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Cyber-physical system applications such as autonomous vehicles, wearable devices, and avionic systems generate a large volume
of time-series data. Designers often look for tools to help classify and categorize the data. Traditional machine learning techniques
for time-series data offer several solutions to solve these problems; however, the artifacts trained by these algorithms often lack
interpretability. On the other hand, temporal logic, such as Signal Temporal Logic (STL) have been successfully used in the formal
methods community as specifications of time-series behaviors. In this work, we propose a new technique to automatically learn
temporal logic formulas that are able to classify real-valued time-series data. Previous work on learning STL formulas from data either
assumes a formula-template to be given by the user, or assumes some special fragment of STL that enables exploring the formula
structure in a systematic fashion. In our technique, we relax these assumptions, and provide a way to systematically explore the space
of all STL formulas. As the space of all STL formulas is very large, and contains many semantically equivalent formulas, we suggest a
technique to heuristically prune the space of formulas considered. Finally, we illustrate our technique on various case studies from the
automotive and transportation domains.
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1 INTRODUCTION

Cyber-physical systems (CPS) generate large amounts of data due to a proliferation of sensors responsible for monitoring
various aspects of the system. Designers are typically interested in extracting high-level information from such data
but due to its large volume, manual analysis is not feasible. Hence a crucial question is: How do we automatically

identify logical structure or relations within CPS data? Machine learning (ML) algorithms may not be specialized to learn
logical structure underlying time-series data[28], and typically require users to hand-create features of interest in the
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2 Mohammadinejad et al.

underlying time-series signals. These methods then try to learn discriminators over feature spaces to cluster or classify
data. These feature spaces can often be quite large, and ML algorithms may choose a subset of these features in an ad

hoc fashion. This results in an artifact (e.g., a discriminator or a clustering mechanism) that is not human-interpretable.
In fact, ML techniques focus only on solving the classification problem and suggest no other comprehension of the
target system [5].

Signal Temporal Logic (STL) is a popular formalism to express properties of time-series data in several application
contexts, such as automotive systems [3, 14, 17], analog circuits [22], biology [26], robotics [31], etc. STL is a logic over
Boolean and temporal combinations of signal predicates which allows human-interpretable specification of continuous
system requirements. For instance, in the automotive domain, STL can be used to formulate properties such as “the car
successfully stops before hitting an obstruction” [18].

There has been significant work in learning STL specifications from data. Some of this work has focused on supervised
learning (where given labeled traces, an STL formula is learned to distinguish positively labeled traces from negatively
labeled traces) [5, 9, 18, 24], or clustering (where signals are clustered together based on whether they satisfy similar
STL formulas) [28, 29], or anomaly detection (where STL is utilized for recognizing the anomalous behavior of an
embedded system) [16]. There are two main approaches in learning STL formulas from data: template-free learning
and template-based learning. Template-free methods learn both the structure of the underlying STL formula and the
formula itself. While these techniques have been proven effective for many diverse applications [5, 9, 16, 18, 24], they
typically explore only a fragment of STL, and may produce long and complicated STL classifiers. Certain properties
such as concurrent eventuality, repeated patterns and persistence may not be expressible in the chosen fragments for
learning [18]. In template-based methods, the user provides a template parametric STL formula (PSTL formula) and the
learning algorithm infers only the values of parameters from data [12, 13, 15, 28, 29]. Without a good understanding of
the application domain, choosing the appropriate PSTL formula can be challenging. Furthermore, in template-based
methods the users may provide very specific templates which may make it difficult to derive new knowledge from
data[5].

Syntax-guided synthesis is a new paradigm in “learning from examples”, where the user provides a grammar for
expressions, and the learning algorithm tries to learn a concise expression that explains a given set of examples. In [27],
systematic enumeration has been used to generate candidate solutions. For medium-sized benchmarks, the systematic
enumeration algorithm, in spite of its simplicity, surprisingly outperforms several other learning approaches [1].

Inspired by the idea of learning expressions from grammars, in this paper, we consider the problem of learning STL
based formulas to classify a given labeled time-series dataset (with focus on the monotonic fragment of STL). The key
challenge in systematic enumeration for STL is that predicates over real-valued signals and time-bounds on temporal
operators both involve real numbers. This means that even for a fixed length, there are an infinite number of STL
formulas of that length. One solution is to apply the enumerative approach to PSTL, which uses parameters instead
of numbers. The inference problem then tries to learn parameter values to separate labeled data into distinct classes.
The parameter-valuation inference procedures are typically efficient, but over a large dataset, the cost for enumeration
followed by parameter inference can add up. As a result, we explore an optimization which involves skipping formulas
that are heuristically determined to be equivalent.

The work in [9] is highly related to the work presented in this paper. In this recent work, the authors discuss
the problem of online monitoring and formula synthesis for a past fragment of STL. A key difference between [9]
and this paper is the use of signature-based optimization and systematic exploration of the parameter space using a
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multi-dimensional binary search method. It would be interesting to consider the extension of our method to the past
fragment of STL and compare the relative merits of the two approaches in future work.

As a concrete application of enumerative search, we consider the problem of learning an STL-based classifier with a
minimal misclassification rate for the given labeled dataset.

Our tool generates the shortest possible STL formula. In the ML community, there is a preference to classifiers with
smaller descriptive complexity to comply with the Occam’s Razor principle. Cf. [19] for results on shorter decision-trees
being favorable. In the context of rule learning, shorter rules are considered more interpretable and are preferred by
designers [11]. The main hypothesis is that shorter STL formulas can be translated to short plain English phrases, which
makes them human-interpretable. This is in contrast to ML methods where a classifier may be a linear combination of a
number of features such as statistical moments of the signal, frequency domain coefficients, or other ad hoc user-defined
features.

To summarize, our key contributions are as follows:

• We extend the work in [12, 13, 15, 28, 29] by learning the structure or template of PSTL formulas automatically.
The enumerative solver furthers the Occam’s razor principle in learning (simplest explanations are preferred).
Thus, it produces simpler STL formulas compared to existing template-free methods [5, 16, 18, 24].
• We introduce the notion of formula signature as a heuristic to prevent enumeration of equivalent formulas.
• We bridge formal methods and machine learning algorithms by employing STL, which is a language for formal
specification of continuous and discrete system behaviors [21]. We use Boolean satisfaction of STL formulas as a
formal measure for measuring the misclassification rate.
• We showcase our technique on real world data from several domains, including automotive and transportation
domains.

2 PRELIMINARIES

Definition 1 (Time-Series, Traces). A trace x is a mapping from time domain T to value domain D, x : T → D
where, T ⊆ R≥0, D ⊆ Rn and D , ∅.

Signal Temporal Logic (STL). Signal Temporal Logic [21] is used as a specification language for reasoning about
properties of real-valued signals. The simplest properties or constraints can be expressed in the form of atomic predicates.
An atomic predicate is formulated as f (x) ∼ c , where f is a function fromD to R, ∼∈ {≥, ≤,=}, and c ∈ R. For instance,
x(t) ≥ 2 is an atomic predicate, where f (x) = x(t), ∼ is ≥, and c = 2. Temporal properties include temporal operators
such as G (always), F (eventually) and U (until). For example, G(x(t) > 2) means signal x(t) is always greater than 2.
Each temporal operator is indexed by an interval I := (a,b) | (a,b] | [a,b) | [a,b], where a,b ∈ T . Every STL formula is
written in the following form:

φ := true | f (x) ∼ c | ¬φ | φ1 ∧ φ2 | φ1 UI φ2 (1)
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4 Mohammadinejad et al.

where c ∈ R. G and F operators are special instances of U operator; FIφ ≜ trueUI φ, and GIφ ≜ ¬FI¬φ, and they are
defined for formula simplification. The boolean semantics of an STL formula are defined formally as follows:

(x, t) |= f (x) ∼ c ⇐⇒ f (x(t)) ∼ c is true
(x, t) |= ¬φ ⇐⇒ (x, t) ⊭ φ

(x, t) |= φ1 ∧ φ2 ⇐⇒ (x, t) |= φ1 ∧ (x, t) |= φ2

(x, t) |= φ1 UI φ2 ⇐⇒ ∃t1 ∈ t ⊕ I : (x, t1) |= φ2 ∧

∀t2 ∈ [t , t1) : (x, t2) |= φ1,

where ⊕ denotes the Minkowski sum (t ⊕ [a,b] = [t + a, t + b]). The signal x satisfies f (x) > 0 at time t (where t ≥ 0)
if f (x(t)) > 0. It satisfies φ = G[0,2)(x > 0) if for all time 0 ≤ t < 2,x(t) > 0 and satisfies φ = F[0,1)(x > 0) if exists t ,
such that 0 ≤ t < 1 and x(t) > 0. The signal x satisfies the formula φ = (x > 0)U[0,2](x < 1) if there exists some time
t1 where 0 ≤ t1 ≤ 2 and x(t1) < 1, and for all time t2 ∈ [0, t1),x(t2) > 0. We can create higher-level STL formulas by
utilizing two or more of the operators. For instance, a signal x satisfies φ = F[0,1]G[0,2](x(t) > 1) iff there exists t1 such
that 0 ≤ t1 ≤ 1, and for all time t1 ≤ t ≤ t1 + 2,x(t) > 1.

In addition to the Boolean semantics, quantitative semantics of STL quantify the robustness degree of satisfaction by
a particular trace[7, 8]. Intuitively, a STL with a large positive robustness is far from violation, and with large negative
robustness is far from satisfaction. If the robustness is a small positive number, a very small perturbation might make it
negative and lead to the violation of the property. Quantitative semantics of STL are formally defined as follow:

ρ(µ, x, t) = f (x(t))
ρ(¬φ, x, t) = −ρ(φ, x, t)
ρ(φ1 ∧ φ2, x, t) = min(ρ(φ1, x, t), ρ(φ2, x, t))

ρ(φ1UIφ2, x, t) = sup
t ′∈t ⊕I

min

(
ρ(φ2, x, t ′),

inft ′′∈[t,t ′) ρ(φ1, x, t ′′)

)
For instance, consider the signal x(t) = 11 − t , the robustness of the formula G[0,10](x > 0) is the minimum of x(t)

over [0, 10] (i.e. = 1), and the robustness of F[0,5](x > 7) is the maximum of x(t) − 7 over [0, 5] (i.e. = 4). Robustness
approximates the signed distance between the signal and the set of signals satisfying (or violating) the formula.

Property "Always between time 0 and some unspecified time τ , the signal x is less than some value π " could be
expressed using Parametric STL (PSTL) formula G[0,τ ](x < π ), where the unspecified values τ and π are referred to as
parameters.

Parametric Signal Temporal Logic (PSTL). PSTL [2] is an extension of STL where constants are replaced by
parameters. The associated STL formula is obtained by assigning a value to each parameter variable using a valuation
function. Let P be the set of parameters, V represent the domain set of the parameter variables PV , and T represent
the time domain of the parameter variables PT . Then, P is the set containing the two disjoint sets PV and PT , where
at least one of the sets is non-empty. A valuation function ν maps a parameter to a value in its domain. A vector of
parameter variables p is obtained by mapping parameter vectors p into tuples of respective values over V or T . Hence,
we obtain the parameter space DP ⊆ V |P

V | ×T |P
T | .

An STL formula is obtained by pairing a PSTL formula with a valuation function that assigns a value to each
parameter variable. For example, consider the PSTL formula φ(c,τ ) = F[0,τ ](x > c) with parameters c and τ . The STL
formula F[0,5](x > −2.3) which is an instance of φ is obtained with the valuation ν = {τ 7→ 5, c 7→ −2.3}.
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Definition 2 (Monotonic PSTL). A parameter pi is said to be monotonically increasing or have positive polarity in

a PSTL formula φ if condition (2) holds for all x, and is said to be monotonically decreasing or have negative polarity if

condition (3) holds for all x, and monotonic if it is either monotonically increasing or decreasing [2].

ν (pi ) ≤ ν ′(pi ) ⇒
[
x |= φ(ν (pi )) ⇒ x |= φ(ν ′(pi ))

]
(2)

ν (pi ) ≥ ν ′(pi ) ⇒
[
x |= φ(ν (pi )) ⇒ x |= φ(ν ′(pi ))

]
(3)

For example, in the formula F[0,τ ](x > c), polarity of τ is positive (the formula is monotonically increasing with
respect to τ ), and polarity of c is negative (the formula is monotonically decreasing with respect to c). If a trace satisfies
F[0,1](x > 0) (there exists at least a time instance t ′ ∈ [0, 1] where x(t ′) > 0) , it will definitely satisfy F[0,2](x > 0)
(t ′ ∈ [0, 2]).

Definition 3 (Validity domain). The validity domain for a given set of parameters P is the set of all valuations s.t.

for the given set of traces X , each trace satisfies the STL formula obtained by instantiating the given PSTL formula with the

parameter valuation. The boundary of the validity domain is the set of valuations where the robustness value of the given

STL formula with respect to at least one trace in X is 0.

Essentially, the validity domain boundary serves as a classifier to separate the set of traces satisfying the STL formula
from the ones violating the formula.

Supervised Learning/Classification. Supervised Learning is an ML technique used for learning from labeled data set.
Supervised classification problems are either binary (only two classes are involved) or multi-class classification (more
than two classes are included). In this paper, we explore the problem of multi-class classification for time-series data
and use boolean semantics of STL as a logical measure for misclassification rate (MCR). In general, MCR is computed as
the number of falsely classified traces divided by the number of all traces. We then evaluate our method on real-world
data, including automotive and transportation domains.

3 ENUMERATIVE LEARNING FOR STL

In this section, we introduce systematic PSTL enumeration for learning PSTL formula classifiers from time-series data,
which the enumeration procedure is formalized in Algo. 1. From a grammar-based perspective a PSTL formula can
be viewed as atomic formulas combined with unary or binary operators. For instance, PSTL formula G[0,τ1](x(t) >
c1) ∧ F[0,τ2](x(t) < c2) consists of binary operator ∧ , unary operators G and F, and atomic predicates x(t) > c1 and
x(t) < c2.

φ := atom | unaryOp(φ) | binaryOp(φ,φ)

unaryOp := ¬ | F | G
binaryOp := ∨ | ∧ | UI |⇒

(4)

Algo. 1 is algorithm with several nested iterations. The outermost loop iterates over the length of the formula, and in
the first iteration of the loop, we basically enumerate formulas of length 1, or parameterized signal predicates using the
EnumAtoms function. At end of the ℓth iteration of the algorithm, all formulas up to length ℓ are stored in a database
DB that is an array of lists. Each array index corresponds to the formula length, and each of the lists stored at location
ℓ is the list of all formulas of length ℓ. In each iteration corresponding to lengths greater than 1, the algorithm calls
the function ApplyUnaryOps, and in all iterations for lengths greater than 2, the function also calls ApplyBinaryOps.
When enumerating formulas of length ℓ, ApplyUnaryOps function iteratively applies each unary operator from the
ordered list unaryOps to all formulas of length ℓ − 1 to get a new formula. The ApplyBinaryOps iteratively applies each
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6 Mohammadinejad et al.

binary operator from the ordered list binaryOps to a pair of formulas of lengths a and b, where a,b ∈ [1, ℓ − 2] and
a + b = ℓ − 1. We use atomIt, unOpIt, binaryOpIt, argIt, lhsIt, rhsIt as iterators (indices) on the lists atoms, unaryOps,
binaryOps, DB(ℓ − 1), and lhsArgs and rhsArgs respectively.

For each PSTL formula φ generated by Algo. 1, we apply the procedure (TryClassifier) which is formalized in
Algo. 2. If φ is a good classifier (small misclassification rate), all loops terminate and φ is returned. Otherwise, the
procedure continues to generate new PSTL formulas. We explain Algo. 2 in Section 5. In order to avoid applying Algo. 2
(TryClassifier) on equivalent PSTL formulas, we use the idea of formula signatures to heuristically detect equivalent
PSTL formulas. We explain this optimization in the next section.

4 SIGNATURE-BASED OPTIMIZATION

Enumerating logical classification, which is implemented in Algo. 2, for every PSTL formula is time-consuming. The
problem with naïve enumeration approach for PSTL formulas is that many equivalent PSTL formulas are enumerated.
Hence, we are interested in detecting equivalent PSTL formulas in order to decrease enumeration time. However,
checking equivalence of PSTL formulas is in general undecidable [15]. Even if we restrict ourselves to a fragment
of PSTL, equivalence checking is a computationally demanding task. Thus, we use signatures to avoid enumerating
logically equivalent formulas. A signature is an approximation of a PSTL formula. Inspired by polynomial identity
testing [25], we use the notion of signature to check the equivalence of two PSTL formulas. Let Xn ⊆ X be a randomly
chosen subset of X (the traces) of cardinality n. LetDPm = {ν1, . . . ,νm } be a finite subset ofDP (the parameter space).
The signature S of a formula φ maps φ to a matrix of real numbers, defined as below:

Sφ (i, j) = ρ(φ(νj (p)),Xn (i), 0)

The (i, j)th element of the matrix represents the robustness of the ith trace, Xn (i) with respect to the jth STL formula
φ(νj (p)). For checking the satisfaction of a STL specification by a trace we use Breach [6], a toolbox for verification
and parameter synthesis of hybrid systems. This procedure is implemented in computeSignature function in Algo. 2.
computeSignature function in Alo. 2 is used to detect whether an enumerated PSTL formula φ is new or its equivalent
has been enumerated. Consider two PSTL formulas: F[0,τ1](G[0,τ2](x(t) > c)) and ¬(G[0,τ1](F[0,τ2](x(t) ≤ c))).

We illustrate the working of the computeSignature function using 4 randomly chosen subset of traces (i.e., n=4) from
case studies and 5 random parameter samples (i.e.,m=5) from time domain T = [0, 3] and value domain V = [0.8, 1.2].
For both PSTL formulas the resulting signature is a 4 × 5 matix with exactly same elements (hence, the two PSTL
formulas are equivalent):

Sφ =


0.8786 0.9294 −0.4984 0.7571 0.9404
0.3317 0.2296 −0.1853 0.9455 0.2218
0.4033 0.2785 −0.5105 0.8429 0.2890
0.1742 0.1816 −0.6257 0.1873 0.1738


.

Remark. computeSignature function in Algo. 2 only compares signature of formulas with the same parameters. For

instance, formulas G[0,τ ](x(t) > c1) and ¬(F[0,τ ](x(t) ≤ c2)) are semantically equivalent; however, computeSignature
function does not detect them as equivalent, and we are going to address this limitation in future work.

Remark. As the satisfiability of STL formulas is undecidable in general [15], checking if two arbitrary STL formulas

are equivalent is also undecidable. Even if we restrict our attention to MITL formulas (where satisfiability is decidable),
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Algorithm 1: Formula enumeration algorithm
Input: maxLength, atoms, unaryOps, binaryOps, DB

1 Init: ℓ ← 1;
2 while ℓ ≤ maxLength do
3 if ℓ = 1 then EnumAtoms() ;
4 else if ℓ = 2 then ApplyUnaryOps() ;
5 else ApplyUnaryOps(); ApplyBinaryOps();
6 ℓ ← ℓ + 1;

7 Function EnumAtoms():
8 atomIt← 1;
9 while atomIt≤ |atoms | do
10 φ ← дet (atoms, atomIt);
11 TryClassifier(φ) ; // Algorithm 2

12 add (DB, ℓ, φ);
13 atomIt← atomIt + 1;

14 Function ApplyUnaryOps():
15 argIt← 1, unOpIt← 1 ;
16 while unOpIt≤ |unaryOps | do
17 op ← дet (unaryOps, unOpIt);
18 while argIt< |DB(ℓ − 1) | do
19 unaryArд ← дet (DB(ℓ − 1), argIt);
20 φ ← op(unaryArд) ;
21 TryClassifier(φ);
22 Add (DB, ℓ, φ);
23 argIt← argIt + 1;

24 unOpIt← unOpIt + 1 ;

25 Function ApplyBinOps():
26 lhsIt, rhsIt, binaryOpIt← 1 ;
27 while binaryOpIt≤ |binaryOps | do
28 op ← дet (binaryOps, binaryOpIt);
29 for i ← 1 to ℓ − 2 do
30 while lhsIt< |DB(i) | do
31 while rhsIt< |DB(ℓ − i − 1) | do
32 lhs ← дet (DB(i), lhsIt) ;
33 rhs ← дet (DB(ℓ − i − 1), rhsIt);
34 φ ← op(lhs, rhs) ;
35 TryClassifier(φ);
36 Add (DB, ℓ, φ);
37 rhsIt← rhsIt + 1 ;

38 lhsIt← lhsIt + 1;

39 binaryOpIt← binaryOpIt + 1 ;

checking equivalence is computationally expensive (EXPSPACE complete). There is recent new tool for checking satisfiability

of MITL formulas [4]. To check the satisfiability of formulas of length less than 20, the tool takes about 10 seconds.

The problem at hand is more complicated than the above problems as we are checking the equivalence of PSTL formulas

that requires an additional quantifier on the parameter space.
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Fig. 1. Change of F1 score with respect to the number of random sample parameters (m) for fixed number of random traces (n=10).

We have used two common performance parameters to evaluate signature-based optimization, precision and recall
in addition to computation time. The precision is an important figure of merit to examine the performance of the
technique in not detecting two different PSTL formulas as equivalent. The recall is the performance of the method in
detection of all equivalent enumerated PSTL formulas.

Precision =
|
{
φ | φ ≡ φ ′ ∧ φ ≡siдn φ ′

}
|

|
{
φ | φ ≡ φ ′ ∧ φ ≡siдn φ ′

}
| + |

{
φ | φ . φ ′ ∧ φ ≡siдn φ ′

}
|
,

Recall =
|
{
φ | φ ≡ φ ′ ∧ φ ≡siдn φ ′

}
|

|
{
φ | φ ≡ φ ′ ∧ φ ≡siдn φ ′

}
| + |

{
φ | φ ≡ φ ′ ∧ φ .siдn φ ′

}
|
,

F1 score = 2.
Precision . Recall

Precision + Recall
,

where φ ≡siдn φ ′ means siдnature(φ) = siдnature(φ ′), and F1 score is the harmonic mean of the precision and
recall. To evaluate the performance of our technique using precision and recall, we enumerated 500 formulas using
our enumerative solver. For computing signatures, traces were chosen randomly from case studies. We added white
Gaussian noise with SNR = 2 to traces to make them expressive and discriminate enough for detecting equivalent PSTL
formulas. We also used 5 different random seeds and computed the average values of performance metrics. The result
shows that recall is always equal to 1. This means signature can detect all equivalent PSTL formulas with the same
parameters. However, the precision changes with respect tom and n. The average change of F1 score with respect to
m for fix n = 10 is shown in Fig. 1. As figure shows, F1 score almost increases by increasingm. Form = 5 andm = 9
F1 score decreases which is due to the nature of added white Gaussian noise. Similarly, change of F1 score with respect
to n for fixedm = 10 is illustrated is Fig. 2. The overall trend of the plot is increasing except for n = 9, where F1 score
decreases and, the reason for that is the added white Gaussian noise to traces.

Using the idea of signatures reduced the computation time in targeted case studies; the summary of the results
are shown in Table 1. As Table 1 shows, the computation time difference before and after optimization is noticeable,
yet, it is at best 30%. The reason is that the enumerative solver produces simple PSTL classifiers in 5 case studies, and
until reaching those PSTL classifiers, only a few formulas with equivalent signatures are enumerated. For producing
complicated classifiers, the difference would be more noticeable. The run time of signature-based optimization increases
Manuscript submitted to ACM
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Fig. 2. Change of F1 score with respect to the number of random traces (n) for fixed number of sample parameters (m=10).

Case Before After
optimization (s) Optimization (s)

Maritime Surveillance:
1st classifier 3903.02 2699.80
2nd classifier 53.78 48.73
3rd classifier 28.19 23.17
Linear system 44.25 39.05
Cruise control of train 35.84 32.31
PID controller 158.70 126.66

Table 1. Optimization using signature

with the number of m and n. In future work, we plan to exploit (obvious) syntactic structural equivalences to further
prune the space of equivalent formulas. In general, this will require a canonical representation of an STL formula, which
can be an expensive step.

5 LOGICAL CLASSIFICATION

Next, we explain how to learn a logical and interpretable classifier for binary classification of time-series data. Extension
to multi-class classification is feasible using pairwise classifications (e.g. Maritime Surveillance case study in section 6).
We assume that we are given two sets of traces X 0 (those with label 0) and X 1 (those with label 1). The main steps in
Algo. 2 are as follows:

The function isNew checks whether the PSTL formula φ produced by Algo. 1 is heuristically equivalent to an existing
formula. Internally, this is done by checking if the signature of the new formula is identical to the signature of an
existing formula in the database of formulas, i.e. DB. In the next step, algorithm tries to obtain a point on the satisfaction
boundary of the enumerated formula φ(p) that results in a formula that serves as a good classifier. To explain this
procedure further, we first recall the algorithm to approximate the satisfaction boundary of a given formula φ(p).
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10 Mohammadinejad et al.

Algorithm 2: Logical classification

Input: φ,X 0,X 1,δ , threshold,DB
1 if isNew(φ) then
2 while boundaryPrecision < δ do

// Selects a candidate point on satisfaction boundary

3 ν∗(p) ← pointOnBoundary(φ,X 1);
// Replaces candidate point on satisfaction boundary in φ

4 φ∗ ← φ(ν∗(p));
// Compute Boolean satisfaction for traces with label 0 and 1

5 f alsePos ← |
{
x | x ∈ X 0 ∧ x ⊨ φ∗ |

}
;

6 trueNeд← |
{
x | x ∈ X 1 ∧ x ⊭ φ∗ |

}
;

7 MCR ← (f alsePos + trueNeд)/(|T 0 | + |T 1 |);
8 if MCR < threshold then return φ,MCR ;

9 Function isNew(φ):
10 Sφ ← computeSiдnature(φ);

// Compare signature with formula signatures in the database

11 if Sφ ∈ DB then return f alse ;
12 else

// Add signature to database

13 Add(DB,φ, Sφ );
14 return true;

15 Function computeSiдnature(φ):
// Randomly choose n traces

16 Xn ← selectRandom(X 0,X 1,n);
// Randomly sample m parameter values from parameter space

17 DPm ← sampleRandom(DP ,m);
18 for j ← 1 tom do
19 φm ← setParams(φ,DPm (j));
20 for i ← 1,n do
21 Sφ (i, j) ← ρ(φm ,Xn (i), 0);

First, we recall from [29] that the satisfaction boundary of a formula φ(p)with respect to a set of tracesX is essentially
the set of parameter valuations ν (p) where the robustness value of φ(ν (p)) for at least one trace is 0, i.e. the formula is
marginally satisfied by at least one trace in X .

In general, computing the satisfaction boundary for arbitrary PSTL formulas is difficult; however, for formulas in the
monotonic fragment of PSTL [29], there is an efficient procedure to approximate the satisfaction boundary [20]. The
procedure in [20] recursively approximates the satisfaction boundary to an arbitrary precision by performing binary
search on diagonals of sub-regions within the parameter space. The idea is that in anm-dimensional parameter space, a
parameter valuation on the diagonal corresponds to a formula with zero robustness value. This point subdivides the
parameter space into 2m distinct regions: one where all valuations correspond to formulas that are valid over all traces,
one where all valuations correspond to formulas that are invalid, and 2m − 2 regions where satisfaction is unknown.
The algorithm then proceeds to search along the diagonals of these remaining regions. This approximation results in a
Manuscript submitted to ACM
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Fig. 3. Method to recursively approximate satisfaction boundary to arbitrary precision δ . Green arrows indicate the monotonicity
direction (both decreasing).

series of overlapping axis-aligned hyper-rectangles guaranteed to include the satisfaction boundary [29]. More details
of this procedure can be found in [20]. We visualize an instance of the method in Fig. 3.

We combine the procedure from [20] with a classification algorithm as follows. In each recursive iteration of the
multi-dimensional binary search, the algorithm identifies a point on the satisfaction boundary of φ(p) with respect to
the 1-labeled traces, i.e. X 1. Let this point be denoted ν∗(p), and the resulting STL formula φ(ν∗(p)) be denoted as φ∗

in short-hand. We then check the Boolean satisfaction of φ∗ on the traces in X 0. The misclassification rate (MCR) is
computed as follows:

MCR =
|
{
x | x ∈ X 0 ∧ x ⊨ φ∗

}
| + |

{
x | x ∈ X 1 ∧ x ⊭ φ∗

}
|

|X 0 | + |X 1 |
.

If MCR is less than the specified threshold (threshold = 0.1 in our implementation), the algorithm terminates, and
φ∗ is returned as the binary STL classifier for traces X 0 and X 1. Otherwise, the algorithm goes to the next recursive
computation of a boundary point (in another region of the parameter space). If the size of the parameter-space sub-region
being searched (denoted by the variable boundaryPrecision in Algo. 2) exceeds a user-specified δ , the algorithm returns
control to Algo. 1, which proceeds to enumerate the next PSTL formula for consideration.

Algo. 1 continues execution until a PSTL classifier φ with MCR < threshold is found or the length of enumerated
PSTL formula exceeds the maxLength defined by user, which means no PSTL classifier with MCR < threshold can be
found.

6 CASE STUDIES

To evaluate the new framework, we apply our method on various case studies from the automotive and transportation
domains1. The results show that the employed technique has a number of advantages compared to previous methods.
The software to reproduce the following results is available at : https://github.com/saramohammadinejad/learningSTL.

Maritime Surveillance. We first consider the Maritime surveillance problem presented in [5] to compare our inference
technique with their Decision Tree tool (DTL4STL) [5]. The synthetic data set employed in [5] is 2-dimensional
and consists of one normal and two types of anomalous trajectories. In order to make a fair comparison, we used
the exact data set from [5], as illustrated in Fig. 4. We used 100 traces for training and, 100 traces were reserved
for testing. Our enumerative solver could learn three STL formulas to classify three kinds of trajectories. The STL
formula learned to classify normal traces (green traces) from two kinds of anomalous traces (red and blue traces)
is (y(t) ≥ 19.7398)U[0,49.2247](x(t) ≤ 24.8640) with training MCR = 0.01 and testing MCR = 0.05. The total training
time is 2699.80 seconds (with signature) and 3903.02 seconds (without signature). Hence, signature-based optimization

1We run the experiments on an Intel Core-i7 Macbook Pro with 2.7 GHz processors and 16 GB RAM. While there are platform differences between our
experiments and [5] and [16], our results give comparable or favorable runtimes.
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could improve the training time for above 30 %. The STL formula learned to classify red traces from the others is
F[0,10.9071](y[t] ≤ 28.8430) (training MCR = 0.01, testing MCR = 0.02, training time = 48.73 seconds(with signature)
and 53.78 seconds (without signature)). Finally, our enumerative solver could classify blue traces from the others with
training and testing MCRs equal to 0 and 0.02, respectively. The learned STL formula is G[0,60](x[t] ≥ 36.3260) with
training time of 23.17 seconds (with signature) and 28.19 seconds (without signature). The simplest STL formula learned
by DTL4STL [5] to classify green traces from the others is:

φ = (φ1 ∧ (¬φ2 ∨ (φ2 ∧ ¬φ3))) ∨ (¬φ1 ∧ (φ4 ∧ φ5))

φ1 = G[199.70,297.27)(F[0.00,0.05)(x[t] ≤ 23.60)

φ2 = G[4.47,16.64)(F[0.00,198.73)(y[t] ≤ 24.20)

φ3 = G[34.40,52.89)(F[0.00,61.74)(y[t] ≤ 19.62)

φ4 = G[30.96,37.88)(F[0.00,250.37)(x[t] ≤ 36.60)

φ5 = G[62.76,253.23)(F[0.00,41.07)(y[t] ≤ 29.90)

with the average misclassification rate of 0.007. This STL formula is long and complicated compared to the STL formula
φдr een learned by our framework. Thus, [5] achieves better MCR, at the price of a highly uninterpretable formula.
Our technique considers the space of all PSTL formulas in increasing order of complexity which results in simple and
interpretable STL classifiers. However, DTL4STL tool [5] is only restricted to eventually and globally as PSTL templates
which is the reason for generating long and complicated STL classifiers.

STL classifiers for higher-dimensional signals will be more complicated and hence less interpretable. In future work,
we will consider dimensionality reduction techniques like PCA or ICA to first identify the important dimensions. An
inherent advantage of systematic enumeration is that we encounter formulas in increasing order of complexity, thereby
learning from as few features as possible. For instance, in this case study, two of learned formulas only use 1 out of 2
available features.

Linear System. We now compare our technique with another supervised learning technique, and for a fair comparison,
we use the same models as [16]. In [16], the authors use the following dynamic system model to benchmark the
performance of their supervised learning procedure.

Ûx =


0.03 · x +w, attack = 0 or normal

−0.03 · x +w, attack = 1 or anomaly
(5)

Here, y(t) = x(t) is the observation, andw(t) is a white noise with 0.04 variance. The system was modeled in Simulink
and interfaced with Breach [6] to simulate the data. We generated 100 time-series traces of the system for the two
different system modes, resulting in a total of 200 time-series traces. Fig. 5 shows the results of simulation. Green traces
represent normal behaviors (absence of attack), and red traces represent the behavior of the system under attack. 50%
of the data was split for training (50 normal and 50 anomaly), and the remaining data was reserved for testing. The
enumerative solver was trained and tested on this data to extract an STL formula. The dashed blue line in the figure
shows the threshold (=0.9736) of the learned formula: G[0,3](x(t) ≥ 0.9736). This is a simpler formula compared to
the one obtained in [16], which is F[0,3.0)(G[0.5,2.0)(y > 0.9634)). Our procedure takes 39.05s (with signature-based
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Fig. 4. Naval surveillance data set [5] (Green traces: normal trajectories, red and blue traces: two kinds of anomalous trajectories and
dash lines: the thresholds of the STL learned by enumerative solver (= 36.3260, 28.8430 )).

Fig. 5. Simulation results of the linear system (Green traces: normal operation of the system, red traces: anomalous behavior of the
system and dash line: the threshold of the STL learned by enumerative solver (= 0.9736)).

pruning) and 44.25s (without signatures) with trainingMCR = 0 and testingMCR = 0.02, while theMCR for training
and test is 0 and 0.01 in [16]. Hence, We learn a simpler formula with comparable accuracy.

Cruise Control of Train. We also benchmark an example for cruise control in a train from [16]. The system consists
of a 3-car train, where each car has its own electronically-controlled pneumatic (ECP) braking mechanism. The velocity
of the entire train is modeled as a single system. Hence, there are a total of 4 models (1 for velocity + 3 for braking in each
car). The train system is constructed as a hybrid system/automata model, having continuous and discrete transitions
for the velocity system, dynamics shown in Figure 6. Similarly, the ECP braking system of each car is modeled as a
hybrid system, with its dynamics shown in Figure 7.

The definitions of the parameters used in the above train cruise control models are as follows:
Manuscript submitted to ACM
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Fig. 6. Train velocity system.

Fig. 7. ECP braking subsystem of each train car.

• t represents the time instance.
• v(t) is the velocity at time instant.
• c1 and c2 are clock variables to maintain a counter.
• i is the number of brakes engaged, and is an integer in the interval [0, 3].
• vmax andvmin are the upper and lower velocity limits, respectively. In our experiments, we usevmax = 28.5m/s ,
vmin = 20m/s .
• Qv1,Qv2 and Qv3 represent the different velocity states. Qb1,Qb2,Qb3,Qb4 and Qb5 are the braking states. Qb5
state is entered when there is an attack on the system, in which case, the number of brakes engaged is 0.
• n1 ∼ N (0, 1), n2 ∼ N (0, 0.1), n3 ∼ N (0, 0.3), n4 ∼ N (0, 3) and n5 ∼ N (0, 3) are the Gaussian noise variables.

The observations/readings of the train velocity is assumed to be noisy. The cruising speed of the train is set to 25m/s
and the train oscillates about this speed by ±2.5m/s . Under normal conditions, the train maintains the cruising speed
and applies its brakes when the speed exceeds a threshold/upper limit. In an anomalous situation (or attack), all the
brakes fail to engage and hence the train fails to maintain its speed within the desired/set limits. The velocity parameters
were set to be in the interval [0, 30]m/s . For this system, we generated data from 200 simulations (100 for normal and
Manuscript submitted to ACM
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Fig. 8. Simulation results of cruise control of the train (Green traces: normal operation, red traces: anomalous behavior and dash line:
the threshold of the STL learned by enumerative solver (= 35.8816)).

100 for anomaly behavior). The time-series data corresponding to the simulations is shown in Fig. 8, in which the green
traces represent normal behaviors, while red traces represent anomalies. Since Breach [6] could possibly choose a low
initial velocity during an anomaly situation, a very low percentage of the traces tend to exhibit normal behaviors, as
seen from the figure. Similar to our previous approaches, the data was split 50% (50 normal and 50 anomaly traces) for
training and the rest for testing.

We applied our solver to extract the STL formula: G[0,100](x(t) < 35.8816), where the threshold learned by our
solver is 35.8816 (shown by the dashed blue line in the figure). The MCRs for training and testing are 0.05 and 0.02
respectively. The STL formula obtained by our approach is simpler compared to the one extracted in [16], which is:
F[0,100)(F[10,69)(y < 24.9) ∧ F[13.9,44.2)(y > 17.66))) withMCR = 0. The execution time of our approach is 32.31s (with
signatures) and 35.84s (without signatures).

PID controller. Given a deterministic system S(t) and a specification ϕ, the goal is to mine the subset of initial states
or inputs that ensure satisfaction of an STL formula φ on the output of the model. In other words, we want to know
what STL formulas do the inputs satisfy that guarantee that the outputs will be desirable. In our experiments, we try to
learn the STL formulas that separates good inputs from bad inputs. For our experiment, we consider a PID controller for
a damped second-order continuous system. The desired output of this system is to observe that the output has settled
or is oscillating. We use 31 input traces with periods: 10, 12, 14, ..., 70 and their negations. The traces are shown in Fig. 9.
For oscillating outputs, the STL formula learned by the solver is: G[0,368](F[0,21](x[t] ≥ 1)). It means for periods below
21 × 2 = 42, the output does not settle. This is to be expected, as this period is less than the settling time of the system.
The time required for learning is 126.66s (with signatures) and is 158.70s (without signatures) with both training and
testingMCR = 0.

7 RELATEDWORKS

There has been considerable recent work on learning STL formulas from data for various applications such as supervised
learning [5, 9, 18, 24], clustering [28, 29], or anomaly detection [16].
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Fig. 9. PID controller (red: bad input leads to undesirable output, green: good input leads to desirable output).

In [18], a fragment of PSTL (rPSTL or reactive parametric signal temporal logic) is defined to capture causal
relationships from data. However, there are some temporal properties namely, concurrent eventuality and nested always

eventually that cannot be described directly in rPSTL. In [16], the authors extend [18] by using a fragment of rPSTL,
inference parametric STL (iPSTL), that does not require a causal structure. In this work, classical ML algorithms
(one-class support vector machines) are applied for unsupervised learning problem. In [5], a decision tree based method
is employed to learn STL formulas, which creates a map between a restricted fragment of STL and a binary decision tree
in order to build a STL classifier. While this seminal work has advanced work in the intersection of formal methods and
machine learning, one disadvantage of these approaches has been that they lead to long formulas which can become an
issue for interpretability.

The work by Nenzi et al. [24] uses genetic algorithms to learn the STL formula structure, where longer formulas are
obtained in a new generation by combining formulas from a previous generation. While this procedure is able to learn
interesting formulas, a key difference is that it does not guarantee that the shortest formula will be learned, and does
not check for equivalent formulas (beyond what is encoded by the fitness function of the GP algorithm). In the area
of learning programs using genetic programming, grammars are used for delineating the search space and avoiding
unproductive search in infeasible regions [10, 23, 30].

The closest work to our approach appears in [9], where the authors propose a similar systematic enumeration of all
parametric formulas. In this recent work, the authors discuss the problem of online monitoring and formula synthesis
for a past fragment of STL. However, the proposed work in [9] does not use signature-based optimization to prevent
enumerating repeated formulas; this is one of the key contributions of our paper. Furthermore, [9] assumes a past-only
fragment of STL, while our technique allows future operators. Finally, [9] does not provide details on how parameter
valuations are explored, except for language indicating a grid-based parameter space exploration. We use a systematic
procedure to do this: we compute the validity domain boundary of the enumerated PSTL formula in an on-the-fly and
on-demand fashion. I.e., we use a multi-dimensional binary search procedure to estimate the validity domain boundary;
however, we do not have to compute the boundary to a given precision. As we explore parameter valuations on the
validity domain boundary, our procedure terminates when it encounters sufficiently low misclassfication rate for a
given valuation. This allows us a more systematic and efficient exploration of the parameter space.
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TeLEx [12] is a novel technique that addresses the problem of learning STL formulas from just positive example traces.
A novel technique is proposed to automatically learn the structure of the STL formula by incrementally constructing
more complex formula guided by the robustness metric of subformula. However, in spite of systematic enumeration
technique, this method does not guarantee to learn the simplest STL formulas.

In template-based techniques, a fixed PSTL template is provided by the user, and the techniques only learn the
values of parameters associated with the PSTL. In [28], a total ordering on parameter space of PSTL specifications is
utilized as feature vectors for learning logical specifications. Unfortunately, recognizing the best total ordering is not
straightforward for users. In [29], the authors eliminate this additional burden on the user by suggesting a method that
maps timed traces to a surface in the parameter space of the formula, and then employing these curves as features. In
[15], the input to the algorithm is a requirement template expressed in PSTL, where the traces are actively generated
from a model of the system.

Our proposed technique, which uses systematic enumeration, can produce smaller formulas which may be more
human-interpretable, and with higher accuracy(≥ 95% in all investigated case studies).

8 CONCLUSION

We proposed a new technique for multi-class classification of time-series data using Signal Temporal Logic formulas.
The key idea is to combine an algorithm for systematic enumeration of PSTL formulas with an algorithm for estimation
of the satisfaction boundary of the enumerated PSTL formula. We also investigate an optimization using formula
signatures to avoid enumerating equivalent PSTL formulas. We then illustrate this technique with a number of case
studies on real world data from different domains. The results show that the enumerative solver has a number of
advantages. As future work, we will extend this approach to unsupervised, semi-supervised, and active learning. We
will also investigate other optimization techniques to make the enumerative solver faster and more memory-efficient.
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