Robust Online Monitoring of Signal Temporal Logic

Garvit Juniwal¹, Shromona Ghosh¹, Alexandre Donzé¹, Sanjit A. Seshia¹, Jyotirmoy V. Deshmukh², Xiaoqing Jin ²

¹University of California, Berkeley

²Toyota Technical Center

Robut Online Monitoring

- System is a Cyber-Physical System
- φ is written in Signal Temporal Logic (STL)

Motivations

- Runtime verification
- Cutting simulation time (stops whenever true or false occurs)
- ► Quantitative satisfaction for partial traces used to guide toward falsification (T. Dreossi et al, Efficient Guiding Strategies for Testing of Temporal Properties of Hybrid Systems NFM'15 ⇒ combines Rapidly Exploring Random Trees (RRT) with STL)

Motivating Example: Autograding a CPS lab Assignment¹

Automatic feedback and autograding: fault encoding in STL + env. test cases

Robust Online Monitoring: cutting simulation time + partial credit

¹(Donze, Juniwal, Jensen, Seshia, *CPSGrader: Synthesizing Temporal Logic Testers for Auto-Grading an Embedded Systems Lab, EMSOFT'14*)

2 Robust Online Monitoring of STL

Signal Temporal Logic: Syntax

Signals are functions from \mathbb{R}^n to \mathbb{R} .

E.g.: positions (x, y, z), orientation θ , sensor values (acc. ax, ay, az), etc.

We denote by $x(\tau)$ the value of signal x at time τ .

Atomic predicates are inequalities over signal values at symbolic time t

E.g.: x(t) > 0.5, z(t) < 4, |lws(t) + rws(t)| > 100, etc.

Temporal operators are \diamondsuit , \Box , \mathbf{U} , equiped with a time interval

e.g. $\diamondsuit_{[0,2]}(x(t) > 0.5)$, $\square_{[0,40]}(y(t) < 0.3)$, $\varphi \mathbf{U}_{[1,2.5]}\psi$, etc.

Signal Temporal Logic: Syntax

Signals are functions from \mathbb{R}^n to \mathbb{R} .

E.g.: positions (x, y, z), orientation θ , sensor values (acc. ax, ay, az), etc.

We denote by $x(\tau)$ the value of signal x at time τ .

Atomic predicates are inequalities over signal values at symbolic time t

E.g.: x(t) > 0.5, z(t) < 4, |lws(t) + rws(t)| > 100, etc.

Temporal operators are \diamond , \Box , \mathbf{U} , equiped with a time interval

e.g. $\diamondsuit_{[0,2]}(x(t) > 0.5)$, $\square_{[0,40]}(y(t) < 0.3)$, $\varphi \mathbf{U}_{[1,2.5]}\psi$, etc.

Signal Temporal Logic: Syntax

Signals are functions from \mathbb{R}^n to \mathbb{R} .

E.g.: positions (x, y, z), orientation θ , sensor values (acc. ax, ay, az), etc.

We denote by $x(\tau)$ the value of signal x at time τ .

Atomic predicates are inequalities over signal values at symbolic time t

E.g.: x(t) > 0.5, z(t) < 4, |lws(t) + rws(t)| > 100, etc.

Temporal operators are \diamond , \Box , U, equiped with a time interval

e.g. $\diamondsuit_{[0,2]}(x(t) > 0.5)$, $\Box_{[0,40]}(y(t) < 0.3)$, $\varphi \mathbf{U}_{[1,2.5]}\psi$, etc.

STL Semantics

A formula φ is true if it is true at time 0

A subformula ψ is evaluated on future values depending on its temporal operators

Examples

- $\varphi = (x(t) > 0.5)$ is true iff x(t) > 0.5 is true when t is replaced by 0, i.e., at the first value of the signal.
- $\varphi = \diamondsuit_{[0,1.3]}(x(t) > 0.5)$ is true iff x(t) > 0.5 is true when t is replaced by any value in [0,1.3].
- $\varphi = \Box_{[0,1.3]}(\psi)$ is true iff ψ is true at all time in [0,1.3], i.e., for all suffixes of signals starting at a time in [0,1.3]

The signal is never above 3.5 $\varphi := \Box \ (x(t) < 3.5)$

Between 2s and 6s the signal is between -2 and 2 $\varphi := \Box_{[2,6]} \ (|x(t)| < 2)$

 $\begin{array}{l} \textit{Always} \; |x| > 0.5 \Rightarrow \textit{after 1 s, } |x| \; \textit{settles under 0.5 for 1.5 s} \\ \varphi := \Box(|x(t)| > .5 \rightarrow \diamondsuit_{[0,1.]} \; (\Box_{[0,1.5]} |x(t)| < 0.5)) \end{array}$

Robust Monitoring

Given a formula φ , a signal x and a time t, compute a quantitative satisfaction function such that:

$$\begin{split} \rho^{\varphi}(x,t) > 0 \Rightarrow x,t \vDash \varphi \\ \rho^{\varphi}(x,t) < 0 \Rightarrow x,t \nvDash \varphi \end{split}$$

Between 2s and 6s the signal is between -2.5 and 2.5 $\varphi := \Box_{[2,6]} \ (|x(t)| < 2.5)$

Between 2s and 6s the signal is between -1 and -1 $\varphi:=\square_{[2,6]}\ (|x(t)|<2.5)$

 $\begin{array}{l} \textit{Always} \; |x| > 0.5 \Rightarrow \textit{after 1 s, } |x| \; \textit{settles under 0.5 for 1.5 s} \\ \varphi := \Box(x(t) > .5 \rightarrow \diamondsuit_{[0,1.]} \; (\Box_{[0,1.5]} x(t) < 0.5)) \end{array}$

Robust Satisfaction Signal

Defined inductively on the structure of the formula:

$$\rho^{\mu}(x,t) = f(x_{1}(t), \dots, x_{n}(t))$$

$$\rho^{\neg\varphi}(x,t) = -\rho^{\varphi}(x,t)$$

$$\rho^{\varphi_{1}\wedge\varphi_{2}}(x,t) = \min(\rho^{\varphi_{1}}(x,t), \rho^{\varphi_{2}}(w,t))$$

$$\rho^{\Box_{[a,b]}\varphi}(x,t) = \inf_{\tau \in t+[a,b]}(\rho^{\varphi}(x,\tau))$$

$$\rho^{\varphi_{1}\mathbf{U}_{[a,b]}\varphi_{2}}(x,t) = \sup_{\tau \in t+[a,b]}(\min(\rho^{\varphi_{2}}(x,\tau), \inf_{s \in [t,\tau]}\rho^{\varphi_{1}}(x,s)))$$

Efficient offline algorithm (Donzé, Ferrère, Maler, CAV'13)

Challenge with online monitoring Robust semantics on incomplete traces. Example: what is $\diamondsuit_{[0,10]}(x > 0)$ for $x : [0,5] \mapsto \mathbb{R}$

Robust Satisfaction Signal

Defined inductively on the structure of the formula:

$$\rho^{\mu}(x,t) = f(x_{1}(t), \dots, x_{n}(t))$$

$$\rho^{\neg\varphi}(x,t) = -\rho^{\varphi}(x,t)$$

$$\rho^{\varphi_{1}\wedge\varphi_{2}}(x,t) = \min(\rho^{\varphi_{1}}(x,t), \rho^{\varphi_{2}}(w,t))$$

$$\rho^{\Box_{[a,b]}\varphi}(x,t) = \inf_{\tau \in t+[a,b]}(\rho^{\varphi}(x,\tau))$$

$$\rho^{\varphi_{1}\mathbf{U}_{[a,b]}\varphi_{2}}(x,t) = \sup_{\tau \in t+[a,b]}(\min(\rho^{\varphi_{2}}(x,\tau), \inf_{s \in [t,\tau]}\rho^{\varphi_{1}}(x,s))$$

Efficient offline algorithm (Donzé, Ferrère, Maler, CAV'13)

Challenge with online monitoring

Robust semantics on incomplete traces.

Example: what is $\diamondsuit_{[0,10]}(x>0)$ for $x:[0,5]\mapsto\mathbb{R}$?

2 Robust Online Monitoring of STL

- Whene $[\rho, \bar{\rho}]$ becomes positive or negative, satisfaction is established.
- Connection with Boolean semantics on partial traces (weak vs strong satisfaction) (C.Eisner et al, Reasoning with temporal logic on truncated paths, CAV'03.)

- Whene $[\rho, \bar{\rho}]$ becomes positive or negative, satisfaction is established.
- Connection with Boolean semantics on partial traces (weak vs strong satisfaction) (C.Eisner et al, Reasoning with temporal logic on truncated paths, CAV'03.)

- Whene $[\rho, \bar{\rho}]$ becomes positive or negative, satisfaction is established.
- Connection with Boolean semantics on partial traces (weak vs strong satisfaction) (C.Eisner et al, Reasoning with temporal logic on truncated paths, CAV'03.)

- Whene $[\rho, \bar{\rho}]$ becomes positive or negative, satisfaction is established.
- Connection with Boolean semantics on partial traces (weak vs strong satisfaction) (C.Eisner et al, Reasoning with temporal logic on truncated paths, CAV'03.)

- Whene $[\rho, \bar{\rho}]$ becomes positive or negative, satisfaction is established.
- Connection with Boolean semantics on partial traces (weak vs strong satisfaction) (C.Eisner et al, *Reasoning with temporal logic on truncated paths*, CAV'03.)

$$\Box_{[0,a]}\left(\neg(y>0)\lor\diamondsuit_{[b,c]}(x>0)\right)$$

$$\Box_{[0,a]}\left(\neg(y>0)\lor\diamondsuit_{[b,c]}(x>0)\right)$$

$$\begin{bmatrix} \Box_{[0,a]} \\ 0 \end{bmatrix}$$

$$\Box_{[0,a]}\left(\neg(y>0)\lor\diamondsuit_{[b,c]}(x>0)\right)$$

$$\Box_{[0,a]}\left(\neg(y>0)\lor\diamondsuit_{[b,c]}(x>0)\right)$$

$$\Box_{[0,a]}\left(\neg(y>0)\lor\diamondsuit_{[b,c]}(x>0)\right)$$

2	
┆┉╎┉╎┉ <mark>╢╴╋╾┼╾┼╼┼╼┽</mark> ┉┆┉┆┉┆┉┆┉┆┉╎┉╎┉╎┉╎┉╎┉╎┉╎┉╎┉╎┉╎┉╎┉╎┉╎┉╎┉	
a+c	
t_1 t_1 a t_4 t_5 t_4 t_5	
	1
t_1 t_1 t_2 t_3 t_4 t_5 t_5 t_4 t_5 t_5 t_4 t_5 t_5 t_4 t_5 t_4 t_5 t_4 t_5 t_4 t_5 t_4 t_5 t_5 t_4 t_5	

Theorem

For ψ bounded and non-zeno signals, each φ listed below can be monitored in an online fashion using bounded memory.

- 1. $\Box \psi$, $\Diamond \psi$
- 2. $\varphi \mathbf{U} \psi$,
- 3. $\Box \diamondsuit \psi$ (dually $\diamondsuit \Box \psi$),
- 4. $\Box(\varphi \lor \Diamond \psi)$ (dually $\Diamond(\varphi \land \Box \psi)$),
- 5. $\diamond(\varphi \land \diamond \psi)$, $\Box(\varphi \lor \Box \psi)$

Proof sketch for 1.

$$\rho_{n+1}^{\Box\psi} = \min(\rho_0^{\psi}, \rho_1^{\psi}, \dots, \rho_n^{\psi}, \rho_{n+1}^{\psi}) = \min(\min(\rho_0^{\psi}, \rho_1^{\psi}, \dots, \rho_n^{\psi}), \rho_{n+1}^{\psi}) \\
= \min(\rho_n^{\Box\psi}, \rho_{n+1}^{\psi})$$

If for all n, ρ_n^{ψ} needs at most O(k) units of memory, then so does ρ_n^{\Box}

Theorem

For ψ bounded and non-zeno signals, each φ listed below can be monitored in an online fashion using bounded memory.

- 1. $\Box \psi$, $\Diamond \psi$
- 2. $\varphi \mathbf{U} \psi$,
- 3. $\Box \diamondsuit \psi$ (dually $\diamondsuit \Box \psi$),
- 4. $\Box(\varphi \lor \Diamond \psi)$ (dually $\Diamond(\varphi \land \Box \psi)$),
- 5. $\Diamond(\varphi \land \Diamond \psi)$, $\Box(\varphi \lor \Box \psi)$

Proof sketch for 1.

$$\rho_{n+1}^{\Box\psi} = \min(\rho_0^{\psi}, \rho_1^{\psi}, \dots, \rho_n^{\psi}, \rho_{n+1}^{\psi}) = \min(\min(\rho_0^{\psi}, \rho_1^{\psi}, \dots, \rho_n^{\psi}), \rho_{n+1}^{\psi}) \\
= \min(\rho_n^{\Box\psi}, \rho_{n+1}^{\psi})$$

If for all n, ρ_n^{ψ} needs at most O(k) units of memory, then so does $\rho_n^{\Box\psi}$

Signal Temporal Logic

2 Robust Online Monitoring of STL

Experimental Results

Evaluation of online monitoring for autograding a CPS lab assignement

STL Test	# Tr	#ET	Simulation Time (mins)		Over (se	Overhead (secs)		
			Offline	Online	Naïve	Alg. 2		
avoid_front	1776	466	296	258	553	9		
avoid_left	1778	471	296	246	1347	30		
avoid_right	1778	583	296	226	1355	30		
$hill_climb_1$	1777	19	395	394	919	11		
$hill_climb_2$	1556	176	259	238	423	7		
$hill_climb_3$	1556	124	259	248	397	7		
keep_bump	1775	468	296	240	12E3	268		
what_hill	1556	71	259	268	19E3	1526		

(#Tr:number of traces, #ET: number of early termination)

Implementation in Simulink

Experimental Results

Diesel engine model (~3000 blocks) with the following requirements:

$$\begin{aligned} \varphi_{overshoot} &= \ \Box_{[a,b]}(\mathbf{x} < c) \\ \varphi_{transient} &= \ \Box_{[a,b]}(|\mathbf{x}| > c \Longrightarrow (\diamondsuit_{[0,d]} |\mathbf{x}| < e)) \end{aligned}$$

Results with different valuations of parameters (a, b, c, d, e)

Requirement	# Tr	#ET	Time taken (hours)		
			Offline	Online	
$\varphi_{overshoot}(\nu_1)$	1000	801	33.3803	26.1643	
$\varphi_{overshoot}(\nu_2)$	1000	239	33.3805	30.5923	
$\varphi_{overshoot}(\nu_3)$	1000	0	33.3808	33.4369	
$\varphi_{transient}(\nu_4)$	1000	595	33.3822	27.0405	
$\varphi_{transient}(\nu_5)$	1000	417	33.3823	30.6134	

Related Work

- Rosu, Havelund, LTL runtime verification, rewriting
- Nickovic et al, STL incremental monitoring, past operators
- Ouaknine et al, MTL online monitoring, rewriting
- Fainekos et al, MTL robust monitoring, past operators, predictors

Future Work

- Further tweaking and optimization
- Generalization of results on unbounded horizon formulas
- Active vs passive monitoring
- Implementation on embedded platforms

Related Work

- Rosu, Havelund, LTL runtime verification, rewriting
- Nickovic et al, STL incremental monitoring, past operators
- Ouaknine et al, MTL online monitoring, rewriting
- Fainekos et al, MTL robust monitoring, past operators, predictors

Future Work

- Further tweaking and optimization
- Generalization of results on unbounded horizon formulas
- Active vs passive monitoring
- Implementation on embedded platforms