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Robut Online Monitoring

System x0x1x2 . . . Property ϕ

ok

¬ ok

I System is a Cyber-Physical System
I ϕ is written in Signal Temporal Logic (STL)

Motivations
I Runtime verification
I Cutting simulation time (stops whenever true or false occurs)
I Quantitative satisfaction for partial traces used to guide toward falsification

(T. Dreossi et al, Efficient Guiding Strategies for Testing of Temporal Properties of Hybrid
Systems NFM’15 ⇒ combines Rapidly Exploring Random Trees (RRT) with STL)
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Motivating Example: Autograding a CPS lab Assignment 1

Automatic feedback and autograding: fault encoding in STL + env. test cases

Robust Online Monitoring: cutting simulation time + partial credit

1(Donze, Juniwal, Jensen, Seshia,CPSGrader: Synthesizing Temporal Logic Testers for
Auto-Grading an Embedded Systems Lab, EMSOFT’14)
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Signal Temporal Logic: Syntax

Signals are functions from Rn to R.

E.g.: positions (x,y,z), orientation θ, sensor values (acc. ax,ay,az), etc.

We denote by x(τ) the value of signal x at time τ .

Atomic predicates are inequalities over signal values at symbolic time t

E.g.: x(t) > 0.5, z(t) < 4, |lws(t) + rws(t)| > 100, etc.

Temporal operators are 3, 2, U, equiped with a time interval

e.g. 3[0,2](x(t) > 0.5), 2[0,40](y(t) < 0.3), ϕU[1,2.5]ψ, etc.
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STL Semantics

A formula ϕ is true if it is true at time 0

A subformula ψ is evaluated on future values depending on its temporal
operators

Examples
I ϕ = (x(t) > 0.5) is true iff x(t) > 0.5 is true when t is replaced by 0, i.e., at

the first value of the signal.

I ϕ = 3[0,1.3](x(t) > 0.5) is true iff x(t) > 0.5 is true when t is replaced by
any value in [0,1.3].

I ϕ = 2[0,1.3](ψ) is true iff ψ is true at all time in [0, 1.3], i.e., for all suffixes
of signals starting at a time in [0, 1.3]
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STL Examples
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STL Examples

The signal is never above 3.5
ϕ := 2 (x(t) < 3.5)

3.5
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STL Examples

Between 2s and 6s the signal is between -2 and 2
ϕ := 2[2,6] (|x(t)| < 2)

2

2 s
6 s
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STL Examples

Always |x|>0.5⇒ after 1 s, |x| settles under 0.5 for 1.5 s
ϕ := 2(|x(t)| > .5→ 3[0,1.] (2[0,1.5]|x(t)| < 0.5))

0.5

≤1 s 1.5 s

0.5

≤1 s 1.5 s

0.5

≤1 s 1.5 s
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Robust Monitoring

Given a formula ϕ, a signal x and a time t, compute a quantitative satisfaction
function such that:

ρϕ(x, t) > 0⇒ x, t � ϕ
ρϕ(x, t) < 0⇒ x, t 2 ϕ

STL Monitor ϕx : [0,T ] 7→ Rn

ok

¬ ok

ρϕ(x, t)
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STL Robust Semantics, Examples
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STL Robust Semantics, Examples

Between 2s and 6s the signal is between -2.5 and 2.5
ϕ := 2[2,6] (|x(t)| < 2.5)

ρ = 0.7
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STL Robust Semantics, Examples

Between 2s and 6s the signal is between -1 and -1
ϕ := 2[2,6] (|x(t)| < 2.5)

ρ = −0.8
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STL Robust Semantics, Examples

Always |x|>0.5⇒ after 1 s, |x| settles under 0.5 for 1.5 s
ϕ := 2(x(t) > .5→ 3[0,1.] (2[0,1.5]x(t) < 0.5))

0.5

≤1 s 1.5 s

0.5

≤1 s 1.5 s

0.5

≤1 s 1.5 s

ρ ?
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Robust Satisfaction Signal
Defined inductively on the structure of the formula:

ρµ(x, t) = f (x1(t), . . . , xn(t))
ρ¬ϕ(x, t) = −ρϕ(x, t)
ρϕ1∧ϕ2(x, t) = min(ρϕ1(x, t), ρϕ2(w, t))
ρ2[a,b]ϕ(x, t) = inf

τ∈t+[a,b]
(ρϕ(x, τ))

ρϕ1U[a,b]ϕ2(x, t) = sup
τ∈t+[a,b]

(min(ρϕ2(x, τ), inf
s∈[t,τ ]

ρϕ1(x, s))

Efficient offline algorithm (Donzé, Ferrère, Maler, CAV’13)

Challenge with online monitoring
Robust semantics on incomplete traces.

Example: what is 3[0,10](x > 0) for x : [0, 5] 7→ R ?
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Robust Online Monitoring with Partial Traces

At each step, we compute an upper bound and a lower bound for ρ.

STL Monitor ϕ

I Whene [ρ, ρ̄] becomes positive or negative, satisfaction is established.
I Connection with Boolean semantics on partial traces (weak vs strong

satisfaction) (C.Eisner et al, Reasoning with temporal logic on truncated paths,
CAV’03.)
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Robust Online Monitoring with Partial Traces

At each step, we compute an upper bound and a lower bound for ρ.

STL Monitor ϕx0, x1

ρ̄ = 0.5

ρ = −0.7

I Whene [ρ, ρ̄] becomes positive or negative, satisfaction is established.
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Robust Online Monitoring with Partial Traces

At each step, we compute an upper bound and a lower bound for ρ.

STL Monitor ϕx0, x1, x2

ρ̄ = 0.5
ρ = 0.2

I Whene [ρ, ρ̄] becomes positive or negative, satisfaction is established.
I Connection with Boolean semantics on partial traces (weak vs strong

satisfaction) (C.Eisner et al, Reasoning with temporal logic on truncated paths,
CAV’03.)
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Bounded Horizon Formulas

2[0,a]
(
¬(y > 0) ∨3[b,c](x > 0)

)

The algorithm starts by determining the horizon of each operator:
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The algorithm starts by determining the horizon of each operator:

2[0,a]

[0]

∨

[0, a]

¬

[0, a]

3[b,c]

[0, a]

y > 0

[0, a]

x > 0

[b, a+c]
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x

t

−2

−1

0

1

2

t1 a
t3

t4 t5

b a+c

y

t

−3
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−1
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2[0,a]

∨

¬ 3[b,c]

y > 0 x > 00 a
b [2,2] [2,2]

b a+c
b [-2.5,-2.5] (xinf ,xsup)

0 a
b [-2,-2] [-2,-2]

0 a
b [-2.5,xsup) (xinf ,xsup)

0 a
b [-2,xsup) [-2,xsup)

0
b [-2,xsup)
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2[0,a]

∨

¬ 3[b,c]

y > 0 x > 00 a
b [2,2] [2,2]
t7 [2,2] [2,2]

b t7 a+c
b [-2.5,-2.5] −− (xinf ,xsup)
t7 [-2.5,-2.5] [-2,-2] (xinf ,xsup)

0 a
b [-2,-2] [-2,-2]
t7 [-2,-2] [-2,-2]

0 t7−b a
b [-2.5,xsup) −− (xinf ,xsup)
t7 [-2,xsup) [-2,xsup) (xinf ,xsup)

0 t7 − b a
b [-2,xsup) −− [-2,xsup)
t7 [-2,xsup) [-2,xsup) [-2,xsup)

0
b [-2,xsup)
t7 [-2,xsup)
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2[0,a]

∨

¬ 3[b,c]

y > 0 x > 0

0 a
b [2,2] [2,2]
t7 [2,2] [2,2]
t8 [2,2] [2,2]
a+c [2,2] [2,2]

b t7 t8 a+c
b [-2.5,-2.5] −− −− (xinf ,xsup)
t7 [-2.5,-2.5] [-2,-2] −− (xinf ,xsup)
t8 [-2.5,-2.5] [-2,-2] [1,1] (xinf ,xsup)
a+c [-2,-2] [-2,-2] [1,1] [-1,-1]

0 a
b [-2,-2] [-2,-2]
t7 [-2,-2] [-2,-2]
t8 [-2,-2] [-2,-2]
a+c [-2,-2] [-2,-2]

0 t7−b t8−c a
b [-2.5,xsup) −− −− (xinf ,xsup)
t7 [-2,xsup) [-2,xsup) −− (xinf ,xsup)
t8 [1,1] [1,xsup) [1,xsup) (xinf ,xsup)
a+c [1,1] [1,1] [1,1] [1,1]

0 t7 − b t8−c a
b [-2,xsup) −− [-2,xsup) [-2,xsup)
t7 [-2,xsup) [-2,xsup) [-2,xsup) [-2,xsup)
t8 [1,1] [1,xsup) [1,xsup) (xinf ,xsup)
a+c [1,1] [1,1] [1,1] [1,1]

0
b [-2,xsup)
t7 [-2,xsup)
t8 [1,xsup)
a+c [1,1]
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Unbounded Horizon Formulas
Theorem
For ψ bounded and non-zeno signals, each ϕ listed below can be monitored in an
online fashion using bounded memory.

1. 2ψ, 3ψ

2. ϕUψ,

3. 23ψ (dually 32ψ),

4. 2(ϕ ∨3ψ) (dually 3(ϕ ∧2ψ)),

5. 3(ϕ ∧3ψ), 2(ϕ ∨2ψ)

Proof sketch for 1.

ρ2ψn+1 = min(ρψ0 , ρ
ψ
1 , . . . , ρ

ψ
n , ρ

ψ
n+1) = min(min(ρψ0 , ρ

ψ
1 , . . . , ρ

ψ
n ), ρψn+1)

= min(ρ2ψn , ρψn+1)

If for all n, ρψn needs at most O(k) units of memory, then so does ρ2ψn
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Experimental Results
Evaluation of online monitoring for autograding a CPS lab assignement

STL Test #Tr #ET Simulation
Time (mins)

Overhead
(secs)

Offline Online Naïve Alg. 2

avoid_front 1776 466 296 258 553 9
avoid_left 1778 471 296 246 1347 30
avoid_right 1778 583 296 226 1355 30
hill_climb1 1777 19 395 394 919 11
hill_climb2 1556 176 259 238 423 7
hill_climb3 1556 124 259 248 397 7
keep_bump 1775 468 296 240 12E3 268
what_hill 1556 71 259 268 19E3 1526

(#Tr:number of traces, #ET: number of early termination)
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Implementation in Simulink
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Experimental Results
Diesel engine model (~3000 blocks) with the following requirements:

ϕovershoot = 2[a,b](x < c)
ϕtransient = 2[a,b](|x| > c =⇒ (3[0,d]|x| < e))

Results with different valuations of parameters (a, b, c, d, e)

Requirement #Tr #ET Time taken (hours)
Offline Online

ϕovershoot(ν1) 1000 801 33.3803 26.1643
ϕovershoot(ν2) 1000 239 33.3805 30.5923
ϕovershoot(ν3) 1000 0 33.3808 33.4369
ϕtransient(ν4) 1000 595 33.3822 27.0405
ϕtransient(ν5) 1000 417 33.3823 30.6134
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Related Work
I Rosu, Havelund, LTL runtime verification, rewriting
I Nickovic et al, STL incremental monitoring, past operators
I Ouaknine et al, MTL online monitoring, rewriting
I Fainekos et al, MTL robust monitoring, past operators, predictors

Future Work
I Further tweaking and optimization
I Generalization of results on unbounded horizon formulas
I Active vs passive monitoring
I Implementation on embedded platforms
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