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ABSTRACT
Lyapunov functions are used to prove stability and to obtain
performance bounds on system behaviors for nonlinear and
hybrid dynamical systems, but discovering Lyapunov func-
tions is a difficult task in general. We present a technique
for discovering Lyapunov functions and barrier certificates
for nonlinear and hybrid dynamical systems using a search-
based approach. Our approach uses concrete executions,
such as those obtained through simulation, to formulate a
series of linear programming (LP) optimization problems;
the solution to each LP creates a candidate Lyapunov func-
tion. Intermediate candidates are iteratively improved using
a global optimizer guided by the Lie derivative of the candi-
date Lyapunov function. The analysis is refined using coun-
terexamples from a Satisfiability Modulo Theories (SMT)
solver. When no counterexamples are found, the soundness
of the analysis is verified using an arithmetic solver. The
technique can be applied to a broad class of nonlinear dy-
namical systems, including hybrid systems and systems with
polynomial and even transcendental dynamics. We present
several examples illustrating the efficacy of the technique,
including two automotive powertrain control examples.

Keywords
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1. INTRODUCTION
Analysis techniques for hybrid systems range from formal

techniques that can provide mathematical proofs of correct-
ness to testing-based techniques that rely on a large num-
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ber of simulations to gain confidence in system correctness.
Formal techniques provide better guarantees but are often
intractable for large, complex system designs. On the other
hand, simulation-based methods work well for systems of
arbitrary complexity but cannot be used for verification.
In this paper, we describe our effort to bridge this gap by
formally addressing prominent analysis problems for hybrid
systems while leveraging data obtained from simulations. In
particular, we address the problems of proving stability of
a system, characterizing performance bounds by computing
forward invariant sets, and proving system safety by auto-
matically synthesizing barrier certificates.

It is well-known that each of these problems can be ef-
fectively addressed if the designer is able to supply a func-
tion v that satisfies the following Lyapunov conditions in
a given region of interest: (1) v is positive definite, and
(2) the Lie derivative of v along the system dynamics is
negative (semi-)definite. While the search for a Lyapunov
function is widely recognized as a hard problem, sum-of-
squares (SoS) optimization-based techniques have been used
successfully to obtain Lyapunov functions for systems with
polynomial [17, 21] , nonpolynomial [16], and hybrid [18] dy-
namics. While these techniques have mature tool support
[20, 14], they often involve solving problems that are numer-
ically sensitive. For instance, a function computed by such a
technique may not strictly satisfy the Lyapunov conditions
for all points in the region of interest.

Our key contribution is a novel technique to exploit the
results obtained by simulating a system to obtain a prov-
ably correct and numerically robust certificate of stability or
safety for the system. The decision to use simulation data
and test results is natural in the context of complex dynam-
ical systems, such as those in industrial control systems.
In such systems, simulations are often used to validate sys-
tem designs and increase confidence in system performance.
Powerful tools for performing simulation are readily avail-
able and are commonly used in, for example, the automo-
tive industry to perform model-based design (e.g., Simulink
from the MathWorks [1]).

We now give a brief overview of our technique. We assume
that the desired Lyapunov function has a certain parameter-
ized template form: an SoS polynomial of fixed degree. We
derive a set of linear constraints on the parameters in the
Lyapunov function from concrete execution traces. Given
a set of such constraints, the search for a Lyapunov func-
tion then reduces to solving a linear program (LP) to obtain



a candidate Lyapunov function. A key step is then to use
a stochastic global optimizer to search the region of inter-
est for states that violate the Lyapunov conditions for the
given candidate. The search is guided by a cost function
that is based on the Lie derivative of the candidate Lya-
punov function; if the minimum cost is less than zero, then
the minimizing argument provides a witness (which we call
a counterexample) that the candidate Lyapunov function is
invalid. After the global optimizer obtains counterexamples,
the associated linear constraints are included in the LP prob-
lem and the candidate Lyapunov function is updated. The
process terminates when the global optimizer is unable to
identify counterexamples.

As global optimization is not exhaustive, it is imperative
to validate any analysis based on the candidate Lyapunov
function obtained by the counterexample-guided iterative
technique described above. To do so, we use an ensem-
ble of solvers: SMT solvers with nonlinear capabilities such
as z3 [6] and dReal [8] and symbolic tools such as quanti-
fier elimination as implemented by the Reduce command in
Mathematica [24].

Using the candidate Lyapunov function and a suitable
solver, we can perform various types of analysis: showing
Lyapunov stability or producing a forward invariant set or a
barrier certificate. To show Lyapunov stability, we employ
one of the solvers to verify the soundness of the candidate
Lyapunov function. To produce a forward invariant set, we
generate a sublevelset of the candidate Lyapunov function S`
of v (i.e., the set {x | v(x) ≤ `}) and then validate that S` is
an invariant using one of the solvers mentioned above.This
can be formulated as a single convex optimization problem.
Given an initial set of states X0, and a set of unsafe states
U , we can also use it to obtain a barrier certificate that in-
cludes the initial states while excluding the unsafe set. In
this instance, we formulate the barrier certificate as a suit-
able levelset of v that separates X0 from U .

To demonstrate the efficacy of our techniques, we present
examples of dynamical systems, ranging from simple nonlin-
ear systems and systems with transcendental, time-varying
dynamics, to switched and nonpolynomial dynamical sys-
tems. Our examples include two systems inspired by the
automotive engine control domain. The first automotive ex-
ample is an Air-to-Fuel ratio (A/F) control system with non-
linear, nonpolynomial dynamics, and we construct a forward
invariant, which provides performance bounds for the sys-
tem. The second automotive example is a closed-loop model-
predictive control system, modeled as a switched-mode sys-
tem with piecewise affine dynamics in each of its 69 modes.
For this system, we are able to obtain a Lyapunov func-
tion for the region of interest (27 modes), thus providing a
proof of stability as well as a means to compute performance
bounds.

The use of simulations to obtain Lyapunov functions and
estimate the maximal region of attraction has been investi-
gated in the past by Topcu et al. [21]. Their approach uses
simulation traces to estimate the region of attraction (ROA)
for a dynamical system: converting a set of bilinear matrix
inequalities (which are computationally expensive to solve)
into linear matrix inequalities, which are computationally
less expensive. We provide the following extensions to that
work: a.) We provide a procedure that uses a guided ap-
proach to iteratively improve the quality of the candidate
Lyapunov functions, and b.) Our technique is not restricted

to the class of systems with polynomial dynamics.
Related work was proposed by Gupta et al. [9] for program

analysis. Their approach uses traces of discrete programs to
compute termination proofs in the form of ranking functions
and linear invariants.

The layout of the paper is as follows: We review the theo-
retical background in Sec. 2. In Sec. 3, we present our tech-
nique for generating candidate Lyapunov functions and for
iteratively improving the candidates. In Sec. 4, we explain
how SMT solvers can be used to verify the soundness of the
candidates and we also explain how counterexamples can be
used to further improve the candidate Lyapunov functions.
We demonstrate our technique on interesting nonlinear and
hybrid examples in Sec. 5, and finally conclude with a dis-
cussion of future work in Sec. 6.

2. PRELIMINARIES
Continuous-time switched-mode systems (csms). A
csms is a dynamical system described by a set of ODEs:

ẋ(t) = fi(x(t)), ∀x(t) ∈ Xi, (1)

where x(t) ∈ Rn is the state of the system at time t, and Xi,
i = 1, . . . , I is a partition of the state space X ⊆ Rn. Each fi
is a nonlinear vector field that is Lipschitz-continuous. We
abuse notation and take x ∈ Rn to be a singleton and x(·)
to be a differentiable function x : R→ Rn.

Given an initial condition x0 ∈ Rn, a trace of a csms is a
function x(t) : R≥0 → Rn, where x(0) = x0 and (1) holds
for all t ∈ R≥0.

We assume that the system has no Zeno behavior, that
is, we assume that there are finite switches in finite time.
Given an initial condition x(0), a unique solution x(t) to (1)
exists.

We define φ(t) as a discrete-time trace of system (1). That
is, φ(t) is a function φ : T → Rn, where T = {t1, . . . , tN} ⊂
R, where N ∈ Z>0, and there exists an x(t), such that for
each 1 ≤ j < N , φ(tj) = x(tj) and (1) holds for all t ∈
[tj , tj+1].

Definition 2.1 (Equilibrium Point). A state x∗ is
called an equilibrium point of a csms if a trace of the system
with x(0) = x∗ is given by x(t) = x∗ for all time t.

In standard fashion, we use ‖x‖ to denote the Euclidean

norm
√

xTx, i.e. the distance of a point in Rn from the
origin. AT denotes the transpose of the matrix A.

Definition 2.2 (Forward Invariant Set). A set of
states I ⊆ Rn of a csms is called a forward invariant set if
for all x(0) ∈ I and for all t ≥ 0, x(t) ∈ I.

The goal of Lyapunov’s direct method is to show stability
of a system by identifying a Lyapunov function.

Definition 2.3 (Lyapunov function). Given a csms,
a function v : X → R≥0 is called a Lyapunov function if the
following holds for all i [13]:

∀x ∈ Xi\0 : v(x) > 0, v(0) = 0 (2)

∀x ∈ Xi : ∇v(x(t))T · fi(x(t)) ≤ 0. (3)

The existence of a Lyapunov function, as specified above,
guarantees non-asymptotic stability. For switched systems,



such a Lyapunov function can take the form of a single,
continuous and differentiable common Lyapunov function.
When a common Lyapunov function cannot be found, it
is sometimes possible to define a piecewise Lyapunov func-
tion, where a unique Lyapunov-like function is defined for
each mode, with additional conditions on the behavior of
the Lyapunov-like functions at the switching instances [4].

For certain classes of systems, such as stable linear time-
invariant systems, techniques exist to identify Lyapunov func-
tions and invariant sets. For continuous systems with dy-
namics given by polynomial equations, relaxations based
on SoS techniques exist that allow Lyapunov functions and
invariant sets to be identified for certain cases. For gen-
eral nonlinear systems, however, no such techniques exist.
For hybrid systems with linear continuous dynamics, several
techniques exist for identifying Lyapunov functions, such
as LMI solutions for simultaneous Lyapunov functions and
piecewise quadratic Lyapunov functions, but these techniques
are not complete (i.e., they can fail to identify a Lyapunov
function even when one exists).

The sublevelset of a Lyapunov function v(x) is the set
{x | v(x) ≤ `}. It is well known that sublevelsets of Lya-
punov functions are forward invariant sets. While forward
invariant sets can be used to characterize performance bounds
of a given csms, the closely related notion of a barrier cer-
tificate can be used to verify safety of a given system.

Definition 2.4 (Barrier Certificate). Given a csms,
an initial set X0 ⊂ X , and an unsafe set U ⊂ X such that
U ∩X0 is empty, a function B : X → R is called a barrier
certificate if it satisfies the following conditions for all i:

B(x) ≤ 0 ∀x ∈ X0 (4)

B(x) > 0 ∀x ∈ U (5)

∇B(x)T · fi(x) < 0 ∀x ∈ Xi s.t. B(x) = 0. (6)

Note that a Lyapunov function can be used to construct a
barrier certificate as follows. Given an l ∈ R>0, if we select
B(x) = v(x)− l and define S` = {x | B(x) = 0}, then B(x)
satisfies (6) if S` ⊆ X . As long as (4) and (5) hold, then
B(x) is a barrier certificate.

Discrete-time Switched-Mode Systems (dsms). We
also consider discrete-time switched-mode systems (DSMS),
where x[k + 1] = fi(x[k]). When discussing a discrete-time
context, we use x̂ = fi(x). The notions defined above for
csms carry over for dsms. For example, an invariant set for
a dsms is defined as a set I such that for all x[0] ∈ I, and for
all k ∈ Z>0, x[k] ∈ I. Similarly, the Lyapunov conditions
for a dsms are:

∀x ∈ Xi\0 : v(x) > 0, v(0) = 0 (7)

∀x ∈ Xi : v(x)− v(x̂) > 0. (8)

3. ITERATIVELY IMPROVED LYAPUNOV
CANDIDATES

We present a technique to compute candidate Lyapunov
functions for switched-mode systems using simulation traces.
The technique relies on a falsification tool to produce a series
of successively improved candidate functions. The falsifica-
tion tool is a global optimizer that is guided by direction
information provided by the intermediate Lyapunov candi-
dates. The falsifier adds constraints to a series of LPs by

selecting initial conditions for simulation traces. We go on
to describe how to use the resulting candidates and auto-
mated reasoning tools to: a.) show that the candidates are
Lyapunov functions, or b.) produce invariant sets and bar-
rier certificates.

Topcu et al. [21] employ simulation traces to formulate
a convex optimization problem to compute candidate Lya-
punov functions and invariant sets. The goal for their work is
to characterize a region of attraction of a given continuous-
time dynamical system. In this paper, we go further and
provide a technique to iteratively improve the candidates
using a stochastic global optimization-based approach that
is guided by a cost function based on the Lie derivative of
the candidate Lyapunov function.

3.1 Constructing Candidates
In the following, we assume the system has a stable equi-

librium point, which is, without loss of generality, at the
origin. Let Φi be a collection of p traces within mode i. We
assume we can obtain discrete-time traces, φi(t).

We obtain candidates for functions v that satisfy condi-
tions (2) and (3) by using the following alternate conditions:

1. We restrict each v to the class of polynomials of some
fixed degree;

2. We require that a necessary condition for constraints
(2) and (3) hold for every trace in Φi.

We impose condition (1) by requiring v(x) = zTPz, where
z is some vector of m monomials in x and P ∈ Rm×m is sym-
metric. We impose condition (2) by requiring the following:

v(φ(tj)) > 0 (9)

v(φ(tj))− v(φ(ti+j))− γ‖φ(tj)‖2 > 0 (10)

γ > ε, (11)

for all φi ∈ Φ, j ∈ {1, . . . , N − 1}. The parameter ε ∈
R≥0 is a fixed positive value. Note that (9) is a series of
necessary conditions for constraint (2) to hold. For (3) to
hold, it must be that v(φ(tj)) − v(φ(ti+j)) > 0; constraint
(10) is stronger in that it bounds v(φ(tj))− v(φ(ti+j)) away
from zero. We call any v that satisfies (9) through (11) a
Lyapunov candidate. To distinguish between a Lyapunov
function and a Lyapunov candidate, we use the term proper
Lyapunov function to refer to a Lyapunov function.

Remark 3.1. We reiterate that constraints (9) and (10)
impose necessary but not sufficient conditions for (2) and
(3) to hold. Therefore, to enforce (2) and (3), we have to
perform a formal validation of our final Lyapunov candidate,
as discussed in Section 4.1. In practice, we find that adding
more simulation traces, and thus more constraints (9) and
(10) improves the likelihood that a Lyapunov candidate also
satisfies (2) and (3).

Note that (9) and (10) are linear constraints since they
are linear in the matrix variable P. Conditions (9) through
(11) represent a set of linear constraints for which a feasible
solution can be found using a standard LP solver.

Note that (2) could be imposed directly by replacing the
constraint (9) with the alternative linear matrix inequality
(LMI) constraint P � 0, but this would require solving a po-
tentially large scale semidefinite programming (SDP) prob-
lem (if, for example, there are a large number of simulation
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Figure 1: Procedure to iteratively improve candi-
date Lyapunov functions for system (1).

traces). Our experience indicates that SDP solvers are not
as mature as LP solvers and are more prone to numerical
difficulties. Thus, we elect to use the linear constraint (9).

Remark 3.2. Given a Lyapunov template v(x) = zTPz,
the set of feasible solutions that satisfy (2) and (3) is convex
in the decision variable P. Adding constraints (9) to (11)
bounds the feasible set with linear constraints. Thus the fea-
sible set lies on the interior of the linear constraints. If an
interior point algorithm is used to provide a feasible solution
to the LP, the solution returned is the analytic center of the
LP problem [23]. We rely on this, since our intuition is that
for many problems, the analytic center of the LP problem
coincides with the interior of the feasible set for (2) and (3).

3.2 Iterative Candidate Improvement
We present procedures to automatically select execution

traces for system (1) to iteratively improve the quality of
a series of Lyapunov candidates. We equate the quality of
a Lyapunov candidate with the amount of time it takes a
search procedure to identify a point that violates constraint
(10). We rely on a falsification tool to automatically iden-
tify points within some domain D ⊆ X that violate (10).
Our falsification tool is a global optimizer that minimizes
the LHS of (10) to find examples of points that violate the
constraint.

The inputs to the procedures are:

– A parameter β ∈ R≥0 representing the size of an open
ball centered around the origin, Bβ = {x | ‖x‖ < β},
that will not be included in the analysis;

– A domain of interest, D;

– A time step T ∈ R>0;

– A bound on the degree of the Lyapunov candidate
function;

– A description of system (1) and a mechanism for gen-
erating concrete execution traces, such as simulations.

Also, we provide an initial collection of traces, Φs, to seed
the procedure. The step-by-step process of the algorithm to
construct candidate Lyapunov functions is shown in Figure
1. We elaborate on important steps in the procedure below.

Solve LP. In this stage, we obtain a Lyapunov candidate
by solving the feasibility problem given by (9) through (11),

based on the the set of all simulation traces explored by a.)
the manually selected set of seed traces and b.) the falsifica-
tion tool. If the LP is successfully solved, then we move to
the Falsification Stage. If the LP is deemed infeasible, then
we halt and report that the technique failed to find a Lya-
punov candidate; this could occur due to a.) no Lyapunov
function of the given template form exists or b.) numerical
problems.

Falsifier. In this step we use a non-convex, global opti-
mizer, which we call a falsifier, to search for a simulation
trace that violates the Lyapunov conditions for the candi-
date Lyapunov function. The optimization problem is given
by:

J∗ = min
φ(t0)∈D

 min
i∈

{1,...,N−1}

v(φ(ti))− v(φ(ti+1))− γ‖φ(ti)‖2
 .

(12)
If J∗ < 0, then the minimizing trace, φf , demonstrates

that the Lyapunov candidate, v, does not satisfy condition
(10). We call such a trace a counterexample. Note that
the cost function in (12) is based on an estimate of the Lie
derivative (i.e., v(φ(ti)) − v(φ(ti+1)) is proportional to the
Lie derivative). If counterexamples Φf are found, then we
add the linear constraints corresponding to the counterex-
amples in Φf to the set of LP constraints and return to the
Solve LP stage. If no counterexample is found, we halt and
return the candidate Lyapunov function.

A prototype of the technique has been implemented in
the MATLAB programming environment, using the freely
available SeDuMi and YALMIP optimization packages [15,
20, 14]. Our implementation of the falsification tool uses a
Nelder-Mead algorithm for the global optimizer.

Remark 3.3. Note that our search for a Lyapunov func-
tion can also be used for black-box systems, where we have
no analytic representation of system dynamics because the
system is either proprietary or is modeled in a graphical lan-
guage with obscure semantics, such as Simulink [1]. In such
a scenario, the Lyapunov candidate we obtain cannot be for-
mally vetted, but can be used to give semi-formal guaran-
tees. For some gray-box systems, where we have only lim-
ited knowledge of the system dynamics, such as the Lipschitz
constant for the dynamics and the maximum absolute value
of the vector field within the region of interest, we can give
formal guarantees by using a dense sampling of the region
of interest as the set of initial states and a small enough
simulation time-step. We omit these results for brevity.

4. VERIFICATION WITH SOLVERS
In this section, we describe how we use a variety of solvers

to formally validate the results of the simulation-guided Lya-
punov analysis techniques.

4.1 Formal validation
Verifying Lyapunov conditions. Let the predicateR(x) <
0 be true when x is in the region of interest X. We formu-
late the query for checking positive definiteness conditions
(2,7) within a given region of interest for a csms or dsms as
follows:

∃x : (x 6= 0) ∧ (R(x) < 0) ∧ (v(x) ≤ 0). (13)



If the above query is unsatisfiable, it proves positive defi-
niteness of v. For checking if the Lie derivative v̇ is negative
definite (in the region of interest), we formulate the following
queries for csms (14) and dsms (15) respectively:

∃x : (x 6= 0) ∧ (R(x) < 0) ∧ (∇v T · fq(x) > 0) (14)

∃x : (x 6= 0) ∧ (R(x) < 0) ∧ (v(x)− v(fq(x)) < 0). (15)

If such a query is unsatisfiable, then it proves that for all
points within the region of interest, the Lie derivative is
nonincreasing.

Verifying Barrier certificate conditions. Recall that
we use a barrier function B of the form v(x) − `. Let the
predicate I(x) < 0 be true when x ∈ X0 (the set of initial
states). Similarly, let the predicate U(x) < 0 be true when
x ∈ U (the set of unsafe states). We use ε to denote a small
positive real constant (e.g., 0.00001). The unsatisfiability of
each of the first three queries below respectively establishes
the barrier conditions (4-6):

∃x : (I(x) < 0) ∧ (v(x)− ` > 0) (16)

∃x : (U(x) < 0) ∧ (v(x)− ` < 0) (17)

∃x : (v(x)− ` = 0) ∧ (∇v T · fq(x) > −ε). (18)

While the above treatment may seem like an obvious trans-
lation of the Lyapunov conditions or the barrier certificate
conditions, we wish to point out that each of these queries
is essentially a satisfiability query formulated in a suitable
theory. If the candidate Lyapunov function that we obtain
is a polynomial (or SoS) expression, and if the system dy-
namics are also polynomial, then each of these queries is a
sentence in the decidable theory of real closed fields. If the
system dynamics are nonpolynomial, then the query may
belong to an undecidable theory. Nevertheless, advanced
nonlinear solver technologies can often provide answers for
these cases. We now briefly discuss the solvers that we use
and their underlying technical principle.

4.2 Solver Engines
Symbolic solvers. The most popular algorithm for decid-
ing sentences over algebraic expressions uses Partial Cylin-
drical Algebraic Decomposition (PCAD) [5]. A number of
tools either directly implement PCAD or CAD based algo-
rithms, or use them for specific sub-tasks. Examples include
Mathematica [24], the Conflict-driven Clause Learning style
search used by z3 [6], and QEPCAD. While algebra-based
solvers seem to perform well with a single polynomial in-
equality, in our experience these solvers do not scale when
faced with a conjunction of polynomial inequalities (they
either exceed a generous time-out that we specify, or run
out of memory). Another interesting solver in this space is
MetiTarksi [2]. This is a resolution-based theorem prover
modified to call a decision procedure for the theory of real
closed fields. Nonpolynomial functions are approximated by
upper and lower bounds that are rational functions derived
from Taylor expansion representations.

Solvers based on optimization and numeric tech-
niques. SoS techniques have been employed to synthesize
and to check the validity of Lyapunov functions for dynam-
ical systems with polynomial dynamics. Basically, an SoS
problem is formulated to show that the negative of the Lie

derivative is in the set of SoS polynomials (thus, guarantee-
ing that the Lie derivative is always decreasing). This can
be accomplished for polynomial systems, as the Lie deriva-
tive is polynomial in the state variables [17, 21]. Further,
for some dynamical systems with nonpolynomial dynamics,
variable transformations can be performed, which allow the
test of the Lie derivative to again be posed as an SoS prob-
lem [16]. For some hybrid systems, the test of the validity
of a candidate Lyapunov function may be performed, as in
[18].

SoS techniques address an important class of dynamical
systems, but it should be noted that even if the Lie deriva-
tive is negative definite, an SoS certificate is not guaranteed
to exist. Further, even if an SoS certificate for the Lie deriva-
tive exists, an SDP solver will sometimes fail to generate the
desired result. This is due to the lack of maturity in SDP
solvers, which can often fail due to numerical problems.

Solvers based on interval methods. Interval constraint
propagation (ICP) is a technique for contracting interval do-
mains associated with a set of variables without removing
any value that is consistent with a set of constraints. When
combined with a branch and bound algorithm, ICP can be
used to obtain quick but approximate results for satisfiabil-
ity of nonlinear constraints. For example, dReal [8] and iSat
[7] are such solvers, and we focus on using dReal for our
validation problems. dReal supports various nonlinear ele-
mentary functions in the framework of δ-complete decision
procedures, and returns “unsat” or “δ-sat” for a given query,
where δ is a precision value specified by the user. When
the answer is “unsat”, dReal produces a proof of unsatisfia-
bility; when it returns “δ-sat”, it gives an interval of size δ,
which contains points that may possibly satisfy the query.
We remark that when using dReal, for some queries, it of-
ten helps if we add additional constraints bounding the free
variables in the queries to intervals. This often produces less
conservative results.

4.3 Solver-guided Improvement and Validation
We use the above-mentioned solvers in a procedure to ver-

ify the soundness of results that are based on the Lyapunov
candidates produced by the procedure in Figure 1. The pro-
cedure utilizes counterexamples from the solver to iteratively
improve the quality of the Lyapunov candidate functions.
The result is a proof of soundness for either a.) a Lyapunov
function b.) a forward invariant set or c.) a barrier certifi-
cate.

Figure 2 illustrates a process that incorporates the formal
validation techniques discussed in Sec. 4.2 with the itera-
tive Lyapunov candidate improvement procedure shown in
Figure 1. The following describes the important aspects of
the procedure.

Formulate Solver Query. This operation creates one of
the queries described in Section 4.1 to validate the result
of the Lyapunov candidate analysis produced by the proce-
dure described in Section 3. When the desired output is a
proper Lyapunov function, the Lyapunov candidate v may
be tested directly using the procedure described in Section
4.1. When the desired output is a forward invariant set
or a barrier certificate, a candidate certificate must first be
generated. This is done by selecting a levelset size of the
Lyapunov candidate v (i.e., a size l such that the sublevelset
is given by {x|v(x) ≤ l}). An appropriate levelset size may
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Figure 2: Incorporating solver technologies to verify
soundness of the Lyapunov anlyses.

be computed by maximizing the levelset size such that the
levelset remains within D. This can be formulated as a con-
vex optimization problem that can be solved efficiently using
an SDP solver. The result is a candidate barrier certificate,
which can be validated using the technique described in Sec-
tion 4.1.

Run Solver. This operation applies one of the technolo-
gies described in Section 4.2 to the generated query. If the
result is that the query is unsatisfiable, then the Lyapunov
analysis (based on the candidate Lyapunov function and the
construction produced by the Formulate Solver Query oper-
ation) is sound, and the procedure may halt. If the result is
that the query is satisfiable, then a counterexample may be
used to refine the Lyapunov candidate on which the query
was based. Note that all of the technologies described in Sec-
tion 4.2 produce some form of counterexamples except for
the SoS-based techniques; for this case, some other method
of refinement must be selected (e.g., selecting a different Lya-
punov function template or adding several new simulation
traces randomly).

5. EXAMPLE CASE STUDIES
We present several examples involving nonlinear and hy-

brid dynamical systems. In some cases, the analysis task
is to produce a Lyapunov function within some designated
domain; in other examples, the analysis task is to produce
a forward invariant set. Our examples include systems with
ODEs that are polynomial, transcendental, and switched.
For systems with ODEs, traces are produced by the ode45

numerical integration algorithm provided in MATLABR©.
A summary of the results for the examples is given in Ta-

ble 2. For each example, the table lists the following: the
example name, the number of continuous state variables,
the computation time taken for the procedure in Figure 1
to produce a candidate Lyapunov function, the number of
simulation points explored by the falsification tool, the com-

putation time required by the arithmetic solver, and the
arithmetic solver used to verify the result.

5.1 Example 1: Normalized Pendulum
Consider a standard pendulum system with normalized

parameters: [
ẋ1
ẋ2

]
=

[
x2

− sin(x1)− x2

]
.

Here, x1 represents angular position and x2 angular velocity.
The system has only one mode of operation. The continuous
dynamics contain a transcendental function, which we note
is difficult for most other techniques to handle. This system
is guaranteed to be stable, as it is a representation of a
passive physical system with damping (i.e., the system will
tend to a zero-energy state over time).

The task for this example is to identify a Lyapunov func-
tion for the system that is valid within the domain D =
{x|xTx ≤ 1} and also to identify a forward invariant set. We
select z = x, that is, the Lyapunov candidates are quadratic.

The procedure from Figure 1 produces the candidate Lya-
punov function v(x) = xTPx, where, after rounding:

P =

[
100.0 24.0
24.0 92.0

]
.

The procedure takes 74.22 seconds. A total of 300 simulation
traces were explored by the falsification tool, each with 10
time steps of 0.1 seconds each.

A query of the form given by (13) and (14) was posed to
the Mathematica arithmetic solver and was able to prove
that the query is unsatisfiable in 7.72 seconds, thus prov-
ing that the above candidate Lyapunov function is a proper
Lyapunov function.

A convex optimization provides the size of the largest lev-
elset of the Lyapunov function that is contained within the
domain. The resulting levelset size was l = 71.51, where
the invariant set is given by {x|v(x) ≤ l}. The SDP solver
returns this result in 1.36 seconds. Figure 3 illustrates the
results. Simulation traces explored by the falsification tool
appear as dotted lines, with the associated initial conditions
marked with an asterisk. The dashed line indicates the do-
main for the example (the unit ball). The dash-dotted line
represents the invariant set.

5.2 Example 2: Constrained Pendulum
Consider the following constrained pendulum example [22]:

ẋ1 =

{
1
2
x2 x1 ≥ − π

18
x2 otherwise

ẋ2 = −g sin(x1)− x2,

where x1 is the angular position, x2 is the angular velocity,
and g = 9.8 is the acceleration due to gravity. The behavior
is similar to the previous example, except a pin constrains
the swing of the pendulum. Thus, the system has two modes
of operation. If x1 ≥ π

18
, the pendulum is unconstrained by

the pin, and the effective length of the pendulum is 2.0 m.
When x1 <

π
18

, the pin constrains the pendulum swing, and
effective length of the pendulum is 1.0 m.

As in the previous example, the system is guaranteed to
be stable as it is a physical system with damping. For this
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Figure 3: Optimization results of analysis for the
Normalized Pendulum example.

example, we consider the task of constructing a forward in-
variant set for the system. To highlight the feature that we
can supply different templates during the search for candi-
date Lyapunov functions, in this example, we specify a piece-
wise Lyapunov function template. In [12], Chapter 4.4, the
author proposes a way to frame a piecewise Lyapunov func-
tion for piecewise linear systems that is continuous across
the switching boundary. We can extend this idea to general
switched systems; here, we show how it can be applied to
this example. Consider a csms with two modes. The ba-
sic idea is to search for a Lyapunov function that has the
following form:

v(x) = zT1 Qz1 + zT2 Piz2 · (h(x))2, (19)

where i ∈ {1, 2}. Here, z1 and z2 are monomial vectors,
where the degree of z1 is higher than the degree of z2

1.
The expression h(x) is a function such that h(x) = 0 spec-

ifies the switching surface separating the two modes. For
this example, h(x) = x1 + π

18
. Observe that on the switch-

ing surface the right summand evaluates to 0, and hence
the Lyapunov function becomes continuous at the switching
boundary.

The search procedure returns a candidate Lyapunov can-
didate after 2, 308.54 seconds. The resulting Q and Pi ma-
trices are omitted for brevity. After the candidate Lyapunov
function is returned, a search returns a levelset size, which
is used to define a candidate forward invariant set. dReal
returns a verification result for the forward invariant set in
0.084 seconds.

5.3 Example 3: Damped Mathieu System
Consider the damped Mathieu system (page 315 in [10]):

[
ẋ1
ẋ2

]
=

[
x2

−x2 − (2 + sin(t))x1

]
.

1This constraint is necessary to prevent the terms in h from
making the Lyapunov candidate trivially positive.

The task for this example is to identify a Lyapunov func-
tion within the domain given by the unit ball centered at the
origin. Note that the Mathieu dynamics are time varying.
That is, ẋ = f(t,x). To construct Lyapunov candidates for
this system, we use a variation on Lyapunov’s direct method.
We invoke Barbalat’s Lemma, as in [19] (page 125). This
requires that a.) v̇ < 0 for all t ≥ 0 and b.) the second
derivative of v be uniformly continuous in time. We apply
condition (10) over simulations of duration 6 seconds (the
intuition being that 6 seconds is representative of the dy-
namics for all t > 0). Also, it can be shown that the second
derivative of v is continuous.

Again, we select a quadratic form for the candidate Lya-
punov function. The procedure from Figure 1 produces the
candidate Lyapunov function v(x) = xTPx, where, after
rounding:

P =

[
98.0 24.0
24.0 55.0

]
.

The above result was returned after 216.61 seconds and a
total of 200 simulation traces were explored by the falsifica-
tion tool, each with 60 time steps of 0.1 seconds each.

A query of the form given by (13) and (14) was posed to
the dReal SMT solver and was able to prove that the query
is unsatisfiable in 0.044 seconds, thus proving that the above
candidate Lyapunov function is a proper Lyapunov function.

5.4 Example 4: Switched-Mode System
Consider the following CSMS system, which is a modified

version of an example from Johansson[12]:

ẋ =



[
−0.1 1.0
−10 −0.1

]
x

(x1 ≥ 0 ∧ x2 ≥ g(x1))∨
(x1 ≤ 0 ∧ x2 ≤ g(x1))[

−0.1 10
−1 −0.1

]
x

(x1 < 0 ∧ x2 > g(x1))∨
(x1 > 0 ∧ x2 < g(x1))

, (20)

where g(x1) = 0.1ex1 − 0.1. The task for this example is to
identify an invariant set within the unit ball.

Invariant sets can be obtained from Lyapunov functions
for switched-mode systems, and there are techniques that
attempt to obtain a common Lyapunov function by solving
the convex optimization feasibility problem P � 0, ATi P +
PAi ≺ 0 for every mode i. Note, however, that no solu-
tion (i.e., a common Lyapunov function) for the continuous
dynamics in this system exists, as shown in [12]. While
techniques such as LMI solutions based on the so called S-
procedure [3] could succeed for the original example in [12],
these techniques fail to capture the transcendental switch-
ing surface in this example. As we show, our technique can
compute an invariant set for this system, indicating that our
technique offers a viable alternative when other techniques
fail.

The falsification tool uses traces of the system with a step
size of 0.02 seconds, out to 1.0 seconds. We select a quadratic
Lyapunov function template. The falsification tool produces

P =

[
11.0 1.0
1.0 100.0

]
in 170.75 seconds. A total of 196 simulation traces were
explored by the falsification tool. The SDP solver returned
a levelset size of l = 10.8 in 0.79 seconds. Mathematica is
able to verify the candidate invariant set in 1.476 seconds.



−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

 

 

Figure 4: Optimization results of analysis for the
Switched-Mode example.

Figure 4 illustrates the results. The arrows indicate the
direction of the vector field. The dashed surface represents
the domain of interest (the unit ball). The solid traces are
the simulations that were used to compute a Lyapunov can-
didate function. The vertical axis and the curved surface
passing through the origin define the switching boundaries.

5.5 Example 5: Powertrain Control System
We consider a fuel controller for an automotive applica-

tion, and evaluate its ability to maintain the air-fuel (A/F)
ratio within a given range of an optimal value. Environ-
mental concerns and government legislation require that the
rate of emissions (e.g., hydrocarbons, carbon monoxide, and
nitrogen oxides) be minimized; control of automobile engine
A/F ratio is crucial to minimize emissions. Ideal A/F levels
are given by the stoichiometric value; we present an A/F
control system model whose purpose is to maintain the A/F
ratio to within 10% of the stoichiometric value when running
under normal operating conditions.

The experiment that we model involves an engine con-
nected to a dynamometer, which is a device that can control
the speed of the engine and measure the output torque. For
our experiment, the dynamometer maintains the engine at
a constant rotational velocity, as the engine is tested.

The dynamical system we consider is a csms representing
the parallel composition of a plant subsystem with a con-
troller subsystem. This system has four state variables: two
associated with the plant and two associated the controller.
The two states associated with the plant represent the man-
ifold pressure p and the normalized A/F ratio r (this is the
ratio of the actual air-fuel ratio to the stoichiometric value
14.7). The controller implements a feedforward open-loop
estimator to observe the state p of the plant; the output of
the estimator is the state pest. It also implements a feed-
back PI control law, and the state i represents the internal
state of the integrator. We present the system dynamics2 in

2Errata: The system dynamics in the version of the paper

Table 1: Model Parameters for the PTC Example.
Parameter Value

c1 0.41328
c2 200.0
c3 −0.366
c4 0.08979
c5 −0.0337
c6 0.0001
c7 2.821
c8 −0.05231
c9 0.10299
c10 −0.00063
c11 1.0
c12 14.7
c13 0.9
c14 0.4
c15 0.4
c16 1.0
û1 23.0829

Fig. 5 and then tabulate the model parameters in Table 1.
We translate the system so that the origin coincides with

the equilibrium point p ≈ 0.8987, r = 1.0, pest ≈ 1.077,
i ≈ 0.0 and call the translated variables p̂, r̂, p̂est, and, î,
respectively. Using x = [p̂ r̂ p̂est î]

T , we define the following
unsafe set:

U = {x| ‖r̂‖ > 0.1},

which corresponds to unacceptable A/F ratio values. The
requirement is that the system should never enter U , given
an initial condition in X0, where

X0 = {x| ‖x‖ ≤ 0.02}.

We apply our technique to identify a barrier certificate for
this system to verify that this system satisfies the require-
ment. We select a domain of D = {x| ‖x‖ ≤ 0.1}, which
we note does not intersect with U . We use a candidate Lya-
punov function of the form v(x) = zTPz, where z is a vector
of all monomials of degree ≤ 2 of the state variables p̂, r̂, p̂est
and î. Note that z thus contains 14 monomials, and the P
that we wish to find is a 14x14 matrix. The procedure from
Figure 1 produces a candidate Lyapunov function of the de-
sired form. We omit the resulting P matrix for brevity but
note that the minimum and maximum eigenvalues are ap-
proximately 7.6 and 489.0, respectively.

The computation takes 1, 413.73 seconds. An appropriate
levelset size of the Lyapunov candidate was found to be 0.07.
The candidate barrier certificate is thus B(x) = zTPz − l,
where l = 0.07. The dReal solver is used to prove that B
is a barrier certificate using a query similar to (16) through
(18). dReal is able to prove that the query is unsatisfiable
in 1, 157.42 seconds.

5.6 Example 6: MPC for Engine Control Sys-
tem

appearing on the ACM web-site have a typographical error.
In the dynamics for ṙ, in the denominator, the correct ex-
pression for the monomial with coefficient c4c2 is c4c2pest,
but was presented as c4c2p

2
est. Please consider the dynamics

presented here as the correct version.



ṗ = c1

2û1

√
p

c11
−
(
p

c11

)2

−
(
c3 + c4c2p+ c5c2p

2 + c6c
2
2p
)

ṙ = 4

(
c3 + c4c2p+ c5c2p

2 + c6c
2
2p

c13(c3 + c4c2pest + c5c2p2est + c6c22pest)(1 + i+ c14(r − c16))
− r
)

ṗest = c1

(
2û1

√
p
c11
−
(

p
c11

)2
− c13

(
c3 + c4c2pest + c5c2p

2
est + c6c

2
2pest

))
i̇ = c15(r − c16)

(21)

Figure 5: System dynamics for the Powertrain Control System.

Lastly, we consider a representation of a model predictive
control (MPC) system for a turbocharged diesel engine ap-
plication. This system has been the subject of recent exper-
imental work in the automotive industry and has appeared
recently in the literature [11]. There has been interest in
adopting MPC in the automotive industry, but several hur-
dles remain, such as the ability to prove safety properties of
the closed-loop system. A technique that provides a means
to, for example, prove stability or to provide guarantees on
performance bounds would help to ease the way for this new
technology to find application in industry. Below, we apply
our technique to prove this system is stable by discovering
a discrete-time Lyapunov function that is valid over a given
domain.

The purpose of the MPC system for this application is
to regulate the manifold pressure (MAP) and exhaust gas
recirculation (EGR) rate. The MAP affects the amount of
air injected into the cylinder for the combustion phase of
the engine; accurately controlling the MAP directly affects
the power output of the engine as well as the efficiency. The
EGR subsystem allows some portion of the exhaust gas to
be reinjected into the cylinder, with the ultimate effect of
increasing efficiency and decreasing the rate of emissions.

The actuators are the variable geometry turbine (VGT)
and the EGR valve. The VGT controls how much air is
forced into the manifold due to pressure from the exhaust
gases. The EGR valve regulates the rate at which exhaust
gases are recirculated into the intake manifold.

The model we consider is a dsms. The continuous-valued
dynamics are given by affine difference equations. The plant
is highly nonlinear with at least eight state variables. The
version of the plant that we consider is first linearized, pro-
ducing a linear time-invariant model with eight state vari-
ables. Then the number of state variables is reduced by
applying a model-order reduction technique. The controller
has 69 modes of operation (27 modes within the domain of
interest); in each mode a unique linear feedback law is ap-
plied. The resulting closed-loop model of the system has
three continuous-valued state variables and 27 modes.

The control space is divided into so called controller re-
gions, Xi ⊂ R3 for i ∈ {1, . . . , 27}, where each region is asso-
ciated with a unique mode of the controller. The collection
of regions partitions the domain of interest; the boundaries
of each region are polyhedral sets. The dynamics are given
by:

x[k + 1] = Aix[k] + bi, ∀x[k] ∈ Xi,

where Ai ∈ Rn×n and bi ∈ Rn.

Note that existing LMI techniques failed to identify a Lya-
punov function for this example, but as we describe below,
our search-based technique is able to discover a solution.

We use a quadratic Lyapunov template and define the do-
main as the ball of radius 20.0 centered at the origin. The
search procedure produces the following Lyapunov candi-
date in 107.29 seconds:

P =

 1.625 −0.309 0.740
−0.309 0.886 0.208
0.740 0.208 1.688

 .
A query to dReal takes 133 seconds to prove that the

resulting candidate Lyapunov function is a proper Lyapunov
function over the domain. This provides a proof of stability
as well as a mechanism to produce forward invariant sets for
the MPC system.

6. CONCLUSIONS
We presented a Lyapunov-based technique for the analysis

of systems based on simulation data. The technique lever-
ages numerical optimization and automated reasoning tech-
nologies such as SMT solvers and can be used to demonstrate
stability and to provide performance bounds and safety guar-
antees for nonlinear and hybrid dynamical systems. This
technique directly targets industrial applications, where sim-
ulation data is easily obtainable but application of tradi-
tional formal methods is not yet feasible. The foundation of
our analysis is a technique to automatically generate and it-
eratively improve upon candidate Lyapunov functions. The
candidates are generated based on linear constraints pro-
vided by simulation traces; the feasible solution to an LP
problem provides the Lyapunov candidates. We iteratively
improve upon a series of candidates by using a tool that
we call a falsifier, which is a global optimizer guided by a
cost function that is based on the Lie derivative of the can-
didate Lyapunov function. An SMT solver is then used to
validate the soundness of the resulting analysis, which can
be a stability proof, a forward invariant set, or a barrier
certificate. If necessary, we refine the candidate Lyapunov
functions using counterexamples from the SMT solver. We
provided several examples, including two examples from the
automotive engine control domain. No guarantees exist that
our procedure will terminate with a sound analysis result,

1For a Intel Xeon E5606 2.13GHz Dual Processor machine,
with 24 GB RAM, running Windows 7, SP1
2For a 4x Intel Core i7 at 2.7 GHz with 8 GB RAM, running
Ubuntu 13.04



Table 2: Results from Lyapunov analysis for various examples.

Model Name Degree Candidate Time (sec.)1 No. Sim. Points Verif. Time (sec.)2 Solver
1 Pendulum 2 74.22 3,000 7.72 Mathematica
2 Constrained Pendulum 2 2,308.54 57,240 0.084 dReal
3 Mathieu 2 216.61 12,000 0.044 Mathematica
4 Switched-Mode 2 170.75 9,800 1.476 Mathematica
5 PTC 3 1,413.73 258,078 1,157.42 dReal
6 MPC 3 107.29 4,480 133 dReal

but our examples show that the technique can be applied to
challenging industrial problems. Future work will consider
non-autonomous systems and will explore alternative search
strategies based on, for example, machine learning.
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