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There is recent interest in using deep neural networks (DNNs) for controlling autonomous cyber-physical systems (CPSs). One
challenge with this approach is that many autonomous CPS applications are safety-critical, and is not clear if DNNs can proffer safe
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that uses the formalism of barrier certificates to synthesize DNN-controllers that are safe by design. We demonstrate a proof-of-concept
evaluation of our technique on multiple CPS examples.
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1 INTRODUCTION

The design of control and decision-making software for cyber-physical systems (CPSs) such as unmanned aerial vehicles,
ground vehicles and general robots is a highly challenging problem. Spurred by the exciting developments in the
field of deep learning, recently, there has been burgeoning interest the learning-oriented paradigm for designing such
software controllers. A typical learning oriented approach involves the following steps: (1) pick a (parameterized) control
architecture that lends itself to an efficient learning procedure; (2) setup a physical or virtual experiment to generate
system behaviors; (3) define cost functions to quantify performance of the system with respect to specific behaviors;
and finally, (4) employ an optimization scheme to pick the optimal controller parameters with respect to the specified
cost function. Due to the growing importance and expressive power of deep learning [12], deep neural networks (DNNs)
have been proposed as an effective parameterized control architecture. A number of techniques included under the
umbrella of Deep Reinforcement Learning have been used to effectively learn controllers from user-defined cost functions
encoding desired system behavior. However, there has been limited research on techniques that formally reason about
the safety of such DNN-controlled dynamical systems, or that seek to incorporate safety as part of the learning process.
This is, however, a challenging problem as models of autonomous CPSs often represent highly nonlinear dynamical
systems, not to mention the challenge of reasoning about inherently nonlinear DNNs.

In this paper, we describe a new approach to training DNN-based controllers for CPS applications such that the
system behaviors are guaranteed to satisfy a given safety requirement. The key idea in our approach is to incorporate
safety requirements into the RL-based training using three main steps: (1) identify an a priori safety invariant that
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we require the DNN-controlled closed-loop system satisfy, (2) modify the cost function used in RL to bias the search
towards safe controllers, and finally, (3) use an automated reasoning tool to verify system safety. In the last step, if the
verification fails, the resulting counterexample is used to improve the cost function, and then the system is re-trained.
The process repeats until the automated reasoning tool produces a proof of safety. We demonstrate our technique
through a proof-of-concept tool on three nonlinear dynamical system examples.

2 NEURAL NETWORKS AND DYNAMICAL SYSTEMS

Closed-loop Control System. A closed-loop control model of a CPS consists of two main parts: a plant model

representing the physical components of the system, and a controller. Depending on the modeling assumptions,
closed-loop control systems can be either continuous-time and modeled by ordinary differential equations (ODEs) or
discrete-time and modeled using recursive difference equations. In this paper, we describe the problem we wish to solve
assuming a continuous-time model, and comment on extensions to discrete-time.

A plant model is characterized by an n-dimensional state variable, x = (x1, . . . ,xn ), and them-dimensional control
input to the plant, u = (u1, . . . ,um ). At any given time t , the instantaneous configuration of the plant is x(t). The set of
all states of the plant is denoted by X and is assumed to be some compact subset of Rn . Similarly, the input to the plant
at time t , u(t), is assumed to take values from the set U , which is assumed to be a compact subset of Rm , wherem ≤ n.
We assume that the controller is stateless, meaning that at any time t , the output of the controller (i.e., the input to the
plant u(t)) depends only on the current state of the plant. We assume an affine-control form for the given system as in
[17]:

Ûx(t) = f (x(t)) + д(x(t)) · u(t) (1)

u(t) = k(x(t)) (2)

Here, f andд are locally Lipschitz functions, k is some arbitrary nonlinear function representing the nonlinear controller,
and Ûx(t) denotes the time-derivative of x at time t . Henceforth, we abuse terminology and use the symbol x to denote
both a state variable and a value assigned to the state variable (at an unspecified time).

DNN Controllers. Control design using deep learning has been gaining significant interest in recent years [12, 20].
This includes techniques for deep RL [22] and deep imitation learning [36, 42]. These techniques use a DNN to output
control actions based on the current plant state (and possibly exogenous inputs from the environment). A DNN [20]
is a universal function approximator mapping a multi-dimensional input to a multi-dimensional output. For DNN
controllers, at each time step t , the input to the DNN is the state of the system x(t), and the output is the control action
u(t) = η(x(t)), which yields the following closed-loop dynamics:

Ûx(t) = f (x(t)) + д(x(t)) · η(x(t)). (3)

Figure 1 illustrates a DNN-controlled closed-loop system.
An L-layer DNN (L > 2) is defined recursively: layer 1 is the input layer, layer L is the output layer, while layers

2, . . . ,L − 1 are the hidden layers. For ℓ ∈ [2,L], the ℓth contains dℓ neurons, the output of the jth neuron in the ℓth

layer is denoted vℓ, j , and Vℓ is the vector of dℓ outputs. For ℓ ∈ [2,L], the ℓth layer is parameterized by a dℓ × dℓ−1
weight matrixWℓ and a bias vector Bℓ of size dℓ . Note that here, d1 = n and dL =m. For ℓ ∈ [2,L], Vℓ is given by the
expression σℓ(Wℓ ·Vℓ−1+Bℓ), where σℓ is a suitable activation function applied component-wise to its arguments. There
are many activation functions used in the literature; popular ones include the rectified linear unit (ReLU), the hyperbolic
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Fig. 1. DNN-controlled closed-loop system model

tangent function, the sigmoid activation function and many other variants. DNNs with the topology described above
are called fully connected networks. In certain kinds of NNs (such as convolutional NNs [19]), the inter-layer connections
may be sparse. Typically, DNNs used for control use the identity function as the activation function for the output layer,
while activations for hidden layers could be application-specific.

Reinforcement Learning (RL) and Deep RL. Traditional RL [35] is used to learn the optimal control strategy (or
policy) for a given closed-loop system, where the desired system behavior is indicated through a hand-crafted reward
function that assigns a real-valued reward to each pair (x,a), where x ∈ X is a state and a ∈ U is an action possible
from x. The optimal controller obtained using RL chooses an action such that the expected reward from each state in
an infinite run of the system is maximized. Such techniques are considered model-based techniques as they assume a
probabilistic transition system model such as a Markov Decision Process, and typically use dynamic programming
based approaches to obtain the optimal policy [7]. Model-free RL uses physical or virtual tests to simultaneously learn
the system structure and estimate the expected reward from each state. Deep RL techniques use DNNs to output an
action taken from a given plant state, an expected reward from each state action pair, or a combination of the two
[14, 22, 23]. In this paper, we assume a single DNN that maps a state to the resulting control action.

ProblemDefinition. For the dynamical system specified in Eq. (1), letΦ denote the trajectory function, whereΦ(xinit, t)
is a solution to initial value problem of the ODE represented by Eq. (1) with x(0) = xinit. We use Φ(xinit, [0,T ]) to denote
the function of time x(t) that satisfies Eq. (1) for 0 ≤ t ≤ T . We now define the main problems that we wish to solve.
Let Xinit and Xunsafe be arbitrary subsets of X that respectively denote the set of initial values and the set of unsafe
values for the state variable x.

Definition 2.1 (DNN Controllers with safety guarantees). Given initial states Xinit ⊆ X , and unsafe states Xunsafe ⊆ X ,
we say that the system described by Eq. (1) is safe iff ∀xinit ∈ Xinit, and ∀t ∈ [0,∞), Φ(xinit, t) ∩Xunsafe = ∅. A controller
η is said to be a DNN controller with safety guarantees, if it ensures safety of Eq. (1) when k = η.

Barrier Certificates. We now present a safety verification technique based on continuous-time inductive invariants,
also known as barrier certificates. This technique can be used to prove that a given closed-loop system is safe. To define
a barrier certificate formally, we first introduce some terminology. Given a vector field h from X to X , and a function F

from X to R, the Lie derivative of F along h, denoted LhF (x) is defined as ∂F
∂x · h(x). The quantity LhF (x) gives the rate

of change of F along the flow defined by h.



Definition 2.2 (Barrier Certificate). A barrier certificate describes a safe, initialized, and forward invariant set using a
barrier function B, which is a differentiable function from X to R. Given a DNN-controlled system of the form specified
in Eq. (3) (i.e. Ûx = f (x(t)) + д(x(t))η(x(t))), the barrier function has the following properties:

(1) ∀x ∈ xinit: B(x) < 0,
(2) ∀x ∈ Xunsafe: B(x) > 0,
(3) ∀x s.t. B(x) = 0 : Lf B(x) + LдB(x)η(x) < 0.

3 VERIFICATION-IN-THE-LOOP RL

We propose a new technique to learn a control policy that guarantees the resulting closed-loop system satisfies barrier
certificate conditions. We first introduce some terminology.

Definition 3.1 (Safe and Initialized Sets). A set C is called safe if C ∩ Xunsafe = ∅. A set C is called initialized if I ⊆ C .

Given a safe and initialized set, we would like to design a controller that guarantees that the boundary of the set
serves as a barrier certificate. Unfortunately, it is not always possible to find a controller that is guaranteed to keep a
given closed-loop system within a safe and initialized set, as the following example illustrates.

Example 3.2. Let C be the unit circle in R2, C = {x|B(x) = 0}, where B(x) = x21 + x
2
2 − 1, let I = (0, 0) and Xunsaf e =

{x|B(x) ≥ 10}, and consider the following system dynamics:[
Ûx1(t)

Ûx2(t)

]
=

[
x1(t)

x2(t)

]
+

[
1
0

]
k(u(t)), (4)

where k and u are scalar functions. The set C is safe and initialized, but no controller policy exists that will guarantee
that the boundary of C serves as a barrier certificate. To see this, consider the point on the boundary of C , x = (0, 1),
and observe that at this point Lf B(x) + LдB(x)η(x) = 2x21 + 2x

2
2 + 2x1k(u(t)) = 2. In other words, regardless of what

form k takes, Condition 3 from Def. 2.2 is not satisfiable by any controller, at this point.

In order to guarantee that there exists a controller that keeps the closed-loop system within the safe and initialized
set, we need an additional notion known as forward invariance of the set. Essentially, adding the notion of forward
invariance allows us to construct an argument similar to a barrier certificate that proves system safety.

Definition 3.3 (Forward Invariant Set). A set C ⊆ X is called forward invariant for a system of the form given in
Eq. (3), if ∀ states xinit ∈ C , and ∀ time t ≥ 0, Φ(xinit, t) ∈ C .

We say that a set C is a controlled invariant set (CIS) if for any system trajectory starting in an initial state xinit, at all
times t ≥ 0, there exists some control input u ∈ U that guarantees that C is forward invariant. A related notion from
[41] is that of a control barrier function (CBF).

Definition 3.4 (Control Barrier Function). A differentiable function B satisfying the following conditions is called a
control barrier function (CBF) if |{x | B(x) ≤ 0}| , ∅, B satisfies the barrier conditions for Xinit and Xunsafe states, and:
(LдB(x) = 0) ⇒ (Lf B(x) < 0).

Our main idea is that given a control barrier function B implicitly defining the safe and initialized control invariant
set B(x) ≥ 0, we can find a neural network controller η that is guaranteed to keep the system with this set.



Algorithm 1: Verification-in-the-loop Reinforcement Learning
Input: Controlled Dynamical SystemM(η(·)),

Control Barrier Function C ,
Performance Cost Function µ,
Maximum training iterations maxIter,
Initial Set of States Xinit,
BoundsW : weights and B: biases

Output: Verified and Trained NN Controller/Failure
1 iter← 0
2 w0,b0 ← uniform_random(W ,B)
3 while (iter < maxIter) and not(isVerified) do
4 µ̃(xinit) ← µ(xinit) + cbf_penalty(xinit)
5 w⋆

iter,b
⋆
iter ← min

w∈W
b ∈B

max
xinit∈X

µ̃ (Φsim(xinit, [0, . . . ,T ]))

6 isVerified, cex ← checkBarrier(M(η(w⋆
iter,b

⋆
iter)),C)

7 if not(isVerified) then
8 X = X ∪ {cex}
9 iter← iter + 1

10 end
11 end
12 if isVerified then return verified controller η(w⋆

iter,b
⋆
iter)

13 else return failure

Finding Control Barrier Functions. We note that the condition above allows checking if a given function is a valid
CBF independent of an actual controller. However, these conditions may be too permissive, in the sense that they may
correspond to unbounded control actions to keep the system within the barrier. To place constraints on the possible
control action, we can use the following modified condition (see [41]):(

sup
x∈X

inf
u∈U

Lf B(x) + LдB(x)u
)
< 0 (5)

In either formulation, if we assume that the CBF B(x) has a polynomial form, and if the functions д(x) and f (x) are also
polynomials, and ifU and X are semi-algebraic sets, then we can use Sum-of-Squares (SoS) optimization techniques to
obtain a CBF [27–29].

There is little work on finding a CBF if the system dynamics are non-polynomial. We can use an SMT-based approach
to finding CBFs. The intuition is that finding the CBF reduces to an exists-for all synthesis problem that can be solved
using a counterexample-guided inductive synthesis procedure such as the ones used in EF-SMT solvers [8, 18]. We also
note that in certain cases, it may be reasonable to assume that the CBF is provided by the user. The reason is that as
the CBF is fundamentally connected with the safety and controllability of the system, it is possible that the user has
sufficient domain knowledge to provide a candidate invariant set (or a CBF). Given such a set, we propose to check if
the supplied set is indeed a CBF using dReal [10].

Reinforcement Learning for Safe Controllers. The procedure in Algorithm 1 upon terminates finds a DNN con-
troller of a given architecture that is guaranteed to keep the system within the invariant described by the supplied
control barrier function C . In Line 2, we randomly sample the permissible weight/bias space of the neural network to
initialize its weightsw and biases b. We assume a function µ that characterizes a certain cost that the user may have



specified for the given RL algorithm1 that maps a given initial state to a cost incurred from the behavior from that
initial state2. We use the function Φsim to denote a numerical simulation of the ODE represented by Eq. (1) over suitable
time points in the interval [0,T ]. In other words, it represents a discrete sampling the trajectory function Φ at chosen
time-points in [0,T ].

In Line 4, we modify the cost function µ to µ̃, by adding the value cbf_penalty(xinit) that assigns a penalty for
violating the given barrier condition. The exact form of the penalty function is discussed later in this section. We
then use a black-box optimizer to search over the weights (W ) and biases (B) to find weightsw⋆

iter and biases b⋆iter that
minimize the effective cost µ̃. During each cost function evaluation (i.e., during simulations from each initial condition
in X ) the weights and biases of the NN controller are fixed. The next step is to verify whether the system containing the
controller with the optimal weights/biases identified in iteration iter, η(w⋆

iter,b
⋆
iter), is safe. To check for safety, we check

whether the system satisfies the third barrier certificate condition C (as specified in Definition 2.2)3. If the condition is
satisfied, then we terminate the loop with a verified controller; if not, we get a counterexample, i.e., we find a point cex
such that B(cex) = 0 and the Lie derivative of B(x) or Lf B(cex) + LдB(cex) · η(cex), is positive. In Line 8, we add this
counterexample to the set of initial conditions X .

Remark 3.1 (Monotonicity of training). We note that adding the counterexample state to the set X causes the

training to be monotonic, i.e. new counterexamples will continue to account for previous counterexamples. This is because

the function picks the maximum penalty incurred from any initial state in the set X . Thus, for the penalty function to have

a low value, the penalties evaluated on all initial states in X are required to be low. This ensures that the controller does not
degrade w.r.t. the safety requirement across iterations.

Penalty Functions. A crucial element in Algorithm 1 is the penalty function cbf_penalty that maps an initial state
xinit to some real value. The key requirement for a penalty function is that it should make it very expensive for the
controller to violate a safety requirement. The idea of penalty functions is inspired by two methods in constrained
optimization: the eponymous penalty function method, and the barrier function method4. The main idea is that when
trying to minimize a function q(x), subject to a constraint r (x) < 0, we can instead try to minimize a function of the
form q(x) + h(r (x)), where h(r (x)) ≥ 0, and |h(r (x))| >> |q(x)| if r (x) ≥ 0, and h(r (x)) ≤ |q(x)| if r (x) < 0. Below we
discuss some penalty functions that we have explored in the context of barrier certificates.

State-based Maximal penalty function. Consider function max_penalty mapping an initial state to a penalty in R:(
1 +max

(
0,Lf B(xinit) + LдB(xinit)η(xinit)

))2ℓ
− 1 (6)

Here, ℓ is a positive integer. If the barrier condition is violated (i.e., when the underlined term is positive) we get a
quantity that is large and positive. If the underlined term is negative, then the above function returns 0. The magnitude
of the positive quantity is dependent on the integer ℓ picked to exceed any user-supplied performance cost function µ.

Exponential trajectory-based cost Function. Typically, cost functions quantifying performance that are used to
train DNN controllers in an RL procedure compute a suitable cost on a given system trajectory. We explore a similar cost
function that approximates the Lie derivative of the barrier function using finite differences. Recall that Φsim(xinit,∆)

1In RL parlance, we would use the term reward, instead of cost, but these are interchangeable by changing their sign.
2Note that here we define µ as a cost for the entire trajectory, and effectively equally penalizing actions taken from all states in the trajectory; this
effectively becomes a state-based reward if we only perform single-step simulations.
3We do not check the first two conditions, as the chosen CBF guarantees that C is initialized and safe.
4The use of the word barrier is coincidental, and does not have a direct relation with barrier certificates.



denotes the state value at time ∆. Consider the following cost function:

exp_penalty(xinit) = eB(Φ(xinit,∆))+(∆−1)B(xinit) (7)

The above function is inspired by the notion of zeroing barrier functions from [41]. Here, the authors require that
ÛB(x) < α(B(x)), where α is a class κ function, meaning it is strictly increasing and zero at the origin5. If we consider α
to be the identity function and consider a finite differences approximation of ÛB(x), then the following should hold:

B(Φ(xinit,∆)) − B(x)
∆

< B(xinit).

Rearranging and capturing this constraint as an exponential penalty function [24], we arrive at (7).

Remark 3.2. We remark that our procedure has two distinct phases: the penalty-function driven search for a DNN

controller, and the verification phase. The first sub-routine can be combined with any generic model-free deep RL technique.

The second sub-routine requires the knowledge of a system model. In this paper, we assume a precise dynamical model of

the system. We observe that it is possible to extend this to a dynamical model with nondeterministic uncertainties. It is also

interesting to consider extensions to a system with stochastic uncertainties, where the proof strategies would be different. For

example in [5, 6, 9], the authors assume a Gaussian Process based dynamical model and derive guarantees on the resulting

RL procedure using Lyapunov theory and barrier certificates (in a similar vein to work in this paper).

Checking barrier conditions. Finally, we note that to check if the barrier condition is valid for the chosen controller,
it is enough to show the unsatisfiability of the following query:

(B(x) = 0) ∧ ((Lf B(x) + LдB(x) · η(x)) > −ε) (8)

In the above query, ε is a tiny small positive number. If the above query is unsatisfiable, it implies that for all x s.t.
B(x) = 0, the Lie derivative ÛB(x) is negative by a robust margin of ε , thereby proving the barrier condition. In order to
perform this check, we use the nonlinear SMT solver dReal [10]. This is a δ -sat SMT solver, meaning that if it returns
the answer unsat, then the query is truly unsatisfiable, otherwise it returns a hyperbox of size δ that may contain a
counterexample. We use the center of this hyperbox as a counterexample in Algorithm 1.

Remark 3.3 (Extension to discrete-time dynamical systems). While our discussion in this paper has been centered

on continuous-time dynamical systems, practical control systems are often better modeled as discrete-time dynamical

systems6. We can use arguments similar to those for barrier certificates for discrete-time dynamical systems. The key

difference is that instead of checking a condition on the Lie derivative of the barrier function B(x), we directly check whether
the zero level set of the barrier function is an invariant set. In other words, we check for the validity of the following condition:

∀x : (B(x) ≤ 0) =⇒ (B(f (x) + д(x)η(x)) ≤ 0) (9)

We can check the validity of the above condition by checking for the unsatisfiability of its negation as before.

4 EXPERIMENTAL RESULTS

We have implemented the procedure described in Algorithm 1 in a Matlab® tool called Miyagi. Miyagi contains a
customized neural network library, an interface with Matlab® for performing numerical simulations, and an interface
5Note that the formulation provided here is modified from [41]. It includes a sign change, as [41] considers barrier functions that increase over time, as
compared to our barriers, which decrease.
6In other words, we use the recurrence equations x(n + 1) = f (x(n)) + д(x(n))k (x(n)).



to dReal to perform verification of the barrier conditions. We have benchmarked the performance of the tool on three
example systems, which we describe below. For each example, we summarize the results of training in Table 1. As the
first example has 2 states, we illustrate the training process on the first example.

Dubins’ Car Model. The Dubins car is a model of a 4-wheeled robot moving in a plane. The states are x and y position
and θ , which is the angle of the front wheels with respect to the car body. An NN controller is used to steer the car
along a given path. The purpose of the controller is to cause the car to follow the given fixed reference trajectory. We
follow the steps from [37] to put the example in the form required by Eq. (1). As described in [38], for a constant input
trajectory, the system dynamics can be described in terms of the difference between the desired trajectory and the
actual trajectory.

[
Ûderr
Ûθerr

]
=

[
V sin(θerr )

0

]
+

[
0
−1

]
u

Safety Requirement and Controller Setup. We defined a set of possible initial conditions for the system to be Xinit =

[−1.0, 1.0] × [−π/16,π/16]. We also define the set of unsafe system states Xunsafe to be the complement of the set
[−5.0, 5.0]×[−π/2,π/2].We select a single layer DNNwith 10 neurons in the hidden layerwith an activation function that
is mathematically equivalent to the hyperbolic tangent or tanh activation function. We use the Matlab® implementation
for this function (known as tansig), where tansig(x) = 2

1+e−2x − 1. We choose a function B(x) = xT Px− c as the desired
barrier function, where we select a P matrix and a constant c in a way that ensures that the resulting function is a
control barrier function. Thus, we ensure that for the set of initial states, B(x) ≤ 0 and for unsafe states, B(x) > 0,
and that the CBF condition in Def. 3.4 holds for the chosen P matrix and c . We repeat this example with multiple
configurations for the DNN controller, to show the flexibility of our approach; the results are summarized in Table 1.

Academic 3D Model. Next, we consider the following nonlinear dynamical system with 3 states in the plant:
Ûx1
Ûx2
Ûx3

 =

x3 + 8x2
−x2 + x3
−x3 − x21

 +

0
0
1

 u
Safety Requirement and Controller Setup. The initial set of the system requires each state xi ∈ [−0.2, 0.2], and the unsafe
set is the complement of the set [−2, 2]3. The chosen DNN has one hidden layer and 10 neurons, with the rectified
linear unit (ReLU) activation function (i.e. σ (a) = max(a, 0)). We designed a control barrier function using techniques
from control theory. We first considered the linear approximation of the system around the equilibrium point, and
obtained a Lyapunov function for these linear dynamics. Then, we verified that the level set of this Lyapunov function
is a valid CBF. We omit the actual CBF used for brevity.

Bicycle Steering Model. Finally, we consider an example (obtained from [31]) describing a controller to balance a
bicycle by modulating the turning angle of its steering handle. The system dynamics are described as follows:


Ûx1
Ûx2
Ûx3

 =


x2
mℓ
J (д sin(x1) +

v2
b cos(x1) tan(x3))
0

+


0
amℓv
Jb

cos(x1)
cos2(x3)
1

 u



-6 -4 -2 0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) Iteration 1 -6 -4 -2 0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Iteration 2

-6 -4 -2 0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(c) Iteration 3 -6 -4 -2 0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
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Fig. 2. SMT-driven training example. In each figure, we denote the vector field of the closed-loop system using the trained DNN
controller in that iteration. The red (resp. green) region represents unsafe (resp. initial) states. The blue ellipse is the selected CBF. The
figures show the behavior of the closed loop system at the start of each iteration (i.e., the first figure is for the untrained DNN). Red
traces indicate counterexamples provided by dReal in each iteration. Note that in each iteration, the training causes the controller to
successfully “adjust” the vector field so that trajectories that left the barrier in the previous iteration are now directed inside the
barrier.

In the above, equations the states x1, x2 and x3 respectively denote the tilt angle of the bicycle, the angular velocity
with which the bicycle tilts, and the current angle made by the handle bars with the bicycle body respectively. The
control input u is the angular velocity applied at the handle bars. The constants used in the above equations are
m = 20kg (mass), ℓ = 1m (bicycle height), b = 1m (wheel base), J = 1

3mb2 (moment of inertia), v = 10 m/s (constant
linear velocity for the bike), and д = 10 m/s2 (acceleration due to gravity).

Safety Requirement and Controller Setup.We require the bicycle to always remain within ± π3 units for each of the states,
and assume that the initial state set is ± π

30 units. We select a DNN with two hidden layers, each containing 10 neurons.
We choose a barrier certificate that we prove to be a CBF using dReal. The chosen CBF is of the form B(x) = xT Px − 1,
where P = [0.722 -0.1528 -0.1250; -0.2778 0.8472 -0.1250; -0.2778 0.1528 0.5694].

The above results table indicates that our technique for training DNN controllers scales well with the number of
hidden layers and neurons in each layer. The runtime is dominated by the time required for each dReal query. The
technique has an exponential dependence on the number of state variables. At this time, the technique is unable to
successfully verify a DNN controller for a nonlinear dynamical system with 4 states (modeling a problem for balancing
a pole on a moving cart). The bottleneck for the procedure is the scalability of dReal, which is likely to improve as the
nonlinear constraint solving technology matures.

Remark 4.1. There are a few other hyper-parameters in our implementation that are tunable. We use the particle swarm

optimizer in Matlab® to find the weights and biases, and the number of function evaluations, initial swarm size, and number

of parallel threads to use (if any) are all hyper-parameters. In our experiments, we did some basic tuning of these parameters



Model Act. L/d |w | + |b | Runtime (seconds) Iter.

dReal Optimizer
Dubins’ tansig 1/10 41 7.6 2.7 2

tansig 2/5 51 8.7 4.2 2
tansig 3/5 81 13.4 8.9 4
ReLu 1/10 41 7.6 3.1 2

Academic ReLu 1/10 51 307 1152 37
tansig 2/5 56 192 1553 47

Bicycle tansig 2/10 161 699 175 35
Table 1. Results on Verification-in-the-loop Reinforcement Learning. The column Act. denotes the activation function, L and d
respectively denote the number of layers and neurons per layer, |w | + |b | denotes the search dimension for the optimizer, which is
the total number of DNN parameters (weights and biases). The number of iterations denotes the total number of macro verification-
in-the-loop iterations required for Algorithm 1 to find a verified controller.

but did not try to find the best hyper-parameters to obtain optimal results. Another hyper-parameter is the robustness

margin used for dReal queries, which we fix to 10−4 for all examples. We used the exponential penalty function for the

Dubins’ car experiments using tansig activation, while we used the maximal penalty function for all other experiments.

5 CONCLUSIONS AND FUTUREWORK

Related Work. In our paper, we use the general theory of CBFs developed in these papers to guide our verification-in-
the-loop RL procedure. The basic theory of CBFs has been developed in previous work [40], and CBFs have been used
to develop traditional controllers in various CPS applications including bipedal robots, drone swarms and autonomous
driving [2, 26, 33, 41]. Recent work on safety in RL has been addressed using different approaches across research
communities such as statistical learning formal methods and control theory. In the learning area, research has focused on
variance reduction for maximizing rewards and encoding of domain-specific safety constraints into RL [3, 11, 32]. Formal
methods approaches have explored the use of temporal logics like LTL to specify safety objectives, and (model-based)
RL techniques to satisfy these objectives [15, 16, 30, 39].

Another related area is that of reward shaping, where designers try to manually identify state-based reward functions.
In safety-critical systems, reward shaping is an important problem as ill-crafted rewards can lead to reward hacking, i.e.,
where the RL algorithm learns a controller that performs unsafe or unrealistic actions, even though it maximizes the
expected total reward [4, 21]. Reward shaping [13], seeks to minimize reward hacking, and has been addressed using
ideas like inverse reinforcement learning (IRL) [1], potential-based reward shaping [25], or combinations of the above
[34]. These techniques require demonstrations of desired behavior from the user or domain-specific insights, which
may not always be available. In contrast, our design of the penalty function is derived directly from safety conditions
and results in better reward shaping for safety-critical applications.

Finally, we remark that in earlier work by some of the co-authors, we investigated a counterexample-guided procedure
to find a barrier certificate for a given DNN controller [37], whereas in this paper, we fix the (control) barrier certificate,
and find a safe DNN controller.

Conclusion.We present a verification-in-the-loop RL procedure to learn DNN controllers that guarantee safety of a
given dynamical system. The key idea in this paper is to use control barrier functions (CBFs) to a priori construct a



safety argument for the system, and then use the CBF to impose penalties on undesired behaviors when learning the
controller. We use nonlinear satisfiability solving to produce either proofs of safety or counterexamples to further guide
our RL algorithm, that guarantees that upon termination the resultant control is provably safe.
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