
Nondeterministic Streaming String Transducers?

Rajeev Alur and Jyotirmoy V. Deshmukh

Dept. of Computer and Information Science,
University of Pennsylvania.
{alur,djy}@cis.upenn.edu

Abstract. We introduce nondeterministic streaming string transducers
(nssts) – a new computational model that can implement MSO-definable
relations between strings. An nsst makes a single left-to-right pass on
the input string and uses a finite set of string variables to compute the
output. In each step, it reads one input symbol, and updates its string
variables in parallel with a copyless assignment. We show that the expres-
sive power of nsst coincides with that of nondeterministic MSO-definable
transductions. Further, we identify the class of functional nsst; these al-
low nondeterministic transitions, but for every successful run on a given
input generates the same output string. We show that deciding function-
ality of an arbitrary nsst is decidable with pspace complexity, while the
equivalence problem for functional nsst is pspace-complete. We also
show that checking if the set of outputs of an nsst is contained within
the set of outputs of a finite number of dssts is decidable in pspace.

1 Introduction

In this paper, we introduce nondeterministic streaming string transducers (nssts).
A run of such a transducer processes an input string in a single left-to-right pass
in linear time, and computes an output string. The nondeterminism of an nsst
allows it to produce different outputs for different runs on an input string. Thus,
an nsst is a natural model for implementing relations between strings.

Classical literature on string-to-string transductions largely focusses on finite-
state transducers that realize rational relations [13]. At each step such a trans-
ducer reads an input symbol and writes zero or more symbols to the output.
These transducers and their many variations have been extensively studied in
the literature. If restricted to a single left-to-right pass over the input, i.e., to
their streaming versions, the expressive power of finite transducers is limited.
For example, they can implement transductions such as inserting a symbol in
an input string and deleting a substring of the input string, but they cannot
implement transductions such as reversing an input string or the swapping two
substrings within an input string.

Deterministic streaming string transducers (dssts), first introduced in [1, 2],
in addition to all transductions implemented by deterministic finite transducers,

? This research is partially supported by NSF award CCF 0905464 and by the CCC-
CRA Computing Innovation Fellows project.

can implement transductions such as reversing a string and swapping substrings.
A dsst reads the input in a single left-to-right pass. In addition to a finite set of
states, it has a finite set of string variables that it uses to produce the output.
In each step, a dsst reads an input symbol, changes its state, and concurrently
updates all its string variables in parallel using a copyless assignment. The right-
hand-sides (RHS) in a copyless assignment consist of a concatenation of string
variables and output symbols, with the restriction that in a parallel assignment,
a variable can appear at most once across all right-hand-sides.

A dsst that reverses a string can be defined with a state q, and a string
variable x. In each step, if it reads the symbol a, it executes the assignment
[x := a.x]. At the end of its computation, x contains the string that is the reverse
of the input string. Consider the transformation that maps a string w = l,m f
to the string f m l, (here l, m and f respectively denote strings corresponding
to some last, middle, and first name, and ‘ ’ denotes a single space). A dsst
with two string variables x and y can implement this transduction. It stores the
substring till the comma (l) in x, and stores the subsequent string (m) till it sees
the space in y. It then sets y to y. .x, resets x to the empty string, and stores
the remaining substring (f) in x. It finally outputs the string x. .y.

Compared to their deterministic counterparts that implement partial func-
tions between strings, nondeterministic finite transducers (nfts) can implement
relations between strings; for example, mapping a string to all its substrings.
However, nfts lack the expressiveness to implement transductions such as (1)
mapping a string w to all strings w′ obtained by swapping some prefix and suffix
of w, (2) mapping w to all strings w′ = p.rev(m).s, where w has the form p.m.s
(where p, m and s are substrings of w), and rev(m) denotes the reverse of m1.

In addition to all transductions realized by nfts, nssts can implement both
of these transductions. The first transduction is implemented by an nsst with
two string variables x and y. It nondeterministically chooses some prefix p to
store in x and some substring m to store in y. It then sets y to y.x, resets x, sub-
sequently copies the remaining input s to x, and finally outputs x.y. The second
transduction is implemented by an nsst that copies some prefix p (chosen non-
deterministically) to x, and uses y to compute rev(m) for a nondeterministically
chosen m. It then sets x to x.y, subsequently appends the remaining input s to
x, and finally outputs x.

The organization of the paper is as follows: After defining the nsst model
in Sec. 2, we characterize the expressive power of nssts in Sec. 3. We show
that the expressive power of nssts is equivalent to that of nondeterministic
MSO-definable transductions. We then compare both nssts and ε-nssts– an
extended model that allows ε-transitions – with classical models such as two-way
nondeterministic generalized sequential machines. In Sec. 4, we explore decision
problems for nssts and their subclasses. An interesting and robust subclass of
nssts is that of functional nssts: these can have multiple runs on a given input

1 For a given prefix p and a given suffix s, the transformation from p.m.s to p.rev(m).s
is well-known as the inversion operator for a string representation of a chromosome
[11]. Thus, this transduction generates all inversions of a string.

2

string, but the output produced in each run is identical. We show that checking
whether an nsst is functional is decidable in pspace, and show that checking
equivalence of functional nssts is pspace-complete.

In [2], the authors show how dssts can be viewed as natural models for
a class of sequential heap-manipulating programs, and reduce the verification
problem for such programs to decidable problems for dssts. A key application
for nssts would be in understanding the theoretical limits of the verification
problems for concurrent heap-manipulating programs. Here, we wish to verify if
the set of behaviors of the concurrent program (say m1 ‖ m2) is a subset of the
set of behaviors engendered by some sequential execution of the programs m1

and m2. For instance, checking linearizability of a set of methods often entails
such a check. With this goal in mind, we show that checking if the set of outputs
of an nsst is contained within the set of outputs generated by a fixed number
of dssts is decidable with pspace complexity.

2 Transducer Models

In this section, we introduce definitions related to transductions, review existing
models for specifying transductions, and formally define nssts. We observe the
following convention: the letters R and W denote transductions, and the letters
T , D denote the transducers implementing transductions.

Transduction. A transduction R from a finite input alphabet Σ to a finite output
alphabet Γ is a subset of Σ∗ × Γ ∗. A transduction is deterministic if for every
x ∈ Σ∗, there is at most one y such that (x, y) ∈ R, i.e., R is a partial function.
Otherwise, we say that the transduction is nondeterministic. Given an input
x ∈ Σ∗, we use R(x) to denote the set {y | (x, y) ∈ R}.

Valuedness. A transduction is called finitary if for every x ∈ Σ∗, the set R(x) is
finite. A transduction R is said to be k-valued for a given constant k, if the fol-
lowing holds: ∀x∈Σ∗ : |R(x)| ≤ k. A transduction is said to be bounded-valued
if there exists some constant k such that R is k-valued. A 1-valued transduction
is also called a functional transduction. A transduction is called bounded-length
if there exists a constant k such that for all x ∈ Σ∗ and for each y in R(x),
|y| ≤ k.|x|. Note that a bounded-valued transduction is obviously finitary, while
every bounded-length transduction is also finitary: for a constant k, and a given
input x, there are finitely many strings of length k.|x|.

Example 2.1. Consider the transduction Rcp ⊆ {a}∗ × (Γ ∪ {#})∗ defined as
the set {(an, w#w)|n ≥ 0, w ∈ Γ ∗, |w| = n}. Rcp maps an input an to a string
containing two identical copies of some output string of length n, separated by
#. As there are only finitely many strings of length n, Rcp is finitary. Further,
note that Rcp is bounded-length: for an input of length n, the output length is
(2.n+ 1). However, Rcp is not bounded-valued as the number of output strings

for an input of length n is |Γ |2n.

3

Example 2.2. Consider the transduction Rmult ⊆ Σ∗ × Σ∗ defined as the set
{(w,wm) |m ≥ 1, w ∈ Σ∗}. Rmult is nonfinitary, as it maps the input string w
to the set of all multiples of the string w. Clearly, Rmult is neither bounded-
valued nor bounded-length.

Relational or Sequential Composition. Similar to [7], we use R1 ◦ R2 to de-
note the composition of transductions R1 and R2 (note the order): R1 ◦ R2 =
{(w1, w3) | ∃w2 : (w1, w2) ∈ R1 ∧ (w2, w3) ∈ R2}.

2.1 Background

We assume that each machine in the following discussion has finite input and
output alphabets Σ and Γ respectively. Each machine reads words from Σ∗, and
outputs words in Γ ∗. We use the notation JMK to define the semantics of M : for
an input string w ∈ Σ∗, JMK(w) defines the set of outputs of M on input w.

Finite Transducers. A finite sequential transducer (denoted as nft) is a finite-
state device that has a one-way read-only input tape and a one-way output tape.
It scans the input tape from the left to the right, and in each state it reads an
input symbol, writes a finite string to the output tape, changes its state, and
moves its reading head to the next position on the input tape. In each such step,
it can nondeterministically choose its next state and the output string that it
writes. The output of an nft is the string on the output tape if the nft finishes
scanning the input tape in some designated final state. Formally, we define an
nft T as the tuple (Q,Σ, Γ,E, q0, F) where Q is a finite nonempty set of states,
Σ and Γ are input and output alphabets, E is a set of transitions defined as
a finite subset of Q × (Σ ∪ {ε}) × Q × Γ ∗, the state q0 ∈ Q is an initial state,
and F ⊆ Q is a set of final states. An nft may contain transitions in which
the nft writes some output string or changes state without moving its reading
head. We call such transitions as ε-transitions, and a nft in which such moves
are disallowed is called a ε-free nft or a nondeterministic generalized sequential
machine (ngsm).

Two-way Machines. A two-way nondeterministic generalized sequential machine
(denoted 2ngsm) is a finite-state device with a two-way read-only input tape
and a one-way output tape. In each step, the machine reads an input symbol,
changes its state, writes a finite string to its output tape, and moves its input
head as per its finite-state control. The input head either does not move (denoted
by 0), or is moved to the left (−) or to the right (+). In each such move, it has
a finite number of nondeterministic choices for the next state, output string
written and the direction for moving its head. The string on the input tape is
assumed to be `wa, where ` and a (6∈ Σ) are special symbols known as the left
and right end-markers. The ngsm halts if it moves right from a, or left from `.
It is possible that the computation of the machine may not terminate; however,
only halting runs contribute to the output. The output of the machine is the
string on the output tape if the machine terminates in a designated final state.

4

Formally, a 2ngsm is specified as the tuple (Q,Σ, Γ,E, q0, F), where Q, Σ, Γ ,
q0 and F are defined as for finite transducers, while the set of transitions E is
defined as a finite subset of (Q×Σ ∪ {`,a} ×Q× {−, 0,+} × Γ ∗).

Determinism and Valuedness. The definition of determinism is the standard
one: no two distinct transitions starting in a state q have the same input symbol
symbol a. The deterministic versions of the machines defined above are denoted
as dft, dgsm, and 2dgsm. The transductions implemented by a dft, a dgsm
and a 2dgsm are obviously 1-valued (and thus finitary). Further, these trans-
ductions can also be shown to be bounded-length, as on an input of length n,
these machines take at most n steps, and each step contributes a constant num-
ber of symbols to the output. In an ngsm, there are only finitely many paths
corresponding to each input string, and the length of output along each such
path grows proportional to that of the input. Thus, the transductions imple-
mented by an ngsm are bounded-length (and thus finitary) as well. However,
note that the transductions implemented by an ngsm are not bounded-valued in
general. The transductions implemented by nft and 2ngsm are neither finitary
nor bounded-length.

MSO-definable String Transductions. String transductions can be described us-
ing Monadic Second Order logic [5, 7]. The input to such a transduction is a
string w = w1w2 . . . wk viewed as an input string graph Gi with k+1 vertices
v0, . . . , vk, where the label of each edge (vi, vi+1) is wi. The labels for the ver-
tices and the edges appearing in the output string graph are expressed in terms
of MSO formulas over a fixed number of copies of Gi. Formally, a determinis-
tic MSO-definable string transduction (dmsos) W is specified by2 : (1) a finite
copy set C, (2) for each c ∈ C, vertex formulas ϕc(x), which are MSO formulas
with one free first-order variable variable x, and (3) for each a ∈ (Γ ∪ {ε}),
c, d ∈ C, edge formulas ϕc,da (x, y), which are MSO formulas with two free first
order variables x and y. The output graph (Go) is defined as follows: for each
vertex x in Gi and c ∈ C, the vertex xc is in Go if the vertex formula ϕc(x) is
true, and for all vertices xc, yd, there is an edge (xc, yd) labeled by a if the edge
formula ϕc,da (x) is true. Finally, the output is defined as the string formed by the
sequence of symbols (other than ε) that are the obtained by reading the labels
of edges of the output graph Go in order. If Go is not a legal string graph the
output is undefined. In case of MSO-definable transductions, we use the notation
JW K(x) synonymously with W (x), where x is an input string.

The nondeterministic variant of MSO-definable string transductions is ob-
tained by adding free second-order variables X1, . . . ,Xn that range over sets of
vertices. The vertex and edge formulas in this case have these variables as addi-
tional arguments. To obtain the output string graph, a (global) valuation of the

2 We present a definition slightly modified from the one in [7]. For ease of exposition,
we omit specification of a domain formula ϕdom, as it can be included to be a part
of the vertex and edge formulas. We also allow edges in the output graph to be
labeled with the empty string ε. It can be shown that such MSO-transductions are
equivalent to MSO-transductions that do not make use of ε-labels.

5

second-order variables X1, . . . ,Xk is chosen, and then the output string graph is
obtained as in the deterministic case. As the valuation for X1, . . . ,Xk is chosen
nondeterministically, there can be multiple possible outputs for a given input
string.

Example 2.3. Consider the transduction Rss = {(w, u#v)|u, v are subsequences
of w}, where u, v, w ∈ Σ∗, and #6∈ Σ. We define Rss as a nmsos transduc-
tion W by choosing the copy set C = {1, 2}, and two parameters X1 and
X2. We use the formula edgea(x, y) to denote that there is an edge labeled
a between vertices x and y, and the formula last(x) (resp. first(x)) to denote
that x is the last (resp. first) node in the input string graph. We now define
the edge formulas: ϕ1,2

(x, y,X1,X2) ≡ last(x) ∧ first(y), and, ∀j ∈ C,∀a ∈ Σ:
ϕj,ja (x, y,X1,X2) ≡ (x ∈ Xj) ∧ edgea(x, y), and ∀j ∈ C: ϕj,jε (x, y,X1,X2) ≡ (x 6∈
Xj)∧

∨
a∈Σ edgea(x, y). Intuitively, the second order variable X1 is used to guess

which positions of the original string contribute to u, while X2 independently
guesses which positions contribute to v. ut

Hennie Machines. A two-way machine with a writable input tape and a write-
only output tape is defined in similar fashion to a 2ngsm. The instructions of
such a machine M are of the form (q, σ/α, q′, γ), which means that in state q, M
reads the symbol σ from the tape, overwrites it with the symbol α, transitions
to the state q′ and writes the finite string γ to the output tape. Here, σ, α ∈ Σ,
where Σ is the tape alphabet, and γ ∈ Γ ∗, which is the output alphabet. A
computation of M is called k-visiting, if each position of the tape is visited at
most k times. A Hennie machine is such a two-way machine with the property
that there exists a constant k such that every computation of the machine is
k-visiting. The classes of string transductions realized by nondeterministic and
deterministic Hennie machines are denoted by nhm and dhm, respectively.

Example 2.4. Consider the transduction Rcp of Ex. 2.1. In [7], it is shown that
Rcp can be realized by an nhm moving in two left-to-right passes over the tape.
In the first pass, it nondeterministically overwrites the input string an with some
output string w, and also writes w to the output. It then scans backward to the
beginning of the (overwritten) input, writes # to the output, and copies the
contents of the input tape to the output a second time. The nhm is 3-visit. ut

2.2 Streaming String Transducers

Deterministic streaming string transducers (dsst) have been proposed as an
effective machine model for MSO-definable string transductions [2, 1]. A dsst
makes a single left-to-right pass over the input string mapping it to the output
string, while using a fixed set of string variables that can store strings over
the output alphabet. In each step, a dsst reads an input symbol a, changes
its state and updates all its string variables simultaneously using a copyless
assignment. The right-hand-side (RHS) of any assignment to a string variable is
a concatenation of output symbols and some string variables, with the restriction

6

that in a given parallel assignment, any string variable can appear at most
once across all the right-hand-sides. For instance, let X = {x, y} be the set
of string variables, and let α, β, γ ∈ Γ ∗ be strings of output symbols. Then,
the update (x, y) = (α.x.β.y.γ, ε) is a copyless assignment, as it contains only
one occurrence of x and y each. On the other hand, the assignment (x, y) =
(x.y, y.α) is not copyless as the variable y appears in the RHS twice. The two
main extensions to the dgsm model are that (1) dssts are not constrained to
add output symbols only at the end of the tape, and (2) they can compute
the output in multiple chunks that can be extended and concatenated (but not
duplicated) as needed.

We now present a nondeterministic extension of dssts: the class of non-
deterministic streaming string transducers (nssts). An nsst is defined as the
tuple (Q,Σ, Γ,X,E, q0, F), where Q is a finite nonempty set of states, Σ and
Γ are respectively the input and output alphabets, X is a finite set of string
variables with A as a set of copyless assignments to variables in X (mappings
α from X to (X ∪ Γ)∗ such that for any x ∈ X, x appears at most once in
the set {α(y) | y ∈ X}), E is a set of transitions that is a finite subset of
(Q×Σ×A×Q), q0 is an initial state, and F : Q→ (X ∪ Γ)∗ is a partial output
function such that for every q ∈ Q and x ∈ X, there is at most one occurrence
of x in F (q).

Semantics. We first make an observation: copyless assignments are closed under
sequential composition, i.e., if α1 and α2 are copyless assignments, the assign-
ment α1 ◦ α2 is also copyless. We define the semantics of an nsst in terms of
the summary of a computation of the nsst. For an nsst starting in state q
and processing the input string w, the summary is a set of pairs of the form
(α, q′), where α represents the effect of a sequence of copyless assignments to
the string variables, and q′ is a possible next state. Let id denote the iden-
tity assignment, i.e., it maps each x to x. We inductively define the sum-
mary ∆ as a mapping from Q × Σ∗ to 2A×Q, where: ∆(q, ε) = {(id, q)}, and
∆(q, w.a) = {(αw ◦ α, q′) | ∃q1, s.t. (αw, q1) ∈ ∆(q, w) ∧ (q1, a, α, q

′) ∈ E}.
A valuation of a string variable is defined as the function ν : X → Γ ∗, which

maps each variable to some string in Γ ∗. Such a valuation is extended to map
strings in (X ∪ Γ)∗ to Γ ∗ in a natural fashion. Let νε be the initial valuation,
where for all x ∈ X, νε(x) = ε. We define the semantics of an nsst T as the set
of outputs JT K(w) generated by T on input string w:

JT K(w) = {νε(αw◦F (q)) | (αw, q) ∈ ∆(q0, w) and F (q) is defined}.

We now illustrate the model using a couple of examples.

Example 2.5. The nsst Tss implementing the transduction Rss from Ex. 2.3 has
a single state q and uses two string variables x and y. For each input symbol a, it
nondeterministically decides to append a to x or y or both or none. Formally, the
transitions of Tss are of the form (q, a, (x, y) := (x.γ1, y.γ2), q), where γ1, γ2 ∈
{ε, a}. The output function is defined as F (q) = x.#.y. ut

7

Example 2.6. The nsst Tcp implementing the transduction Rcp from Ex. 2.1 has
a single state q and uses two string variables x and y. For each input symbol it
nondeterministically chooses an output symbol γ ∈ {a, b} and appends it to both
x and y, i.e., the set of transitions E = {(q, a, (x, y) := (x.γ, y.γ), q) | γ ∈ {a, b}}.
The output function is defined as F (q) = x.#.y. ut

Extensions and Subclasses. An nsst with ε-transitions (ε-nsst) can update its
string variables and change state without consuming an input symbol, i.e. E is
a finite subset of (Q× (Σ ∪ {ε})×Q×A). As we will see in Sec. 3, an ε-nsst is
more powerful than an nsst as it can implement nonfinitary transductions.

Lastly, we note some important subclasses of nssts, based on their valued-
ness. An nsst T is said to be k-valued, if the underlying transduction that it
implements is k-valued, i.e. for a given constant k, ∀w ∈ Σ∗, |JT K(w)| ≤ k. If
there exists some constant k such that T is k-valued, we say that T is bounded-
valued, and if k = 1, we say that the nsst is functional. A functional nsst has
the property that for any input string, all runs that end in a state q where F (q)
is defined produce the same output string. Thus, the transduction realized by
such an nsst is a partial function. Functional nssts are an interesting subclass
of nssts, as their decision problems have good algorithmic properties.

3 Expressiveness Results

In this section, we first characterize the expressive power of nssts and then
highlight some of the important properties of nssts. For classes of transductions
C1 and C2, we denote by C1 ⊆ C2 the fact that for every transducer T of type
C1, there is a transducer T ′ of type C2 such that JT K = JT ′K. We say that C1 is
equi-expressive to C2 if C1 ⊆ C2 and C2 ⊆ C1. The following relationships are
known: dmsos = 2dgsm [7], dmsos = dsst [1], nmsos 6⊆ 2ngsm and 2ngsm 6⊆
nmsos [7].

We begin by comparing the expressive power of nssts with respect to that
of existing models/machines for nondeterministic transductions such as nmsos-
transductions, ngsm, and 2ngsm.

3.1 Comparing nssts with existing models

Expressive power of ngsm vs. nsst. A ngsm is a nsst with a single string
variable (say x), and every transition is of the form (q, a, x := x.γ, q′), where
a ∈ Σ, and γ ∈ Γ ∗. Thus, ngsm ⊆ nsst.

Expressive power of nmsos vs. nsst. We now show that the the class of nssts
is equi-expressive to nmsos-transductions. We first show that for every nmsos
W , we can obtain a nsst T such that JW K = JT K. The key idea is that any
nmsos transduction can be expressed as the composition of a nondeterministic

8

string relabeling relation with a dmsos transduction, and that for each dmsos
transduction, there is an equivalent dsst3.

Lemma 3.1. nmsos ⊆ nsst.

Proof. Let W ⊆ Σ∗ × Γ ∗ be an nmsos transduction. We show the existence of
an equivalent nsst T that implements W .

A tranduction ρ ⊆ Σ∗1 × Σ∗2 is called a string relabeling if (ε, ε) ∈ ρ, and
there exists a relation R ⊆ Σ1 × Σ2 such that (a.w, b.w′) ∈ ρ if (a, b) ∈ R
and (w,w′) ∈ ρ. We recall a result from [7] that shows that for every nmsos
transduction W ⊆ Σ∗ × Γ ∗, we can find a string relabeling transduction ρ ⊆
Σ∗ × Σ∗1 and a dmsos transduction Wdet ⊆ Σ∗1 × Γ ∗ such that W = ρ ◦Wdet.
We note that from [1] we know that for every dmsos transduction from Σ1 to
Γ , there exists an equivalent dsst (say Tdet) that implements it.

Let R = Σ×Σ1. Now consider the transformation in which we replace every
transition of Tdet of the form (q, σ′, α, q′) by a set of transitions {(q, σ, α, q′) |
(σ, σ′) ∈ R}; let the resulting transducer be denoted by T . It is clear that T may
be nondeterministic, as the replacement transformation might cause transitions
labeled with distinct σ′ symbols to be labeled with the same σ.

For the above R, consider the string relabeling transduction ρ; it contains
all pairs of strings (u, u′) such that u ∈ Σ∗ and u′ ∈ Σ∗1 . Further, we know
that for each u′ input to Tdet, if (u′, w) ∈ JTdetK, then (u′, w) ∈ Wdet. Thus, for
each u ∈ Σ∗ and each w ∈ JT K(u), there exists a u′ such that (u, u′) ∈ ρ and
(u′, w) ∈ Wdet. In other words, T is an nsst that implements the transduction
ρ ◦Wdet, i.e., it implements W . ut

We now show that for every nsst T we can define a nmsos transduction
W such that JT K = JW K. In [1], the authors shows how a sequence of states
and copyless assignments of a dsst can be encoded in the copy set of a dmsos-
transduction. As a run of an nsst T is such a sequence of states and assignments,
it can also be encoded in the copy set of a dmsos-transduction. The key ideas
in this construction are: (1) Let nx = maxE |α(x)| (i.e. the maximum number
of output symbols added by any assignment to the string variable x). Then,
assignments to x can be encoded within a copy set that has at most nx+2 copies.
In any step, for each string variable x, we maintain a designated start vertex xb

and a designated end vertex xe for x, and the valuation of x (ν(x)) is obtained
from the string graph corresponding to the path beginning at xb and ending in
xe. This graph is linear and connected by construction. (2) Concatenation of

3 In the original version of this paper, we had a different proof that relied on nssts
being closed under sequential composition. However, the proof for closure under se-
quential composition had a bug that was pointed out to us by Joost Engelfriet in
personal correspondence. Further, he also pointed out that closure under sequen-
tial composition does not seem to be key for proving Lemma 3.1. Thus, the re-
vised proof does not use the closure property. Once we independently establish that
nmsos-transductions and nsst are equi-expressive, closure under sequential compo-
sition follows from the fact that nmsos-transductions are closed under sequential
composition (Theorem 3.3).

9

string variables, say x := x.y, is encoded by adding an edge between xe and yb.
(3) A state of the streaming transducer can be encoded by an MSO-formula on
the input graph (these formulas essentially capture the next-state function). (4)
The output is defined if the output graph – the sequence edges beginning in the
start vertex for the output and concluding in the end vertex – is a string graph.

Lemma 3.2. nsst ⊆ nmsos.

Proof. Recall that a nmsos transducer W has a finite copy set C, and a finite
set of parameters X = {X1, . . . ,Xm}, i.e., second order variables ranging over
sets of vertices. This proof combines two main ideas: (a) a given run of a nsst
T can be encoded in the finite copy set of a nmsos transducer W , and, (b) each
run of T can be guessed by W by guessing a valuation for its parameters. The
construction for part (a) is as discussed, for details see [1]. We focus on part (b).

As T is nondeterministic, there may be multiple transitions on a given input
symbol that are enabled in a state q. However, as the assignment in each transi-
tion is a copyless assignment over the same set of string variables, the copy set
required is the same as that for encoding a single run. However, different runs
may label an edge in the copy set with different labels.

To make the nmsos transduction W mimic a single run of T , we add param-
eters that consistently choose among the different labels available for a given set
of edges. Let the maximum number of transitions of T from any state q on any
input symbol a be d. Then, W uses the set of parameters X = {X1, . . . ,Xd}.
Intuitively, the jth nondeterministic transition of T is chosen by W if the corre-
sponding vertex of the input graph is present in the valuation chosen for Xj by
W . Choosing the jth transition fixes a particular assignment αj to each string
variable v. Now for each edge formula ϕi,ja (x, y) that encodes the action of αj ,
we define ϕi,ja (x, y,X1, . . . ,Xd) = ϕi,ja (x, y) ∧ (x ∈ Xj). We can similarly encode
the next state function in terms of the parameters.

We also assume that each of the vertex and edge formulas is conjoined with
a domain formula that specifies that for any vertex x ∈ Gi, x is contained in at
most one Xj in a given valuation, and the union of all Xj covers the set of all
vertices of the input graph4. In other words, using the parameters in X , W first
guesses a possible sequence of choices at each state in T , and then encodes that
sequence using the copy set and next-state relations (which are MSO-formulas as
in the deterministic case). It is obvious that the number of parameters required
is at most d, and thus finite. ut

From Lemmas 3.2 and 3.1, we can conclude that nssts are equi-expressive
to nmsos-transductions, formalized in Theorem 3.1 below.

Theorem 3.1. nsst = nmsos.

4 It further ensures the technicality that if the number of outgoing transitions of T
corresponding to a particular state and input symbol is d′, where d′ < d, then in
this case, all Xj where j > d′ always evaluate to the empty set.

10

Comparing ε-nssts with existing models. We now investigate the expressive
power of ε-nssts, i.e., nssts that are allowed transitions without consuming
any input symbol. The expressive power of ε-nssts is greater than that of nssts:
consider an ε-nsst in which there is a state q reachable from the initial state q0
on the input string w, and q has an ε-loop (a cycle with only ε-transitions) that
adds some symbols to the output. The set of outputs for any input with w as its
prefix is infinite, as the ε-nsst can cycle through the ε-loop an infinite number
of times. Thus, the transduction realized by a general ε-nsst is nonfinitary.

If we restrict ε-nssts so that they are ε-loop-free, then we can show that the
class of such transducers coincides with nssts. The proof uses a construction
similar to the one used for eliminating ε-transitions in NFAs: a finite sequence of
transitions of the form (q1, ε, α1, q2), . . ., (qn, ε, αn, qn+1), (qn+1, a, β, q

′) can be
replaced by the single transition: (q1, a, α1 ◦ . . .◦αn ◦β, q′). Since the transducer
is ε-loop-free, an infinite sequence with ε-transitions does not exist.

We now compare ε-nssts with 2ngsms. Though both classes can implement
nonfinitary transductions, we show that their expressive power is incomparable.
We first note that nmsos 6⊆ 2ngsms [7], and as nsst = nmsos (Theorem 3.1),
and nsst ⊆ ε-nsst, we have that ε-nsst 6⊆ 2ngsm, i.e., there are transductions
implemented by nssts and ε-nssts that cannot be implemented by 2ngsms. We
further show that 2ngsm 6⊆ ε-nsst, by an example transduction that can be
realized by a 2ngsm but cannot be realized by an ε-nsst. A similar example
is used in [7] to show the incomparability of nmsos with 2ngsm; however, the
argument used therein is not applicable in our setting, as the transductions
realized by both 2ngsms and ε-nssts are nonfinitary.

Theorem 3.2. The transduction Rmult = {(w,wm) |m ≥ 1, w ∈ Σ∗} can be
realized by a 2ngsm, but cannot be realized by an ε-nsst.

Proof. The 2ngsm implementing the transduction Rmult has three states q, qb
and halt. It starts in state q scanning the input `wa from left to right, simul-
taneously copying it to the output. Upon reaching a, it either transitions to the
state halt and moves right from a, or transitions to qb and scans the input from
right to left without producing any output. Once it reaches `, it transitions back
to the state q.

We note that Rmult is a nonfinitary transduction. If there is a ε-nsst Tε that
implements it, it must have a ε-loop on some state q that is reachable from the
initial state q0. We denote the summary of Tε for the ε-loop by ∆(q, ε-loop).
Suppose ∆(q, ε-loop) = (β, q). Let u, v ∈ Σ∗ be substrings of w such that u.v =
w, u is the input that drives Tε from q0 to q, and v is the input that drives
Tε from q to some state q′ (possibly the same), where F (q′) is defined. Now let
∆(q0, u) = (α1, q), ∆(q, v) = (α2, q

′). Then ∆(q, w) is the set {(α1 ◦α2, q
′), (α1 ◦

β ◦ α2, q
′), (α1 ◦ β ◦ β ◦ α2, q

′), . . .}.
Suppose the number of symbols added to the output by α1 is t1, by β is t,

and by α2 is t2. Then the lengths of the outputs of Tε in state q′ are t1 + t2,
t1 + t+ t2, t1 + 2.t+ t2, and so on. However, Rmult requires that for any input
w, each of the outputs have length that is a multiple of |w|. This is possible

11

only if t1 = t2 = 0 and t = |w|. However, t is a fixed number for a given ε-loop,
and independent of the input w. Thus, once we fix Tε, it will produce incorrect
outputs for any w where |w| 6= t. ut

3.2 Properties of nssts

As nmsos transductions are closed under sequential composition [4, 7], the fol-
lowing result follows from Theorem 3.1.

Theorem 3.3. Let T1 be a (Σ1, Γ1)-nsst, T2 be a (Σ2, Σ3)-nsst, then there
exists an (Σ1, Σ3)-nsst Ts = T1 ◦ T2, i.e., for all strings w ∈ Σ∗1 , we have

JTsK(w) =
⋃

u∈JT1K(w)

JT2K(u).

Theorem 3.4. The transduction implemented by an nsst T is bounded-length,
i.e., there exists a constant c such that ∀w ∈ Σ∗, if u ∈ JT K(w), then |u| ≤ c.|w|.

Proof. We use the notation |α(x)| to denote the number of output symbols in
the expression α(x). We define |α| =

∑
x(|α(x)|). Now let `max = maxE(|α|),

i.e., the maximum number of output symbols added by any transition in T . Let
uw be the shorthand for some output of T upon reading the string w. We prove
the result by induction on the length of the input. The base case is valid; since
if |w| = 0, the length of uw is zero. The inductive hypothesis is stated as follows:
for input w, if uw ∈ JT K(w), then |uw| ≤ `max.|w|. Now consider an input of the
form w.a, and let q be the state of T after reading w. Let E′ be the subset of
E containing transitions of the form (q, a, β, q′). The number of output symbols
added by any transition in E′ is bounded by maxE′ |β|. However, by definition,
`max ≥ maxE′ |β|. Thus, for any uw.a ∈ JT K(w.a), |uw.a| ≤ `max.|w| + `max.
Thus, |uw.a| ≤ `max.|w.a|, since |w.a| = |w|+ 1. ut

Functional NSSTs. It is clear that the expressive power of functional nssts is
identical to that of the class dsst, as a transduction realized by a functional
nsst is deterministic and MSO-definable, i.e., a dmsos transduction, which is
the same as that for a dsst.

Theorem 3.5. Functional nsst = dsst.

It is also easy to show that functional nssts are closed under sequential com-
position. The results follow from the fact that nssts are closed under sequential
composition, and single-valued transductions are closed under sequential compo-
sition. Finally, the expressivity relations between the different transducer models
are as shown in Fig. 3.1.

4 Decision Problems

In this section, we discuss decision problems for nssts, with special heed to the
class of functional nssts. In what follows, we make use of 1-reversal-bounded

12

2ngsm

ε-nsst

nsst = nmsos = nhm

dsst = dmsos = dhm =
2dgsm = Functional nsst

dgsm

ngsm

Fig. 3.1: Expressivity Results.

m-counter machines. Such a machine is an NFA augmented with m counters,
where each counter can make at most one reversal (i.e., in any computation
each counter can go from increasing to decreasing mode at most once). It has
been shown that the nonemptiness problem for such machines is in nlogspace
in the size of the machine’s description. For further details on reversal-bounded
counter machines, please see [9].

Checking functionality. We now address the problem of checking if an arbitrary
nsst is functional. We show that this problem is decidable, and present an
algorithm with pspace complexity. To a large extent, our algorithm draws upon
techniques developed for checking equivalence of dssts discussed in [2]. We use
the following intuition: An nsst is not functional if there exists some input
string w such that there are outputs y1, y2 ∈ JT K(w) and y1 6= y2. We reduce
the problem of finding such distinct outputs to the nonemptiness problem for a
1-reversal-bounded 2-counter machine as shown in the following theorem.

We assume that in the given nsst, for any state q, F (q) maps to a single
string variable x. An nsst in which F (q) is some general expression α can be
converted to an equivalent nsst where each F (q) maps to x. This is done by
adding a dummy final state qf , and for all states q, we add a transition from q
(where F (q) = α) to qf such that x is assigned to α on that transition.

Theorem 4.1. For an nsst T , checking if T is functional is in pspace.

Proof. We construct a 1-reversal-bounded 2-counter machine M that for a given
input string w simultaneously simulates two paths in T corresponding to w,
and checks if the resulting outputs u1 and u2 differ because of either of these
conditions: (1) |u1| 6= |u2|, i.e., the lengths of u1 and u2 are different, (2) there
exists a position p such that5 u1[p] 6= u2[p]. M nondeterministically chooses one
of the above conditions to check. Checking the first condition is easier and uses

5 For a string s, we denote by s[p] the pth symbol in s.

13

similar techniques as for checking the second condition; thus, we focus on the
latter. We now explain how the second condition is checked.

M precisely keeps track of the state of T in each of the two paths being
simulated in its state. At the beginning of the computation, M pre-loads its
counters c1 and c2 with the same number; this number is the guess for the
position p in which the outputs might differ. For path i (i = 1, 2), at some step
in the simulation, M nondeterministically guesses that the symbol γi added by a
copyless assignment in this step appears at the pth position in the corresponding
output ui, and remembers γi in its state. It also guesses where each string variable
appears with respect to p in this output. Concretely, we define the mapping %
(called the string variable class) from X to an element of ζ = {L,R,C,N}. Here,
%(x) is L, R, C or N , depending on whether x appears to the left of p, to the
right of p, contains p, or does not contribute to the output respectively. For each
output symbol added to the left of p in the first path, M decrements the counter
c1, and for each output symbol added to the left of p in the second path, M
decrements c2.

Let the symbol ⊥ denote that M has not made its guess for the symbol in
position p. Let Γ ′ = Γ ∪ {⊥}. Formally, the set of states S of M is a subset
of (Q × Q × (Γ ′ × ζX) × (Γ ′ × ζX)). To elaborate, the meaning of some state
(q, q′, γ1, %1,⊥, %2) in M is: T reaches states q and q′ from its initial state on
the same input string; M has guessed that the symbol at u1[p] is γ1, M has
not yet guessed the symbol at u2[p], and the mappings from the string variables
to classes along the two paths are %1 and %2. Except for the initial transitions
where M pre-loads c1 and c2, all transitions of M decrement the counters by
some non-negative amount. Thus, the counters of M are single-reversal.

The transitions of M are defined in a way that ensures that M consistently
guesses the classes for each string variable. We illustrate this with two examples.

Suppose T has the following transitions: q
a/(x, y):=(x.d.y, b)−−−−−−−−−−−−−→ r and q′

a/α−−→ r′,
where α is some copyless assignment.

Suppose in state r, M guesses that the symbol d added to the string vari-
able x appears at u1[p]. In order to maintain consistency, in state q, M must
have assigned x to the class L, and y to the class R. In other words, we add
a transition from the state (q, q′,⊥, [%1(x) = L, %1(y) = R], γ2, %2) to the state
(r, r′, d, [%′1(x) = C, %′1(y)], γ2, %

′
2), with no change to the counters. The mapping

%′1(y) maps y to any string class in ζ other than C, and the mappings %2 and %′2
similarly ensure consistency with the assignment α along the second path.

Now consider the case where in state r, M guesses that the contents of x
(which are now x.d.y) appear to the left of the position p in u1. In order to
maintain consistency, in state q, M must have assigned x and y to the class
L. Thus, we add a transition between the states (q, q′, γ1, [%1(x) = L, %1(y) =
L], γ2, %2) and (r, r′, γ1, [%

′
1(x) = L, %′1(y)], γ2, %

′
2) in M . As the assignment adds

one letter to the left of p, M decrements c1 by one. Here, %′1(y) maps y to any
string class in ζ, and γ1 is propagated unchanged.

Initially, no string variable is guessed to be in the class C, and at each step
at most one string variable can be guessed to be in the class C. At the end of

14

a computation, if c1 = c2 = 0, then it means that the symbols γ1 and γ2 in the
state of M are symbols in the same position p in u1 and u2, i.e., γ1 = u1[p] and
γ2 = u2[p]. We define a state (q, q′, γ1, %2, γ2, %2) of M as accepting if c1 = c2 = 0,
γ1 6= γ2, and if F (q) and F (q′) are both defined in T . M thus accepts only those
paths that are witnesses to an input string that leads to two distinct output
strings. In other words, T is functional iff M is empty. The problem of checking
nonemptiness of 1-reversal bounded m-counter machines is in nlogspace in the

size of M . As the total number of states of M is (|Q|2.(|Γ | + 1)2.|ζ|2.|X|), i.e.,
exponential in the size of X, the above technique gives us a procedure that is in
pspace. ut

Equivalence Checking. We now discuss the equivalence problem for nssts. Given
two nssts T1 and T2 from Σ to Γ , the equivalence problem is to determine if
for all inputs w ∈ Σ∗, JT1K(w) = JT2K(w). We start with a negative result that
shows that for the general case of nssts, checking equivalence is undecidable.

Theorem 4.2. The equivalence problem for nssts is undecidable.

Proof. As mentioned in Section 3.1, an ngsm is a special case of a nsst. The
result follows from the fact that the equivalence problem for ngsms is known to
be undecidable by a reduction from the Post Correspondence problem [8]. ut

If we restrict our attention to functional nssts, the equivalence problem is
decidable and a minor modification of the algorithm for checking equivalence
of dssts in [2] can be directly applied to give a pspace complexity procedure.
Moreover, we show that the problem is in fact pspace-complete.

Theorem 4.3. The equivalence problem for the class of functional nssts is
pspace-complete.

Proof. Membership in pspace can be shown by using an algorithm similar to
the one for checking equivalence of dssts [2].

We further show that the problem is pspace-hard by a reduction from the
equivalence problem for NFAs. We can encode an NFA as an nsst T which uses
only one string variable x and never changes the value of x from the initial value
of ε. The states of the NFA are the same as the states of T . We define the output
function F of T such that for each final state qf of the NFA, in the corresponding
state of T , F (qf) = x, and for all other states q of the NFA, F (q) is undefined.
Clearly, JT K(w) = {ε} implies that w is accepted by the NFA. Observe that
the nsst defined thus is functional: for all inputs w, JT K(w) is either empty or
contains exactly one symbol. If two such nssts T1 and T2 are equivalent, it means
that either (1) there exist runs of T1 and T2 in which both read the same input
string w, and produce the same output ε, or (2) all runs of T1 and T2 reading
the same input string w reach some states q and q′ respectively, such that F1(q)
and F2(q′) are undefined. In other words, two such nssts are equivalent iff the
encoded NFAs are equivalent. ut

15

Containment. The problem of checking if the transduction realized by an nsst
is contained within the outputs of a finite set of dssts is of particular interest in
applications such as the verification of concurrent heap-manipulating methods.
Given an nsst T , and a set of dssts D1,. . . ,Dm, we show that the problem
of checking if the set of outputs of T is contained within the set of outputs of
D1, . . . , Dm is in pspace by reducing the problem to the nonemptiness problem
for 1-reversal n-counter machines.

Theorem 4.4. Suppose D1, . . . , Dm are (Σ,Γ)-dsst, and T is a (Σ,Γ)-nsst.
Checking if JT K ⊆

⋃m
j=1JDjK(w) is in pspace.

Proof. We observe that JT K 6⊆
⋃m
j=1JDjK(w), if there is a run of T on the input

string w that produces an output ut such that for all the dssts Dj , either the
output of Dj on w is undefined, or the output of Dj is different from ut. Formally,

∃w∈ Σ∗, ∃ut ∈ JT K(w) :

m∧
j=1

 JDjK(w) is not defined ∨
|ut| 6= |JDjK(w)| ∨
∃pj : ((ut[pj] 6= JDjK(w)[pj])

 (4.1)

We can expand the above condition to obtain a disjunction over different
combinations of conjunctions of the inner disjuncts. Each term in this disjunct
illustrates a way in which ut is not generated by all of the m dssts. We construct
a 1-reversal (2.m)-counter machine M that nondeterministically decides to check
one of the conjunctive terms in (4.1). In particular, we show how M checks
the conjunction:

∧m
j=1 (ut[pj] 6= JDjK(w)[pj])), the other conjunctions are simpler

and can be checked by similar techniques.
M simulates the action of D1, . . . , Dm, and T in parallel. It precisely keeps

track of the states of each of these transducers in its state. For each pair (Dj , T),
M maintains a pair of counters (cjt, ctj). For each of these m pairs, M pre-loads
the counters with some number pj (the same for both), which is the guess of
M for the position pj such that ut[pj] 6= JDjK(w)[pj]. At some point in its
simulation of T (resp. Dj), M guesses that it has output the symbol γtj = ut[pj]
(resp. γjt = JDjK(w)[pj]) and remembers it in its state. It also guesses where
each string variable of T (resp. Dj) appears with respect to the position pj , thus
mapping each string variable to a class in ζ = {L,C,R,N}. For each output
symbol added by T (resp. Dj) to the left of pj , M decrements the counter ctj
(resp. cjt) by one.

Let Γ ′ = Γ ∪{⊥}, where ⊥ is the symbol indicating that M has not guessed
the symbol at position pj yet. The set of states of M is a subset of ((QT ×
Q1× . . .×Qm)× (Γ ′2× ζXT × ζX1)× . . .× (Γ ′2× ζXT × ζXm)). The transitions
of M are defined in similar fashion to those in the proof of Theorem 4.1 end
ensure that the guesses of M for the string variable classes are consistent with
the transitions in T , D1, . . ., Dm. Note that apart from the initial transitions
of M that pre-load the counters, all transitions decrement the counters by some
non-negative number; thus M has only one reversal.

Once M reaches the end of the input string w, it checks if the symbol guessed
for Dj and T is at the same position pj , by checking if ctj = cjt = 0. We define a

16

state as accepting if for all j, cjt = ctj = 0, and for each pair of symbols recorded
in the state, γjt 6= γtj . In other words, M accepts a computation iff it encodes
the parallel action of T , D1,. . .,Dm on an input string w, producing an output ut
in JT K(w) such that ut is different from each of the m outputs of the transducers
D1, . . . , Dm. Thus JT K ⊆

⋃m
i=1JDiK iff M is empty. From [9], we know that

checking the nonemptiness of a 1-reversal n-counter machine is in nlogspace
(in the size of M). For a fixed m, the number of states of M is dominated by
an exponential in the size of the largest set among XT , X1, . . . , Xm. Thus, the
above construction yields us a procedure that is in pspace. ut

5 Discussion

Checking k-valuedness. A k-valued nsst naturally extends a functional nsst.
This class is not closed under sequential composition because given two k-valued
transducers T1 and T2, the nsst T1 ◦ T2 could be k2-valued. Checking if an
arbitrary nsst T is k-valued is decidable. We skip the proof in interest of brevity.
Similar to the proof of Theorem 4.1, the basic idea is to reduce k-valuedness of an
nsst to the nonemptiness problem for a 1-reversal-bounded (k.(k + 1))-counter
machine M that detects if there is some input w on which T produces (k + 1)
distinct outputs. M simulates (k + 1) copies of T in parallel, and for each pair
of the possible (k+ 1) outputs, M uses a pair of counters to check if the outputs
are different. M is empty iff T is k-valued. Our approach can be viewed as an
extension of the algorithm to check the k-valuedness of nfts [10].

Equivalence of k-valued nssts. The equivalence problem for k-valued nfts has
been shown to be decidable in [6], and more recently in [14]. We are interested in
investigating the same problem for k-valued nssts. The approach in [6] reduces
the equivalence of k-valued nfts to the solution of an infinite system of word
equations, which by the validity of Ehrenfeucht’s conjecture, is equivalent to
a finite subsystem. The authors then show how the finite subsystem can be
effectively characterized for nfts, which leads to a decision procedure. The proof
of [6] relies on the fact that the valuedness of an nft is at the most its maximum
edge-ambiguity6. However, as the maximum edge-ambiguity of an nsst does not
place such a bound on its valuedness, this proof strategy fails for proving the
decidability of equivalence checking for k-valued nssts. In [14], the authors rely
on a procedure to decompose a k-valued nft T into k functional nfts whose
union is equivalent to T . Whether such a decomposition can be generalized to
nssts remains open.

Bounded-valued NSSTs. The class of bounded-valued nfts has been extensively
studied in the literature [15], [12]. The class of bounded-valued nssts promises to
be a robust class. Unlike the class of k-valued nssts, it is closed under sequential
composition. In both [15] and [12], it is shown that the problem of checking if an

6 The edge-ambiguity of a transducer is the maximum number of transitions between
any two states q and q′ that have the same input symbol.

17

nft is bounded-valued can be checked in polynomial time by verifying certain
conditions on the structure of its transition diagram. We believe that it may
be possible to generalize these conditions to characterize bounded-valuedness
of nssts. However, the extension is not straightforward due to the presence of
multiple string variables, and allowing output symbols to be appended to the
left as well as to the right.

In summary, some of the interesting open problems are:

– Is the equivalence problem for k-valued nssts decidable?
– Given a k-valued nsst T can it be effectively decomposed into k functional

nssts T1,. . .,Tk, such that JT K =
⋃k
i=1 JTiK?

– Is the bounded-valuedness of nssts decidable?

Applications. One of the motivations for studying nssts is their potential as
models for verifying concurrent heap-manipulating programs. In [3], the authors
study the problem of verifying linearizability of methods that modify linked-
lists. Checking linearizability of a pair of methods m1 and m2 involves verifying
if the interleaved execution of m1 and m2 (denoted by m1 ‖ m2) finishes with
the same linked-list as executing m1 followed by m2 (denoted by m1;m2) or
m2 followed by m1 (m2;m1). The authors show that with a specific regimen for
pointer updates this problem can be algorithmically solved.

In [2], the authors have demonstrated how sequential heap-manipulating
methods can be modeled as dssts. Proving linearizability of methods m1 and
m2 is thus the same as verifying if the interleaved product of the corresponding
dssts D1 and D2 is contained within their union, i.e., checking if JD1 ‖ D2K ⊆
(JD1 ◦D2K ∨ JD2 ◦D1K). In general, it may not be possible to model the inter-
leaved product of dssts as an nsst. However, if we identify a subclass of dssts
such their interleaved product is an nsst, then checking linearizability reduces
to checking containment of this nsst in the finite union of the dssts (each of
which represents a possible sequential execution of the dssts). We have shown
that checking containment is decidable in pspace. Thus, we believe that nssts
could serve as a foundational model of concurrent heap-manipulating methods,
by helping us better understand the theoretical limits of decidability of the ver-
ification problems for such methods.

Acknowledgements

We thank Joost Engelfriet for pointing out the mistake in the proof of closure
under sequential composition of nssts in the original version of the paper that
appeared in the Proceedings of ICALP 2011.

References

1. Alur, R., Černý, P.: Expressiveness of streaming string transducers. In: Proc. of
Foundations of Software Technology and Theoretical Computer Science. pp. 1–12
(2010)

18

2. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-
pass list-processing programs. In: Proc. of Principles of Programming Languages.
pp. 599–610 (2011)

3. Černý, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur, R.: Model checking
of linearizability of concurrent list implementations. In: Proc. of Computer Aided
Verification. pp. 465–479 (2010)

4. Courcelle, B.: The expression of graph properties and graph transformations in
monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of graph grammars
and computing by graph transformation, Vol. 1: Foundations. pp. 313–400. World
Scientific Publishing Co.

5. Courcelle, B.: Graph Operations, Graph Transformations and Monadic Second-
Order Logic: A survey. Electronic Notes in Theoretical Computer Science 51, 122
– 126 (2002)

6. Culik, K., Karhumäki, J.: The equivalence of finite valued transducers (on HDT0L
languages) is decidable. Theor. Comp. Sci. 47, 71 – 84 (1986)

7. Engelfriet, J., Hoogeboom, H.J.: MSO definable String Transductions and Two-
way Finite-State Transducers. ACM Transactions on Computational Logic 2(2),
216–254 (2001)

8. Griffiths, T.V.: The unsolvability of the equivalence problem for ε-Free nondeter-
ministic generalized machines. Journal of the ACM 15, 409–413 (Jul 1968)

9. Gurari, E.M., Ibarra, O.H.: The Complexity of Decision Problems for Finite-Turn
Multicounter Machines. J. Comput. Syst. Sci. 22(2), 220–229 (1981)

10. Gurari, E.M., Ibarra, O.H.: A Note on Finite-valued and Finitely Ambiguous
Transducers. Mathematical Systems Theory 16(1), 61–66 (1983)

11. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press (1997)

12. Sakarovitch, J., de Souza, R.: On the decidability of bounded valuedness for trans-
ducers. In: Proc. of Mathematical Foundations of Computer Science. pp. 588–600
(2008)

13. Schützenberger, M.P.: Sur les relations rationelles entre monöıdes libres. Theor.
Comput. Sci. pp. 243–259 (1976)

14. de Souza, R.: On the decidability of the equivalence for k-Valued transducers. In:
Proc. of Developments in Language Theory. pp. 252–263. Berlin, Heidelberg (2008)

15. Weber, A.: On the Valuedness of Finite Transducers. Acta Informatica 27(8), 749–
780 (1990)

19

