzer built using the soot’s intraprocedural alias
analysis (spark). We also augment spark in order to track
aliasing between fields, yielding a field-sensitive analysis.
Before generating constraints for analysis with the SMT
solver, we prune the lock-order graphs using various filtering
strategies strategies (in addition to those discussed in Sec. 4):
(a) Pruning unaliasable fields (e.g., final fields).
(b) Removing objects declared private that are not accessed

outside the constructor or finalizer.
(c) Removing immutable string constants and

java.lang.Class constants.
(d) Pruning objects that cannot escape the scope of a given

library method using an escape analysis.
These filtering strategies are sound: our tool does not miss

any potential deadlock due to these strategies. The generated
constraints are solved using the SMT solver Yices [10]. Table 2
summarizes the potential deadlocks thus obtained. Table 2
shows that our tool runs in a relatively short amount of time
even for large Java libraries. Furthermore, the runtime is
dominated by the lock-order graph computation rather than
the enumeration and constraint solving with the SMT solver.

Some deadlock-causing aliasing patterns are false positives.
These patterns result from two main sources: a) the static lock-
order graph construction is a may analysis, and hence there are
inaccurate edges and nodes in the lock-order graph, and b) our
alias analysis is a may analysis, which leads to aliasing patterns
that cannot be realized. We manually examine the output of our
tool to discard such patterns. However, the output of our tool
may also consist of a large number of “redundant” deadlock-
causing patterns. These patterns that are repeated instantiations
of the same underlying deadlock scenario, and appear due
to the fact that several library methods typically invoke the
same deadlock-prone utility method. Such a deadlock gets
reported multiple times in our current implementation, each
under a different set of library entry methods. The table
shows the number of unique scenarios after considering such
redundancies (manually, at present). A detailed presentation of
our benchmarks and results is available online 3.

Example 5.1. From the lock-order graph of the
postEventPrivate method presented in Sec. 1.1, we can see
that the concurrent invocation of a.postEventPrivate(. . .)
and b.postEventPrivate(. . .) leads to a deadlock
under a specific aliasing pattern. However, the methods
postEvent, push and pop in the same class also invoke the

3. cf. http://cerc.utexas.edu/∼jyotirmoy/deadlock/ for more details.

TABLE 2: Experimental Results
Library KLOC Num. of Num. of Time taken (secs)a Num. of Unique

Aliasing DL-causing Summary SMT Scenarios

Patterns Patterns Computation Solver False Potential
Examined Positives Deadlocks

apache-log4j 33.3 4 4 130 0.1 1 1
cache4j 2.6 0 0 15 - - -
ftpproxy 1.0 0 0 13 - - -
hsqldb 157.6 369 231 804 2.8 3 3
JavaFTP 2.6 0 0 9 - - -
netty 11.0 0 0 14 - - -
oddjob 41.3 0 0 250 - - -
java.applet 0.9 102 64 64 1.0 1 1
java.awt 163.9 5325 3800 454 26.4 2 3
java.beans 16.2 148 108 31 1.5 1 2
java.io 28.6 32 0 39 0.0 - -
java.lang 55.0 279 89 46 1.9 3 2
java.math 9.1 0 0 18 - - -
java.net 26.5 55 44 32 0.5 1 1
java.nio 46.7 0 0 19 - - -
java.rmi 9.1 2 2 14 0.1 1 0
java.security 34.2 0 0 27 - - -
java.sql 22.2 1836 0 10 8.0 - -
java.text 22.6 26 18 26 0.2 1 0
java.util 116.8 188 117 190 2.0 4 3
javax.imageio 24.7 0 0 22 - - -
javax.lang 5.2 0 0 8 - - -
javax.management 67.5 16 6 74 0.2 2 0
javax.naming 19.5 0 0 64 - - -
javax.print 2.1 2 0 27 - - -
javax.security 11.7 164 110 27 1.2 2 0
javax.sound 14.3 0 0 10 - - -
javax.sql 18.2 0 0 14 - - -
javax.swing 322.2 132 120 353 1.6 2 2
javax.xml 48.9 0 0 27 - - -

a. All experiments were performed on a Linux machine with an AMD Athlon 64x2 2.2 GHz processor, and 6GB RAM.

postEventPrivate method, and hence are susceptible to the
same deadlock. Thus, for each pair of these methods, the same
underlying deadlock-causing aliasing pattern is generated. In
our experiments, we observed 324 possible deadlock-causing
aliasing patterns, all of which correspond to this single unique
scenario involving calls to postEventPrivate.

Library Name Method names Bug Report

java.awt postEventPrivate, [8]:4913324
(EventQueue) wakeup [8]:6424157,

[8]:6542185

java.awt removeAll, [13]
(Container) addPropertyChangeListener

java.util addLogger [8]:6487638
(LogManager) getLogger
(Logger)

javax.swing setFont Jajuk [14]
(JComponent) paintChildren

hsqldb isAutoCommit [15]
(Session) close

TABLE 3: Real Client Deadlocks

Significantly, our tool predicts deadlocks that are highly
relevant to some of the clients using these libraries. Some have

already manifested in real client code, and have been reported
as bugs by developers in various bug repositories. Table 3
summarizes the library name and the bug report locations we
have found using a web search. Inspection of the bug reports
reveals that the aliasing patterns at the call-sites of the methods
involved in the deadlock, correspond to a violation of the
interface contract for that library, as generated by our tool.
Further examples of such deadlocks can be expected in the
future.

6. Analyzing Clients

The interface contracts generated by our tool vastly simplify
the analysis of client code that makes use of the library
methods that are part of the library’s interface contract. Fur-
thermore, they serve to document against the improper use of
the methods in a multi-threaded context.

We recall from Section 4 that the final contract for a safe
call to a pair of methods m1,m2 is a Boolean expression
involving propositions of the form ¬isAliased(ei, ej), wherein
ei and ej are access expressions corresponding to the formal
parameters of the methods, including the “this” parameter.

In practice, checking such a contract for a given client that
uses the library involves two major components: (A) a May-

happen in Parallel (MHP) analysis [16] for calls to methods
m1 and m2 to determine if two different threads may reach
these method call-sites simultaneously, and (B) a conservative,
thread-safe alias analysis in order to determine the potential
aliasing of parameters at the invocation sites of the methods
in question.

On the basis of such an alias analysis, we may statically
evaluate the contract at each concurrent call-site. Note that
these two components are already part of most data-race
detection tools such as CHORD [6, 17]. In theory, deadlock
violations can be directly analyzed by a “whole-program
analysis” of the combined client and the library code. In
practice, this requires the (re-)analysis of a significant volume
of code. Using contracts has the distinct advantage of being
fast in the case of small clients that invoke a large number of
library methods. Moreover, decoupling the client analysis from
the library analysis allows our technique to be compositional.
Since library internals are often confusing and opaque to the
client developers, another key advantage is the ability to better
localize failures to their causes in the clients, as opposed to
causes inside the library code.

7. Related Work and Conclusions

Runtime Techniques : Runtime techniques for deadlock de-
tection track nested lock-acquisition patterns. The GoodLock
algorithm [1] is capable of detecting deadlocks arising from
two concurrent threads; [18] generalizes this to an arbitrary
number of threads, and defines a special type system in which
potential deadlocks correspond to code fragments that are
untypable. Agarwal et al. [2] further extend this approach to
programs with semaphores and condition variables.

Model Checking : Model checking techniques [19] have been
successfully used to detect deadlocks in programs [20]. For
instance, Corbett et al. employ model checking to analyze
protocols written in Ada for deadlocks [3]. Model checkers
such as SPIN [21], Java Path Finder [1, 22] have been used
extensively to check concurrent Java programs for deadlocks.
However, program size and complexity limit these approaches.
A compositional technique based on summarizing large li-
braries can help these approaches immensely. Bensalem et al.
[23] propose a dynamic analysis approach, based on checking
synchronization traces for cycles, with special emphasis on
avoiding certain kinds of guarded cycles that do not correspond
to a realizable deadlock.

Static Techniques : Static techniques based on dataflow anal-
ysis either use dataflow rules to compute lock-order graphs
[4, 24] or examine well-known code patterns [5, 25] to detect
deadlocks. Naik et al. present an interesting combination of
different kinds of static analyses to approximate six necessary
conditions for deadlock [6]. Most static techniques focus on
identifying deadlocks within a given closed program, while
in [6], the authors close a given open program (the library)
by manually constructing a harness for that program. In [26]

the author analyzes the entire Java library, and uses a coarser
level of granularity in lock-order graph construction.

Deadlock Detection for Libraries : As mentioned previously,
deadlock analysis for concurrent libraries was first introduced
by Williams et al. [7] for analyzing Java libraries. Therein,
the authors use types to approximate the may-alias relation
across nodes in the lock-order graphs for a library, and reduce
checking existence of potential deadlocks to cycle detection.
Our approach is inspired by this work and seeks to solve the
very same problem under similar assumptions. Our distinct
contributions lie in the use of aliasing information in the
library. As Williams et al. rightly point out, there is an
overwhelming amount of aliasing possible. Therefore, we use
pruning as well as symbolic encoding of the aliasing patterns.
Our use of subsumption ensures that a tiny fraction of the
exponentially many alias patterns are actually explored, and
doing so clearly reduces the number of false positives without
the use of unsound filtering heuristics. The use of aliasing
pattern subsumption also ensures that the final deadlock pat-
terns can be inverted to yield statically enforceable interface
contracts.

Conclusions. The techniques presented thus far identify pat-
terns of aliasing between the parameters of concurrent library
methods that may lead to a deadlock. We use these patterns to
synthesize interface contracts on the library methods, which
can then be either used by developers when writing the client
code, or by analysis tools to automate deadlock detection in
the client.

Our approach is currently limited to lock-based syn-
chronization for re-entrant locks, but is also applicable
to libraries with conditional synchronization with monitors
(wait/notify constructs in Java), semaphores, and locks
with arbitrary re-entrancy models, and remains an important
part of the future work. For control-flow graphs of libraries
that use recursive types, we artificially bound the size of the
resulting access expressions, which may lead to a deadlock
being missed when analyzing a scenario involving multiple
concurrent threads (where the number of threads exceeds
this artificial bound on the size). However, since deadlocks
involving more than three threads are extremely rare in prac-
tice, such artificial bounds do not impact the effectiveness of
our tool in identifying real deadlocks. While the number of
false positives generated by our tool is low, cases such as
guarded cycles, i.e., cycles that are infeasible as each entry
node in the cycle is protected by a common lock [23], are not
currently handled. Dealing with newer features of the Java
language such as generics, and Java’s concurrency library
(java.util.concurrent) that uses constructs similar to the
pthreads library is a challenge. The automatic identification
of unique scenarios from the interface contracts generated by
our current implementation, as well as the static analysis that
checks/enforces the derived interface contracts on real client
code (as described in Sec. 6), will be completed as part of
future work.

Acknowledgements. We would like to thank Aarti Gupta,
Vineet Kahlon, and Franjo Ivančić for insightful discussions
during the initial part of this work. We would also like to
thank the anonymous reviewers for their helpful comments
and suggestions.

References

[1] K. Havelund, “Using runtime analysis to guide model
checking of java programs,” in Proc. of SPIN Workshop
on Model Checking of Software, 2000, pp. 245–264.

[2] R. Agarwal and S. D. Stoller, “Run-time detection of
potential deadlocks for programs with locks, semaphores,
and condition variables,” in Proc. of Workshop on Par-
allel and Distributed Systems: Testing and Debugging,
2006, pp. 51–60.

[3] J. C. Corbett, “Evaluating deadlock detection methods
for concurrent software,” IEEE Transactions on Software
Engineering, vol. 22, no. 3, pp. 161–180, 1996.

[4] C. von Praun, “Detecting synchronization defects in
multi-threaded object-oriented programs,” Ph.D. disser-
tation, ETH Zurich, 2004.

[5] C. Artho and A. Biere, “Applying static analysis to large-
scale, multi-threaded java programs,” in Proc. of the 13th
Australian Conference on Software Engineering, 2001,
p. 68.

[6] M. Naik, C.-S. Park, K. Sen, and D. Gay, “Effective static
deadlock detection,” in Proc. of the 31st International
Conference on Software Engineering, 2009, pp. 386–396.

[7] A. Williams, W. Thies, and M. D. Ernst, “Static deadlock
detection for java libraries,” in Proc. of the European
Conference on Object-Oriented Programming, 2005, pp.
602–629.

[8] “Sun developer network bug database,” 2007, bug-
id provided at citation. [Online]. Available: http:
//bugs.sun.com/bugdatabase/view bug.do?bug id=xxxx

[9] S. K. Lahiri and M. Musuvathi, “An efficient decision
procedure for UTVPI constraints,” in Proc. of Fron-
tiers of Combining Systems, 5th International Workshop,
2005, pp. 168–183.

[10] B. Dutertre and L. de Moura, “A fast Linear-Arithmetic
solver for DPLL(T),” in Proc. of Computer Aided Veri-
fication, 2006, pp. 81–94.

[11] L. de Moura and N. Bjφrner, “Z3: An efficient SMT
solver,” in Proc. of Tools and Algorithms for the Con-
struction and Analysis of Systems, 2008, pp. 337–340.

[12] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co, “Soot - a java optimization

framework,” in Proc. of the 1999 conference of the Centre
for Advanced Studies on Collaborative Research, 1999,
pp. 125–135.

[13] Open Source Mail Archive, Bug 159, 2008. [On-
line]. Available: http://osdir.com/ml/java.openjdk.
distro-packaging.devel/2008-06/msg00061.html

[14] Jajuk Bug Ticket. [Online]. Available: http://trac.jajuk.
info/ticket/850

[15] Open Source Mail Archive, 2004. [Online].
Available: http://osdir.com/ml/java.hsqldb.user/2004-03/
msg00150.html

[16] L. Li and C. Verbrugge, “A practical MHP information
analysis for concurrent Java programs,” in Proc. of the
17th International Workshop on Languages and Compil-
ers for Parallel Computing, 2004, pp. 194–208.

[17] M. Naik, A. Aiken, and J. Whaley, “Effective static
race detection for java,” in Proc. of the 2006 ACM
SIGPLAN conf. on Programming Language Design and
Implementation. ACM, 2006, pp. 308–319.

[18] R. Agarwal, L. Wang, and S. Stoller, “Detecting potential
deadlocks with static analysis and run-time monitoring,”
Hardware and Software, Verification and Testing, pp.
191–207, 2006.

[19] E. M. Clarke and E. A. Emerson, “Design and synthesis
of synchronization skeletons using branching-time tem-
poral logic,” in Logics of Programs, 1981, pp. 52–71.

[20] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
Checking. MIT Press, 1999.

[21] G. J. Holzmann, The SPIN model checker. Addison-
Wesley, 2003.

[22] K. Havelund and T. Pressburger, “Model checking JAVA
programs using JAVA PathFinder,” International Journal
on Software Tools for Technology Transfer, vol. 2, no. 4,
pp. 366–381, Mar. 2000.

[23] S. Bensalem and K. Havelund, “Dynamic deadlock anal-
ysis of multi-threaded programs,” in Proc. of the Haifa
Verification Conference, 2005, pp. 208–223.

[24] D. Engler and K. Ashcraft, “Racerx: Effective, static de-
tection of race conditions and deadlocks,” ACM SIGOPS
Operating System Review, vol. 37, no. 5, pp. 237–252,
Dec. 2003.

[25] F. Otto and T. Moschny, “Finding synchronization defects
in java programs: Extended static analyses and code
patterns,” in Proc. of 1st International Workshop on
Multicore Software Engineering, 2008, pp. 41–46.

[26] V. K. Shanbhag, “Deadlock-detection in java-library us-
ing static-analysis,” in Proc. of the 15th Asia-Pacific
Software Engineering Conference, 2008, pp. 361–368.

Appendix: Unexamined Alias Patterns

In this appendix, we formally justify the use of a Boolean
encoding along with SAT/SMT solvers to perform the sym-
bolic enumeration of unexamined alias patterns. Specifically,
we justify the use of SAT to test for unexamined patterns in
line 6 of Algorithm 2 by showing that the underlying problem
of detecting unexamined alias patterns is NP-complete. Let
G1 : (N1, E1) and G2 : (N2, E2) be two graphs. An aliasing
pattern is a binary relation α ⊆ N1 ×N2 between the nodes
of G1 and G2. Recall that the execution of our algorithm for
symbolic enumeration of “interesting” aliasing patterns yields
the set S (set of aliasing patterns that are maximally safe)
and the set D (set of aliasing patterns that are minimally
unsafe). Also recall that in the set S, maximally safe patterns
are obtained by adding aliases to safe patterns as long as
they do not cause deadlocks (cf. line 7 in Algo. 2). Similarly,
minimally unsafe patterns are added to D by removing pairs
of aliases from a deadlock causing pattern until no more can
be removed (cf. line 14 in Algo. 2).

We say that a pattern α is unexamined w.r.t S,D iff

(∀Si ∈ S α 6⊆ Si) AND (∀ Di ∈ D Di 6⊆ α) .

We now consider the problem AnyUnexaminedPatterns as
below:

Inputs: (G1, G2,S,D)
Output: YES, iff ∃α ⊆ N ×N unexamined w.r.t

S,D.
NO, otherwise.

Theorem A. AnyUnexaminedPatterns is NP-complete.

Proof: Membership in NP is straightforward. An aliasing
pattern α claimed to be unexamined can be checked by
iterating over the aliasing patterns in S and D, and checking
(in polynomial time) for the subset relation.

We prove NP-hardness by reduction from the CNF satisfi-
ability problem. Let V = {x1, . . . , xn} be a set of Boolean-
valued variables and C = {C1, . . . , Cm} be a set of disjunctive
clauses over literals of the form xi or ¬xi. Corresponding to
this instance of SAT, we create an instance 〈G1, G2,S,D〉 of
the AnyUnexaminedPatterns problem.

Consider a graph G1 consisting of n vertices, each labeled
with a variable in V . Consider a graph G2 consisting of
two vertices labelled true and false, respectively. Informally,
aliasing between the node labeled xi in G1 and a node in G2

can be interpreted as an assignment of true or false to xi. We
now design the sets S and D so that any unexamined aliasing
pattern α has the following properties:

1) For each xi, exactly one tuple in the set
{(xi, true), (xi, false)} belongs to α. In other words, α
represents an assignment of truth values to variables in
V .

2) The assignment represented by α is a solution to the
original SAT problem.

We define the set S as {A1, . . . , Ai, . . . , An}, where

Ai : (V − {xi})× {true, false} .

Intuitively, each Ai represents an aliasing pattern in which
the xi variable is missing, and all other variables have both
the true and false value assigned. Clearly, any unexamined
pattern that is a subset of any Ai does not have a truth-value
assigned to the variable xi, and hence cannot represent a valid
assignment of truth values to the original SAT problem.

We define the set D as a union of two sets B and T . The
set B is defined as {B1, . . . , Bn}, where:

Bi : {(xi, true), (xi, false)} .

Intuitively, any aliasing pattern α that is a superset of some Bi

cannot represent a valid truth value assignment to the original
SAT instance, as it would contain conflicting assignments of
truth values to the variable xi.

The set T is defined in terms of the clauses Ci ∈ C. T =
{T1, . . . , Tm}, wherein Ti corresponds to the ith clause Ci as
follows:

Ti =
⋃
j

{
{(xj , false)} xj ∈ Ci

{(xj , true)} ¬xj ∈ Ci

Intuitively, any aliasing pattern α that is a superset of Ti

cannot satisfy the clause Ci (i.e., Ci = false). Hence, such an
α cannot represent a solution to the SAT problem. Combining
B and T , any α that is the superset of any aliasing pattern
Di ∈ D, thus, cannot represent a solution to the original SAT
problem.

To summarize, corresponding to each SAT instance (V,C),
we construct an instance of the AnyUnexaminedPatterns prob-
lem with

S : {A1, . . . , An} , and, D : {B1, . . . , Bn} ∪ {T1, . . . , Tm}

In order to complete the proof, we show that there is a
satisfying assignment to the original problem if and only if
there is an unexamined aliasing pattern.

Let µ : {x1, . . . , xn} 7→ {true, false} be any satisfying
solution to the original problem. We construct a pattern α that
maps xi to true if µ(xi) = true and to false otherwise.
We now show that α is an unexamined aliasing pattern. It
is easy to see that α 6⊆ Ai, since α contains at least one
of (xi, true) or (xi, false). We can also show that Bi 6⊆ α
since α contains only consistent assignments for each variable
xi. Similarly, Ti 6⊆ α, or else the corresponding clause Ci

is not satisfied by α. Therefore α is an unexamined aliasing
pattern. Conversely, we can demonstrate that any unexamined
aliasing pattern α that can be discovered corresponds to
a satisfying truth assignment. This shows that the problem
AnyUnexaminedPattern can be obtained as a reduction from
CNF-SAT, and is thus NP-complete.

