
Logical Concurrency Control

from Sequential Proofs

Jyotirmoy Deshmukh1, G. Ramalingam2, Venkatesh-Prasad Ranganath2,
and Kapil Vaswani2

1 Univeristy of Texas at Austin
jyotirmoy@cerc.utexas.edu
2 Microsoft Research, India

{grama,rvprasad,kapilv}@microsoft.com

Abstract. We are interested in identifying and enforcing the isolation
requirements of a concurrent program, i.e., concurrency control that en-
sures that the program meets its specification. The thesis of this paper is
that this can be done systematically starting from a sequential proof, i.e.,
a proof of correctness of the program in the absence of concurrent inter-
leavings. We illustrate our thesis by presenting a solution to the problem
of making a sequential library thread-safe for concurrent clients. We con-
sider a sequential library annotated with assertions along with a proof
that these assertions hold in a sequential execution. We show how we
can use the proof to derive concurrency control that ensures that any
execution of the library methods, when invoked by concurrent clients,
satisfies the same assertions. We also present an extension to guarantee
that the library is linearizable with respect to its sequential specification.

1 Introduction

A key challenge in concurrent programming is identifying and enforcing the
isolation requirements of a program: determining what constitutes undesirable
interference between different threads and implementing concurrency control
mechanisms that prevent this. In this paper, we show how a solution to this
problem can be obtained systematically from a sequential proof : a proof that
the program satisfies a specification in the absence of concurrent interleaving.

Problem Setting. We illustrate our thesis by considering the concrete problem
of making a sequential library safe for concurrent clients. Informally, given a
sequential library that works correctly when invoked by any sequential client,
we show how to synthesize concurrency control code for the library that ensures
that it will work correctly when invoked by any concurrent client.

Consider the example in Fig. 1(a). The library consists of one procedure
Compute, which applies an expensive function f to an input variable num. As
a performance optimization, the implementation caches the last input and re-
sult. If the current input matches the last input, the last computed result is
returned.

A.D. Gordon (Ed.): ESOP 2010, LNCS 6012, pp. 226–245, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Logical Concurrency Control from Sequential Proofs 227

1: int lastNum = 0;

2: int lastRes = f(0);

3: /* @returns f (num) */

4: Compute(num) {
5: /* acquire (l); */

6: if(lastNum==num) {
7: res = lastRes;

8: } else {
9: /* release (l); */

10: res = f(num);

11: /* acquire (l); */

12: lastNum = num;

13: lastRes = res;

14: }
15: /* release (l); */

16: return res;

17: }

(a) (b)

Fig. 1. (a) (excluding Lines 5,9,11,15) shows a procedure Compute that applies a (side-
effect free) function f to a parameter num and caches the result for later invocations.
Lines 5,9,11,15 contain a lock-based concurrency control generated by our technique.
(b) shows the control-flow graph of Compute, its edges labeled by statements of Compute
and nodes labeled by proof assertions.

This procedure works correctly when used by a sequential client, but not in
the presence of concurrent procedure invocations. E.g., consider an invocation of
Compute(5) followed by concurrent invocations of Compute(5) and Compute(7).
Assume that the second invocation of Compute(5) evaluates the condition in
Line 6, and proceeds to Line 7. Assume a context switch occurs at this point,
and the invocation of Compute(7) executes completely, overwriting lastRes in
Line 13. Now, when the invocation of Compute(5) resumes, it will erroneously
return the (changed) value of lastRes.

In this paper, we present a technique that can detect the potential for such
interference and synthesize concurrency control to prevent the same. The (lock-
based) solution synthesized by our technique for the above example is shown (as
comments) in Lines 5, 9, 11, and 15 in Fig. 1(a). With this concurrency control,
the example works correctly even for concurrent procedure invocations while
permitting threads to perform the expensive function f concurrently.

The Formal Problem. Formally, we assume that the correctness criterion for
the library is specified as a set of assertions and that the library satisfies these
assertions in any execution of any sequential client. Our goal is to ensure that
any execution of the library with any concurrent client also satisfies the given
assertions. For our running example in Fig. 1(a), Line 3 specifies the desired
functionality for procedure Compute: Compute returns the value f (num).

228 J. Deshmukh et al.

Logical Concurrency Control From Proofs. A key challenge in coming up with
concurrency control is determining what interleavings between threads are safe.
A conservative solution may reduce concurrency by preventing correct interleav-
ings. An aggressive solution may enable more concurrency but introduce bugs.

The fundamental thesis we explore is the following: a proof that a code frag-
ment satisfies certain assertions in a sequential execution precisely identifies the
properties relied on by the code at different points in execution; hence, such a
sequential proof clearly identifies what concurrent interference can be permitted;
thus, a correct concurrency control can be systematically (and even automati-
cally) derived from such a proof.

We now provide an informal overview of our approach by illustrating it for
our running example. Fig. 1(b) presents a proof of correctness for our running
example (in a sequential setting). The program is presented as a control-flow
graph, with its edges representing program statements. (The statement “num =
*” at the entry edge indicates that the initial value of parameter num is unknown.)
A proof consists of an invariant μ(u) attached to every vertex u in the control-
flow graph (as illustrated in the figure) such that: (a) for every edge u → v
labelled with a statement s, execution of s in a state satisfying μ(u) is guaranteed
to produce a state satisfying μ(v), (b) The invariant μ(entry) attached to the
entry vertex is satisfied by the initial state and is implied by the invariant μ(exit)
attached to the exit vertex, and (c) for every edge u → v annotated with an
assertion ϕ, we have μ(u) ⇒ ϕ. Condition (b) ensures that the proof is valid
over any sequence of executions of the procedure.

The invariant μ(u) at vertex u indicates the property required (by the proof)
to hold at u to ensure that a sequential execution satisfies all assertions of the
library. We can reinterpret this in a concurrent setting as follows: when a thread
t1 is at point u, it can tolerate changes to the state by another thread t2 as long
as the invariant μ(u) continues to hold from t1’s perspective; however, if another
thread t2 were to change the state such that t1’s invariant μ(u) is broken, then
the continued execution by t1 may fail to satisfy the desired assertions.

Consider the proof in Fig. 1(b). The vertex labeled x in the figure corresponds
to the point before the execution of Line 7. The invariant attached to x indi-
cates that the proof of correctness depends on the condition lastRes==f(num)
being true at x. The execution of Line 10 by another thread will not invalidate
this condition. But, the execution of Line 13 by another thread can potentially
invalidate this condition. Thus, we infer that, when one thread is at point x, an
execution of Line 13 by another thread should be avoided.

We prevent the execution of a statement s by one thread when another thread
is at a program point u (if s might invalidate a predicate p that is required at
u) as follows. We introduce a lock �p corresponding to p, and ensure that every
thread holds �p at u and ensure that every thread holds �p when executing s.

Our algorithm does this as follows. From the invariant μ(u) at vertex u, we
compute a set of predicates pm(u). (For now, think of μ(u) as the conjunction
of predicates in pm(u).) pm(u) represents the set of predicates required at u.
For any edge u → v, any predicate p that is in pm(v) \ pm(u) is required at v

Logical Concurrency Control from Sequential Proofs 229

but not at u. Hence, we acquire the lock for p along this edge. Dually, for any
predicate that is required at u but not at v, we release the lock along the edge.
As a special case, we acquire (release) the locks for all predicates in pm(u) at
procedure entry (exit) when u is the procedure entry (exit) vertex. Finally, if
the execution of the statement on edge u → v can invalidate a predicate p that
is required at some vertex, we acquire and release the corresponding lock before
and after the statement (unless it is already a required predicate at u or v).

Our algorithm ensures that the locking scheme does not lead to deadlocks
by merging locks when necessary, as described later. Finally, we optimize the
synthesized solution using a few simple techniques. E.g., in our example whenever
the lock corresponding to lastRes == res is held, the lock for lastNum == num
is also held. Hence, the first lock is redundant and can be eliminated.

Fig. 1 shows the resulting library with the concurrency control we synthesize.
This implementation satisfies its specification even in a concurrrent setting. The
synthesized solution permits a high degree to concurrency since it allows multiple
threads to compute f concurrently. A more conservative but correct locking
scheme would hold the lock during the entire procedure execution.

A distinguishing aspect of our algorithm is that it requires only local reason-
ing and not reasoning about interleaved executions, as is common with many
analyses of concurrent programs. Note that the synthesized solution depends
on the proof used. Different proofs can potentially yield different concurrency
control solutions (all correct, but with potentially different performance).

Linearizability. The above approach can be used to ensure that concurrent ex-
ecutions guarantee desired safety properties, preserve data-structure invariants,
and meet specifications (e.g., given as a precondition/postcondition pair). Li-
brary implementors may, however, wish to provide the stronger guarantee of
linearizability with respect to the sequential specification: any concurrent exe-
cution of a procedure is guaranteed to satisfy its specification and appears to take
effect instantaneously at some point during its execution. In this paper, we show
how the techniques sketched above can be extended to guarantee linearizability.

Implementation. We have implemented our algorithm, using an existing software
model checker to generate the sequential proofs. We used the tool to success-
fully synthesize concurrency control for several small examples. The synthesized
solutions are equivalent to those an expert programmer would use.

Contributions

We present a technique for synthesizing concurrency control for a library (e.g.,
developed for use by a single-threaded client) to make it safe for use by concurrent
clients. However, we believe that the key idea we present – a technique for
identifying and realizing isolation requirements from a sequential proof – can be
used in other contexts as well (e.g., in the context of a whole program consisting
of multiple threads, each with its own assertions and sequential proofs).

Sometimes, a library designer may choose to delegate the responsibility for
concurrency control to the clients of the library and not make the library

230 J. Deshmukh et al.

thread-safe1. Alternatively, library implementers could choose to make the exe-
cution of a library method appear atomic by wrapping it in a transaction and
executing it in an STM (assuming this is feasible). These are valid options but
orthogonal to the point of this paper. Typically, a program is a software stack,
with each level serving as a library. Passing the buck, with regards to concur-
rency control, has to stop somewhere. Somewhere in the stack, the developer
needs to decide what degree of isolation is required by the program; otherwise,
we would end up with a program consisting of multiple threads where we re-
quire every thread’s execution to appear atomic, which could be rather severe
and restrict concurrency needlessly. The ideas in this paper provide a systematic
method for determining the isolation requirements. While we illustrate the idea
in a simplified setting, it should ideally be used at the appropriate level of the
software stack.

In practice, full specifications are rarely available. We believe that our tech-
nique can be used even with lightweight specifications or in the absence of spec-
ifications. Consider our example in Fig. 1. A symbolic analysis of this library,
with a harness representing a sequential client making an arbitrary sequence of
calls to the library, can, in principle, infer that the returned value equals f(num).
As the returned value is the only observable value, this is the strongest func-
tional specification a user can write. Our tool can be used with such an inferred
specification as well.

Logical interference. Existing concurrency control mechanisms (both pessimistic
as well as optimistic) rely on a data-access based notion of interference: concur-
rent accesses to the same data, where at least one access is a write, is conserva-
tively treated as interfence. A contribution of this paper is that it introduces a
more logical/semantic notion of interference that can be used to achieve more
permissive, yet safe, concurrency control. Specifically, concurrency control based
on this approach permits interleavings that existing schemes based on stricter
notion of interference will disallow. Hand-crafted concurrent code often permits
“benign interference” for performance reasons, suggesting that programmers do
rely on such a logical notion of interference.

2 The Problem

In this section, we introduce required terminology and formally define the prob-
lem. Rather than restrict ourselves to a specific syntax for programs and as-
sertions, we will treat them abstractly, assuming only that they can be given a
semantics as indicated below, which is fairly standard.

2.1 The Sequential Setting

Sequential Libraries. A library L is a pair (P , VG), where P is a set of procedures
(defined below), and VG is a set of variables, termed global variables, accessible
1 This may be a valid design option in some cases. However, in examples such as our

running example, this could be a bad idea.

Logical Concurrency Control from Sequential Proofs 231

to all and only procedures in P . A procedure P is a pair (GP, VP), where GP is a
control-flow graph with each edge labeled by a primitive statement, and VP is a
set of variables, referred to as local variables, restricted to the scope of P. (Note
that VP includes the formal parameters of P as well.) To simplify the semantics,
we will assume that the set VP is the same for all procedures and denote it VL.

Every control-flow graph has a unique entry vertex NP (with no predecessors)
and a unique exit vertex XP (with no successors). Primitive statements are either
skip statements, assignment statements, assume statements, return statements,
or assert statements. An assume statement is used to implement conditional
control flow as usual. Given control-flow graph nodes u and v, we denote an edge
from u to v, labeled with a primitive statement s, by u

s−→ v.
To reason about all possible sequences of invocations of the library’s proce-

dures, we define the control graph of a library to be the union of the control-flow
graphs of all the procedures, augmented by a new vertex w, as well as an edge
from every procedure exit vertex to w and an edge from w to every procedure
entry vertex. We refer to w as the quiescent vertex. Note that a one-to-one corre-
spondence exists between a path in the control graph of the library, starting from
w, and the execution of a sequence of procedure calls. The edge w → NP from
the quiescent vertex to the entry vertex of a procedure P models an arbitrary
call to procedure P. We refer to these as call edges.

Sequential States. A procedure-local state σ� ∈ Σs
� is a pair (pc, σd) where pc,

the program counter, is a vertex in the control graph and σd is a map from the
local variables VL to their values. A global state σg ∈ Σs

g is a map from global
variables VG to their values. A library state σ is a pair (σ�, σg) ∈ Σs

� × Σs
g . We

say that a state is a quiescent state if its pc value is w and that it is a entry state
if its pc value equals the entry vertex of some procedure.

Sequential Executions. We assume a standard semantics for primitive statements
that can be captured as a transition relation �s ⊆ Σs × Σs as follows. Every
control-flow edge e induces a transition relation e�s, where σ

e�sσ
′ iff the ex-

ecution of (the statement labeling) edge e transforms state σ to σ′. The edge
w → NP from the quiescent vertex to the entry vertex of a procedure P models
an arbitrary call to procedure P. Hence, in defining the transition relation, such
edges are treated as statements that assign a non-deterministically chosen value
to every formal parameter of P and the default initial value to every local vari-
able of P. Similarly, the edge XP → w is treated as a skip statement. We say
σ �s σ′ if there exists some edge e such that σ

e�sσ
′.

A sequential execution is a sequence of states σ0σ1 · · ·σk where σ0 is the ini-
tial state of the library and we have σi �s σi+1 for 0 ≤ i < k. A sequential
execution represents the execution of a sequence of calls to the library’s proce-
dures (where the last call’s execution may be incomplete). Given a sequential
execution σ0σ1 · · ·σk, we say that σi is the corresponding entry state of σj if σi

is an entry state and no state σh is an entry state for i < h ≤ j.

Sequential Assertions. We use assert statements to specify desired correctness
properties of the library. Assert statements have no effect on the execution

232 J. Deshmukh et al.

semantics and are equivalent to skip statements in the semantics. Assertions
are used only to define the notion of well-behaved executions as follows.

An assert statement is of the form assert θ where, θ is a 1-state assertion ϕ
or a 2-state assertion Φ. A 1-state assertion, which we also refer to as a predicate,
makes an assertion about a single library state. Rather than define a specific
syntax for assertions, we assume that the semantics of assertions are defined by
a relation σ |=s ϕ denoting that a state σ satisfies the assertion ϕ.

1-state assertions can be used to specify the invariants expected at certain
program points. In general, specifications for procedures take the form of two-
state assertions, which relate the input state to output state. We use 2-state
assertions for this purpose. The semantics of a 2-state assertion Φ is assumed
to be defined by a relation (σin, σout) |=s Φ (meaning that state σout satisfies
assertion Φ with respect to state σin). In our examples, we use special input
variables vin to refer to the value of the variable v in the first state. E.g., the
specification “x == xin + 1” asserts that the value of x in the second state is
one more than its value in the first state.

Definition 1. A sequential execution is said to satisfy the library’s assertions if
for any transition σi

assert θ�s σi+1 in the execution, we have (a) σi |=s θ if θ is a 1-
state assertion, and (b) (σin, σi) |=s θ where σin is the corresponding entry state
of σi, otherwise. A sequential library satisfies its specifications if every execution
of the library satisfies its specifications.

2.2 The Concurrent Setting

Concurrent Libraries. A concurrent library L is a triple (P , VG, Lk), where P is
a set of concurrent procedures, VG is a set of global variables, and Lk is a set
of global locks. A concurrent procedure is like a sequential procedure, with the
extension that a primitive statement is either a sequential primitive statement
or a locking statement of the form acquire(�) or release(�) where � is a lock.

Concurrent States. A concurrent library permits concurrent invocations of pro-
cedures. We associate each procedure invocation with a thread (representing the
client thread that invoked the procedure). Let T denote an infinite set of thread-
ids, which are used as unique identifiers for threads. In a concurrent execution,
every thread has a private copy of local variables, but all threads share a single
copy of the global variables. Hence, the local-state in a concurrent execution is
represented by a map from T to Σs

� . (A thread whose local-state’s pc value is
the quiescent point represents an idle thread, i.e., a thread not processing any
procedure invocation.) Let Σc

� = T → Σs
� denote the set of all local states.

At any point during execution, a lock lk is either free or held by one thread.
We represent the state of locks by a partial function from Lk to T indicating
which thread, if any, holds any given lock. Let Σc

lk = Lk ↪→ T represent the set
of all lock-states. Let Σc

g = Σs
g ×Σc

lk denote the set of all global states. Let Σc =
Σc

� ×Σc
g denote the set of all states. Given a concurrent state σ = (σ�, (σg , σlk))

and thread t, we define σ[t] to be the sequential state (σ�(t), σg).

Logical Concurrency Control from Sequential Proofs 233

Concurrent Executions. The concurrent semantics is induced by the sequential
semantics as follows. Let e be any control-flow edge labelled with a sequen-

tial primitive statement, and t be any thread. We say that (σ�, (σg , σlk))
(t,e)� c

(σ′
�, (σ

′
g, σlk)) iff (σt, σg)

e�s(σ′
t, σ

′
g) where σt = σ�(t) and σ′

� = σ�[t �→ σ′
t]. The

transitions corresponding to lock acquire/release are defined in the obvious way.

We say that σ �c σ′ iff there exists some (t, e) such that σ
(t,e)� cσ

′.
A concurrent execution is a sequence σ0σ1 · · ·σk, where σ0 is the initial state

of the library and σi
�i�cσi+1 for 0 ≤ i < k. We say that �0 · · · �k−1 is the schedule

of this execution. A sequence �0 · · · �m is a feasible schedule if it is the schedule
of some concurrent execution. Consider a concurrent execution σ0σ1 · · ·σk. We
say that a state σi is a t-entry-state if it is generated from a quiescent state by
thread t executing a call edge. We say that σi is the corresponding t-entry state
of σj if σi is a t-entry-state and no state σh is a t-entry-state for i < h ≤ j.

We note that our semantics uses sequential consistency. Extending our results
to support weaker memory models is future work.

Interpreting Assertions In Concurrent Executions. In a concurrent setting, as-
sertions are evaluated in the context of the thread that executes the correspond-
ing assert statement. We say that state σ satisfies a 1-state assertion ϕ in the
context of thread ti (denoted by (σ, ti) |=c ϕ) iff σ[ti] |=s ϕ. For any 2-state as-
sertion Φ, we say that a given pair of states (σin, σout) satisfies Φ in the context
of thread t (denoted by ((σin, σout), t) |=c Φ) iff (σin[t], σout[t]) |=s Φ.

Definition 2. A concurrent execution π is said to satisfy the library’s assertions

if for any transition σi
(t,assert θ)�c σi+1 in the execution we have (a) (σi, t) |=c θ, if

θ is a 1-state assertion, and (b) ((σin, σi), t) |=c θ where σin is the corresponding
t-entry state of σi, otherwise. A concurrent library satisfies its specifications if
every execution of the library satisfies its specifications.

Frame Conditions. Consider a library with two global variables x and y and
a procedure IncX that increments x by 1. A possible specification for IncX is
(x == xin + 1) && (y == yin). The condition y == yin is IncX’s frame condi-
tion, which says that it will not modify y. Explicitly stating such frame conditions
is unnecessarily restrictive, as a concurrent update to y by another procedure,
when IncX is executing, would be considered a violation of IncX’s specification.
Frame conditions can be handled better by treating a specification as a pair
(S, Φ) where S is the set of all global variables referenced by the procedure, and
Φ is a specification that does not refer to any global variables outside S. For
our above example, the specification will be ({x}, x == xin + 1)). In the sequel,
however, we will restrict ourselves to the simpler setting and ignore this issue.

2.3 Goals

Our goal is: Given a sequential library L with assertions satisfied in every sequen-
tial execution, construct L̂, by augmenting L with concurrency control, such that

234 J. Deshmukh et al.

every concurrent execution of L̂ satisfies all assertions. In Section 5, we extend
this goal to construct L̂ such that every concurrent execution of L̂ is linearizable.

3 Preserving Single-State Assertions

In this section we describe our algorithm for synthesizing concurrency control,
but restrict our attention to single-state assertions.

3.1 Algorithm Overview

A sequential proof is a mapping μ from vertices of the control graph to predicates
such that (a) for every edge e = u

t−→ v, {μ(u)}t{μ(v)} is a valid Hoare triple
(i.e., σ1 |=s μ(u) and σ1

e�sσ2 implies σ2 |=s μ(v)), and (b) for every edge
u

assert ϕ−−−−−→ v, we have μ(u) ⇒ ϕ.
Note that the invariant μ(u) attached to a vertex u by a proof indicates

two things: (i) any sequential execution reaching point u will produce a state
satisfying μ(u), and (ii) any sequential execution from point u, starting from a
state satisfying μ(u) will satisfy the invariants labelling other program points
(and satisfy all assertions encountered during the execution).

A procedure that satisfies its assertions in a sequential execution may fail to
do so in a concurrent execution due to interference. The preceding paragraph,
however, hints at the interference we must avoid to ensure correctness: when a
thread t1 is at point u, we should ensure that no other thread t2 changes the state
to one where t1’s invariant μ(u) fails to hold. Any change to the state by another
thread t2 can be tolerated by t1 as long as the invariant μ(u) continues to hold.
We can achieve this by associating a lock with the invariant μ(u), ensuring that
t1 holds this lock when it is at program point u, and ensuring that any thread
t2 acquires this lock before executing a statement that may break this invariant.
An invariant μ(u), in general, may be a boolean formula over simpler predicates.
We could potentially get different locking solutions by associating different locks
with different sub-formulae of the invariant. We elaborate on this idea below.

A predicate mapping is a mapping pm from the vertices of the control graph
to a set of predicates. A predicate mapping pm is said to be a basis for a proof
μ if every μ(u) can be expressed as a boolean formula (involving conjunctions,
disjunctions, and negation) over pm(u). A basis pm for proof μ is positive if
every μ(u) can be expressed as a boolean formula involving only conjunctions
and disjunctions over pm(u).

Given a proof μ, we say that an edge u
s−→ v sequentially positively preserves

a predicate ϕ if {μ(u) ∧ ϕ}s{ϕ} is a valid Hoare triple. Otherwise, we say that
the edge may sequentially falsify the predicate ϕ. Note that the above definition
is in terms of the Hoare logic for our sequential language. However, we want to
formalize the notion of a thread t2’s execution of an edge falsifying a predicate ϕ
in a thread t1’s scope. Given a predicate ϕ, let ϕ̂ denote the predicate obtained
by replacing every local variable x with a new unique variable x̂. We say that an

Logical Concurrency Control from Sequential Proofs 235

edge u
s−→ v may falsify ϕ iff the edge may sequentially falsify ϕ̂. (Note that this

reasoning requires working with formulas with free variables, such as x̂. This is
straightforward as these can be handled just like extra program variables.)

E.g., consider Line 13 in Fig. 1. Consider predicate lastRes==f(num). By re-
naming local variable num to avoid naming conflicts, we obtain predicate lastRes
==f(ˆnum). We say that Line 13 may falsify this predicate because the triple
{res == f(num) ∧ lastNum == num ∧ lastRes == f(ˆnum)} lastRes = res
{lastRes == f(ˆnum)} is not a valid Hoare triple.

Let pm be a positive basis for a proof μ and R = ∪upm(u). If a predicate
ϕ is in pm(u), we say that ϕ is relevant at program point u. In a concurrent
execution, we say that a predicate ϕ is relevant to a thread t in a given state if
t is at a program point u in the given state and ϕ ∈ pm(u). Our locking scheme
associates a lock with every predicate ϕ in R. The invariant it establishes is
that a thread, in any state, will hold the locks corresponding to precisely the
predicates that are relevant to it. We will simplify the initial description of our
algorithm by assuming that distinct predicates are associated with distinct locks
and later relax this requirement.

Consider any control-flow edge e = u
s−→ v. Consider any predicate ϕ in

pm(v) \ pm(u). We say that predicate ϕ becomes relevant at edge e. In the
motivating example, the predicate lastNum == num becomes relevant at Line 12

We ensure the desired invariant by acquiring the locks corresponding to every
predicate that becomes relevant at edge e prior to statement s in the edge.
(Acquiring the lock after s may be too late, as some other thread could intervene
between s and the acquire and falsify predicate ϕ.)

Now consider any predicate ϕ in pm(u) \ pm(v). We say that ϕ becomes ir-
relevant at edge e. E.g., predicate lastres == f(lastNum) becomes irrelevant
once the false branch at Line 8 is taken. For every p that becomes irrelevant at
edge e, we release the lock corresponding to p after statement s.

The above steps ensure that in a concurrent execution a thread will hold a
lock on all predicates relevant to it. The second component of the concurrency
control mechanism is to ensure that any thread that acquires a lock on any
predicate before it falsifies the predicate. Consider an edge e = u

s−→ v in the
control-flow graph. Consider any predicate ϕ ∈ R that may be falsified by edge
e. We add an acquire of the lock corrresponding to this predicate before s (unless
ϕ ∈ pm(u)), and add a release of the same lock after s (unless ϕ ∈ pm(v)).

Managing locks at procedure entry/exit. We will need to acquire/release locks at
procedure entry and exit differently from the scheme above. Our algorithm works
with the control graph defined in Section 2. Recall that we use a quiescent vertex
w in the control graph. The invariant μ(w) attached to this quiescent vertex
describes invariants maintained by the library (in between procedure calls). Any
return edge u

return−−−−→ v must be augmented to release all locks corresponding to
predicates in pm(u) before returning. Dually, any procedure entry edge w → u
must be augmented to acquire all locks corresponding to predicates in pm(u).

However, this is not enough. Let w → u be a procedure p’s entry edge. The
invariant μ(u) is part of the library invariant that procedure p depends upon.

236 J. Deshmukh et al.

It is important to ensure that when p executes the entry edge (and acquires
locks corresponding to the basis of μ(u)) the invariant μ(u) holds. We achieve
this by ensuring that any procedure that invalidates the invariant μ(u) holds
the locks on the corresponding basis predicates until it reestablishes μ(u). We
now describe how this can be done in a simplified setting where the invariant
μ(u) can be expressed as the conjunction of the predicates in the basis pm(u)
for every procedure entry vertex u. (Disjunction can be handled at the cost of
extra notational complexity.) We will refer to the predicates that occur in the
basis pm(u) of some procedure entry vertex u as library invariant predicates.

We use an obligation mapping om(v) that maps each vertex v to a set of
library invariant predicates to track the invariant predicates that may be invalid
at v and need to be reestablished before the procedure exit. We say a function
om is a valid obligation mapping if it satisfies the following constraints for any
edge e = u → v: (a) if e may falsify a library invariant ϕ, then ϕ must be in
om(v), and (b) if ϕ ∈ om(u), then ϕ must be in om(v) unless e establishes ϕ.
Here, we say that an edge u

s−→ v establishes a predicate ϕ if {μ(u)}s{ϕ} is a
valid Hoare triple. Define m(u) to be pm(u)∪ om(u). Now, the scheme described
earlier can be used, except that we use m in place of pm.

Locking along assume edges. Any lock to be acquired along an assume edge will
need to be acquired before the condition is evaluated. If the lock is not required
along all assume edges out of a vertex, then we will have to release the lock along
the edges where it is not required.

Deadlock Prevention. The locking scheme synthesized above may potentially
lead to a deadlock. We now show how to modify the locking scheme to avoid
this possibility. For any edge e, let mbf(e) be (a conservative approximation
of) the set of all predicates that may be falsified by the execution of edge e.
We first define a binary relation � on the predicates used (i.e., the set R) as
follows: we say that p � r iff there exists a control-flow edge u

s−→ v such that
p ∈ m(u) ∧ r ∈ (m(v) ∪ mbf(u s−→ v)) \ m(u). Note that p � r holds iff it is
possible for some thread to try to acquire a lock on r while it holds a lock on p.
Let �∗ denote the transitive closure of �.

We define an equivalence relation � on R as follows: p � r iff p �∗ r∧r �∗ p.
Note that any possible deadlock must involve an equivalence class of this relation.
We map all predicates in an equivalence class to the same lock to avoid deadlocks.
In addition to the above, we establish a total ordering on all the locks, and ensure
that all lock acquisitions we add to a single edge are done in an order consistent
with the established ordering.

Optimizations. Our scheme can sometimes introduce redundant locking. E.g.,
assume that in the generated solution a lock �1 is always held whenever a lock
�2 is acquired. Then, the lock �2 is redundant and can be eliminated. Similarly,
if we have a predicate ϕ that is never falsified by any statement in the library,
then we do not need to acquire a lock for this predicate. We can eliminate such
redundant locks as a final optimization pass over the generated solution.

Logical Concurrency Control from Sequential Proofs 237

Note that it is safe for multiple threads to simultaneously hold a lock on
the same predicate ϕ if they want to “preserve” it, but a thread that wants
to “break” ϕ needs an exclusive lock. Thus, reader-writer locks can be used to
improve concurrency, but space constraints prevent a discussion of this extension.

Generating Proofs. The sequential proof required by our scheme can be generated
using verification tools such as SLAM [2], BLAST [10,11] and Yogi [9]. Since a
minimal proof can lead to better concurrency control, approaches that produce
a “parsimonious proof” (e.g., see [11]) are preferable. A parsimonious proof is
one that avoids the use of unnecessary predicates at any program point.

3.2 Complete Schema

We now present a complete outline of our schema for synthesizing concurrency
control.

1. Construct a sequential proof μ that the library satisfies the given assertions
in any sequential execution.

2. Construct positive basis pm and an obligation mapping om for the proof μ.
3. Compute a map mbf from the edges of the control graph to R, the range of

pm, such that mbf(e) (conservatively) includes all predicates in R that may
be falsified by the execution of e.

4. Compute the equivalence relation � on R.
5. Generate a predicate lock allocation map lm : R → L such that for any

ϕ1 � ϕ2, we have lm(ϕ1) = lm(ϕ2).
6. Compute the following quantities for every edge e = u

s−→ v, where we use
lm(X) as shorthand for { lm(p) | p ∈ X } and m(u) = pm(u) ∪ om(u):

BasisLocksAcq(e) = lm(m(v)) \ lm(m(u))
BasisLocksRel(e) = lm(m(u)) \ lm(m(v))
BreakLocks(e) = lm(mbf(e)) \ lm(m(u)) \ lm(m(v))

7. We obtain the concurrency-safe library ̂L by transforming every edge u
s−→ v

in the library L as follows:
(a) ∀ p ∈ BasisLocksAcq(u s−→ v), add an acquire(lm(p)) before s;
(b) ∀ p ∈ BasisLocksRel(u s−→ v), add a release(lm(p)) after s;
(c) ∀ p ∈ BreakLocks(u s−→ v), add an acquire(lm(p)) before s and a

release(lm(p)) after s.
All lock acquisitions along a given edge are added in an order consistent with
a total order established on all locks.

3.3 Correctness

Let L be a given library with a set of embedded assertions satisfied by all se-
quential executions of L. Let ̂L be the library obtained by augmenting L with
concurrency control using the algorithm presented in Section 3.2.

Theorem 1. (a) Any concurrent execution of ̂L satisfies every assertion of L.
(b) The library ̂L is deadlock-free.

See [5] for all proofs.

238 J. Deshmukh et al.

4 Extensions for 2-State Assertions

The algorithm presented in the previous section can be extended to handle 2-
state assertions via a simple program transformation that allows us to treat
2-state assertions (in the original program) as single-state assertions (in the
transformed program). We augment the set of local variables with a new variable
ṽ for every (local or shared) variable v in the original program and add a primitive
statement LP at the entry of every procedure, whose execution essentially copies
the value of every original variable v to the corresponding new variable ṽ.

Let σ′ denote the projection of a transformed program state σ′ to a state of the
original program obtained by forgetting the values of the new variables. Given a
2-state assertion Φ, let Φ̃ denote the single-state assertion obtained by replacing
every vin by ṽ. As formalized by the claim below, the satisfaction of a 2-state
assertion Φ by executions in the original program corresponds to satisfaction of
the single-state assertion Φ̃ in the transformed program.

Lemma 1. (a) A schedule ξ is feasible in the transformed program iff it is feasi-
ble in the original program. (b) Let σ′ and σ be the states produced by a particular
schedule with the transformed and original programs, respectively. Then, σ = σ′.
(c) Let π′ and π be the executions produced by a particular schedule with the
transformed and original program, respectively. Then, π satisfies a single-state
assertion ϕ iff π′ satisfies it. Furthermore, π satisfies a 2-state assertion Φ iff
π′ satisfies the corresponding one-state assertion Φ̃.

Synthesizing concurrency control. We now apply the technique discussed in Sec-
tion 3 to the transformed program to synthesize concurrency control that pre-
serves the assertions transformed as discussed above. It follows from the above
Lemma that this concurrency control, used with the original program, preserves
both single-state and two-state assertions.

5 Guaranteeing Linearizability

In the previous section, we showed how to derive concurrency control to ensure
that each procedure satisfies its sequential specification even in a concurrent exe-
cution. However, this may still be too permissive, allowing interleaved executions
that produce counter-intuitive results and preventing compositional reasoning in
clients of the library. E.g., consider the procedure Increment shown in Fig. 2,
which increments a shared variable x by 1. The figure shows the concurrency con-
trol derived using our approach to ensure specification correctness. Now consider
a multi-threaded client that initializes x to 0 and invokes Increment concurrently
in two threads. It would be natural to expect that the value of x would be 2 at
the end of any execution of this client. However, this implementation permits an
interleaving in which the value of x at the end of the execution is 1: the problem
is that both invocations of Increment individually meet their specifications, but
the cumulative effect is unexpected. (We note that such concerns do not arise

Logical Concurrency Control from Sequential Proofs 239

1 int x = 0;

2 //@ensures x == xin + 1 ∧ returns x
3 Increment () {

4 int tmp;

5 acquire(l(x==xin)); tmp = x; release(l(x==xin));

6 tmp = tmp + 1;

7 acquire(l(x==xin)); x = tmp; release(l(x==xin));

8 return tmp;

9 }

Fig. 2. A non-linearizable implementation of the procedure Increment

when the specification does not refer to shared variables. For instance, the speci-
fication for our example in Fig. 1 does not refer to shared variables, even though
the implementation uses shared variables.)

One solution to this problem is to apply concurrency control synthesis to the
code (library) that calls Increment. The synthesis can then detect the potential
for interference between the calls to Increment and prevent them from happen-
ing concurrently. Another possible solution, which we explore in this section,
is for the library to guarantee a stronger correctness criteria called linearizabil-
ity [12]. Linearizability gives the illusion that in any concurrent execution, (the
sequential specification of) every procedure of the library appears to execute
instantaneously at some point between its call and return. This illusion allows
clients to reason about the behavior of concurrent library compositionally using
its sequential specifications.

In this section, we extend our approach to derive concurrency control that
guarantees linearizability. Due to space constraints, we show how to ensure that
every procedure appears to execute instantaneously along its entry edge, while
satisfying its sequential specification. The technique can be generalized to permit
linearization points (i.e., the point at which the procedure’appears to execute
instantaneously) other than the procedure entry, subject to some constraints
(see [5]). Recall that we adapt the control-flow graph representation of each
procedure by labelling the procedure entry edge with the statement LP defined
in Section 4 to handle 2-state assertions. Without loss of generality, we assume
that each procedure Pj returns the value of a special local variable retj .

We start by characterizing non-linearizable interleavings permitted by our ear-
lier approach. We classify the interleavings based on the nature of linearizability
violations they cause. For each class of interleavings, we describe an extension
to our approach to generate additional concurrency control to prohibit these
interleavings.

Delayed Falsification. Informally, the problem with the Increment example can
be characterized as “dirty reads” and “lost updates”: the second procedure invo-
cation executes its linearization point later than the first procedure invocation
but reads the original value of x, instead of the value produced by the the first
invocation. Dually, the update done by the first procedure invocation is lost,

240 J. Deshmukh et al.

when the second procedure invocation updates x. From a logical perspective,
the second invocation relies on the invariant x == xin early on, and the first
invocation breaks this invariant later on when it assigns to x (at a point when
the second invocation no longer relies on the invariant). This prevents us from
reordering the execution to construct an equivalent sequential execution (while
preserving the proof).

The extension we now describe prevents such interference by ensuring that
instructions that may falsify predicates and occur after the linearization point
appear to execute atomically at the linearization point. We achieve this by mod-
ifying the strategy to acquire locks as follows.

– We generalize the earlier notion of may-falsify. We say that a path may-
falsify a predicate ϕ if some edge in the path may-falsify ϕ. We say that a
predicate ϕ may-be-falsified-after vertex u if there exists some path from u
to the exit vertex of the procedure that does not contain any linearization
point and may-falsify ϕ.

– Let mf be a predicate map such that for any vertex u, mf(u) includes any
predicate that may-be-falsified-after u.

– We generalize the original scheme for acquiring locks. We augment every
edge e = u

S−→ v as follows:
1. ∀ � ∈ lm(mf(v))\lm(mf(u)), add an “acquire(�)” before S
2. ∀ � ∈ lm(mf(u))\lm(mf(v)), add an “release(�)” after S

This extension suffices to produce a linearizable implementation of the example
in Fig. 2.

Return Value Interference. We now focus on interference that can affect the
actual value returned by a procedure invocation, leading to non-linearizable exe-
cutions.

Consider procedures IncX and IncY in Fig. 5, which increment variables x
and y respectively. Both procedures return the values of x and y. However, the
postconditions of IncX (and IncY) do not specify anything about the final value of
y (and x respectively). Let us assume that the linearization points of the proce-
dures are their entry points. Initially, we have x = y = 0. Consider the following
interleaving of a concurrent execution of the two procedures. The two procedures
execute the increments in some order, producing the state with x = y = 1. Then,
both procedures return (1, 1). This execution is non-linearizable because in any
legal sequential execution, the procedure executing second is obliged to return a
value that differs from the value returned by the procedure executing first. The
left column in Fig. 5 shows the concurrency control derived using our approach
with previously described extensions. This is insufficient to prevent the above
interleaving. This interference is allowed because the specification for IncX al-
lows it to change the value of y arbitrarily; hence, a concurrent modification to
y by any other procedure is not seen as a hindrance to IncX.

To prohibit such interferences within our framework, we need to determine
whether the execution of a statement s can potentially affect the return-value of
another procedure invocation. We do this by computing a predicate φ(ret ′) at

Logical Concurrency Control from Sequential Proofs 241

int x, y;

IncX() {
acquire(lx==xin);

x = x + 1;

(ret11,ret12)=(x,y);
release(lx==xin);

}
IncY() {
acquire(ly==yin);

y = y + 1;

(ret21,ret22)=(x,y);
release(ly==yin);

}

(a)

int x, y;

@ensures x = xin + 1

@returns (x, y)

IncX() {
[ret′11==x+1 ∧ ret′12==y]

LP : x = xin

[x==xin ∧ ret′11==x+1 ∧ ret′12=y]
x = x + 1;

[x==xin+1 ∧ ret′11==x ∧ ret′12= y]

(ret11,ret12)=(x,y);
[x==xin+1 ∧ ret11==ret

′
11

∧ ret12==ret
′
12]

}

(b)

int x, y;

IncX() {
acquire(lmerged);
x = x+1;

(ret11,ret12)=(x,y);
release(lmerged);

}
IncY() {
acquire(lmerged);
y = y+1;

(ret21,ret22)=(x,y);
release(lmerged);

}

(c)

Fig. 3. An example illustrating return value interference. Both procedures return
(x,y). retij refers to the jth return variable of the ith procedure. Figure 3(a) is a
non-linearizable implementation synthesized using the approach described in Section 3.
Figure 3(b) shows the extended proof of correctness of the procedure IncX and Fig-
ure 3(c) shows the linearizable implementation.

every program point u that captures the relation between the program state at
point u and the value returned by the procedure invocation eventually (denoted
by ret ′). We then check if the execution of a statement s will break predicate
φ(ret ′), treating ret ′ as a free variable, to determine if the statement could affect
the return value of some other procedure invocation.

Formally, we assume that each procedure returns the value of a special variable
ret . (Thus, “return exp” is shorthand for “ret = exp”.) We introduce a special
primed variable ret ′. We compute a predicate φ(u) at every program point u
such that (a) φ(u) = ret ′== ret for the exit vertex u, and (b) for every edge
u

s−→ v, {φ(u)}s{φ(v)} is a valid Hoare triple. In this computation, ret ′ is treated
as a free variable. In effect, this is a weakest-precondition computation of the
predicate ret ′== ret from the exit vertex.

Next, we augment the basis at every vertex u so that it includes a basis for
φ(u) as well. We now apply our earlier algorithm using this enriched basis set.

The middle column in Fig. 5 shows the augmented sequential proof of cor-
rectness of IncX. The concurrency control derived using our approach starting
with this proof is shown in the third column of Fig. 5. The lock lmerged denotes a
lock obtained by merging locks corresponding to multiple predicates simultane-
ously acquired/released. It is easy to see that this implementation is linearizable.
Also note that if the shared variables y and x were not returned by procedures
IncX and IncY respectively, we will derive a locking scheme in which accesses
to x and y are protected by different locks, allowing these procedures to execute
concurrently.

Control Flow Interference. An interesting aspect of our scheme is that it permits
interference that alters the control flow of a procedure invocation if it does not

242 J. Deshmukh et al.

1 int x, y;

2 //@ensures y = yin + 1
3 IncY () {

4 [true] LP : yin = y

5 [y == yin] y = y + 1;

6 [y == yin + 1]
7 }

1 //@ensures x < y
2 ReduceX () {

3 [true] LP
4 [true] if (x ≥ y) {

5 [true] x = y - 1;

6 }

7 [x < y]
8 }

Fig. 4. An example illustrating interference in control flow. Each line is annotated (in
square braces) with a predicate the holds at that program point.

cause the invocation to violate its specification. Consider procedures ReduceX
and IncY shown in Fig. 4. The specification of ReduceX is that it will produce a
final state where x < y, while the specification of IncY is that it will increment
the value of y by 1. ReduceX meets its specification by setting x to be y − 1, but
does so only if x ≥ y.

Now consider a client that invokes ReduceX and IncY concurrently from a
state where x = y = 0. Assume that the ReduceX invocation enters the proce-
dure. Then, the invocation of IncY executes completely. The ReduceX invocation
continues, and does nothing since x < y at this point.

Fig. 4 shows a sequential proof and the concurrency control derived by the
scheme so far, assuming that the linearization points are at the procedure entry.
A key point to note is that ReduceX’s proof needs only the single predicate
x < y. The statement y = y + 1 in IncY does not falsify the predicate x < y;
hence, IncY does not acquire the lock for this predicate. This locking scheme
permits IncY to execute concurrently with ReduceX and affect its control flow.
While our approach guarantees that this control flow interference will not cause
assertion violations, proving linearizability in the presence of such control flow
interference, in the general case, is challenging (and an open problem). Therefore,
we conservatively extend our scheme to prevent control flow interference, which
suffices to guarantee linearizability.

We ensure that interference by one thread does not affect the execution path
another thread takes. We achieve this by strengthening the notion of positive
basis as follows: (a) The set of basis predicates at a branch node must be suf-
ficient to express the assume conditions on outgoing edges using disjunctions
and conjunctions over the basis predicates, and (b) The set of basis predicates
at neighbouring vertices must be positively consistent with each other: for any
edge u

s−→ v, and any predicate ϕ in the basis at v, the weakest-pre-condition of
ϕ with respect to s must be expressible using disjunctions and conjunctions of
the basis predicates at u.

In the current example, this requires predicate x ≥ y to be added to the basis
for ReduceX. As a result, ReduceX will acquire lock lx≥y at entry, while IncY
will acquire the same lock at its linearization point and release the lock after the
statement y = y + 1. It is easy to see that this implementation is linearizable.

Logical Concurrency Control from Sequential Proofs 243

Correctness. The extensions described above to the algorithm of Sections 3
and 4 for synthesizing concurrency control are sufficient to guarantee lineariz-
ability, as stated in the theorem below.

Theorem 2. Given a library L that is totally correct with respect to a given
sequential specification, the library ̂L generated by our algorithm is linearizable
with respect to the given specification.

6 Implementation

We have built a prototype implementation of our algorithm that uses a predicate-
abstraction based software verification tool [9] to generate the required proofs.
Our implementation takes a sequential library and its assertions as input. It uses
a pre-processing phase to combine the library with a harness (that simulates the
execution of any possible sequence of library calls) to get a valid C program. It
then use the verification tool to generate a proof of correctness for this program.
It then uses the algorithm presented in this paper to synthesize concurrency
control for the library.

We used a set of benchmark programs to evaluate our approach. The programs
include examples shown in Figure 1, 5 and 4. We also used two real world
libraries, a device cache library [6] that reads data from a device and caches the
data for subsequent reads, and a C implementation of the Simple Authentication
and Security Layer (SASL). This library is a generic server side library that
manages security context objects for user sessions. We applied our technique
manually to the device cache library and the SASL library because the model
checker we used does not permit quantifiers in specifications. For these libraries,
we wrote full specifications (which required using quantified predicates) and
manually generated proofs of correctness.

Starting with these (manually and automatically generated) proofs, the con-
currency control scheme we synthesized was identical to what an experienced
programmer would generate (in terms of the number and scope of locks). Our
solutions permit more concurrency as compared to naive solutions that use one
global lock or an atomic section around the body of each procedure. In all cases,
the concurrency control scheme we synthesize are the same or better than the
concurrency control defined by developers of the library. For example, in case
of the server store library, our scheme generates smaller critical sections and
identifies a larger number of critical sections that acquire different locks as com-
pared to the default implementation. The source code for all our examples and
their concurrent versions are available online at [1]. We leave a more detailed
evaluation of our approach as future work.

7 Related Work

Synthesizing Concurrency Control. Most existing work [8,3,7,15,13,19] on
synthesizing concurrency control focuses on inferring lock-based synchronization

244 J. Deshmukh et al.

for atomic sections to guarantee atomicity. Our work differs in expoiting a (se-
quential) specification to derive concurrency control. We also present an extension
to guarantee linearizability with respect to a sequential specification, which is a
weaker requirement that permits greater concurrency than the notion of atomic
sections. Furthermore, existing lock inference schemes identify potential conflicts
between atomic sections at the granularity of data items and acquire locks to pre-
vent these conflicts, either all at once or using a two-phase locking approach. Our
approach is novel in using a logical notion of interference (based on predicates),
which can permit more concurrency. Finally, the locking disciplines we infer do not
necessarily follow two-phase locking, yet guarantee linearizability.

[18] describes a sketching technique to add missing synchronization by iter-
atively exploring the space of candidate programs for a given thread schedule,
and pruning the search space based on counterexample candidates. [14] uses
model-checking to repair errors in a concurrent program by pruning erroneous
paths from the control-flow graph of the interleaved program execution. In [21],
the key goal is to obtain a maximally concurrent program for a given cost. This
is achieved by deleting transitions from the state-space based on observational
equivalence between states, and inspecting if the resulting program satisfies the
specification and is implementable. [4] allows users to specify synchronization
patterns for critical sections, which are used to infer appropriate synchroniza-
tion for each of the user-identified region. Vechev et al. [20] address the problem
of automatically deriving linearizable objects with fine-grained concurrency, us-
ing hardware primitives to achieve atomicity. The approach is semi-automated,
and requires the developer to provide algorithm schema and insightful manual
transformations. Our approach differs from all of these techniques in exploiting
a proof of correctness (for a sequential computation) to synthesize concurrency
control that guarantees thread-safety.

Verifying Concurrent Programs. Our proposed style of reasoning is closely
related to the axiomatic approach for proving concurrent programs of Owicki &
Gries [17]. While they focus on proving a concurrent program correct, we focus
on synthesizing concurrency control. They observe that if two statements do not
interfere, the Hoare triple for their parallel composition can be obtained from the
sequential Hoare triples. Our approach identifies statements that may interfere
and violate the sequential Hoare triples, and then synthesizes concurrency control
to ensure that sequential assertions are preserved by parallel composition.

Prior work on verifying concurrent programs [16] has also shown that attach-
ing invariants to resources (such as locks and semaphores) can enable modu-
lar reasoning about concurrent programs. Our paper turns this around: we use
sequential proofs (which are modular proofs, but valid only for sequential ex-
ecutions) to identify critical invariants and create locks corresponding to such
invariants and augment the program with concurrency control that enables us
to lift the sequential proof into a valid proof for the concurrent program.

Logical Concurrency Control from Sequential Proofs 245

References

1. WYPIWYG examples (June 2009),
http://research.microsoft.com/en-us/projects/wypiwyg/wypiwyg_

examples.zip

2. Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for Boolean programs.
In: Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp.
113–130. Springer, Heidelberg (2000)

3. Cherem, S., Chilimbi, T., Gulwani, S.: Inferring locks for atomic sections. In: Proc.
of PLDI (2008)

4. Deng, X., Dwyer, M.B., Hatcliff, J., Mizuno, M.: Invariant-based specification,
synthesis, and verification of synchronization in concurrent programs. In: Proc. of
ICSE, pp. 442–452 (2002)

5. Deshmukh, J., Ramalingam, G., Ranganath, V.P., Vaswani, K.: Logical concur-
rency control from sequential proofs. Tech. Rep. MSR-TR-2009-81, Microsoft Re-
search (2009)

6. Elmas, T., Tasiran, S., Qadeer, S.: A calculus of atomic sections. In: Proc. of POPL
(2009)

7. Emmi, M., Fischer, J., Jhala, R., Majumdar, R.: Lock allocation. In: Proc. of POPL
(2007)

8. Flanagan, C., Freund, S.N.: Automatic synchronization correction. In: Proc. of
SCOOL (2005)

9. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: Synergy:
A new algorithm for property checking. In: Proc. of FSE (November 2006)

10. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proc.
of POPL, pp. 58–70 (2002)

11. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Proc. of POPL, pp. 232–244 (2004)

12. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. Proc. of ACM TOPLAS 12(3), 463–492 (1990)

13. Hicks, M., Foster, J.S., Pratikakis, P.: Lock inference for atomic sections. In: First
Workshop on Languages, Compilers, and Hardware Support for Transactional
Computing (2006)

14. Janjua, M.U., Mycroft, A.: Automatic correcting transformations for safety prop-
erty violations. In: Proc. of Thread Verification, pp. 111–116 (2006)

15. McCloskey, B., Zhou, F., Gay, D., Brewer, E.A.: Autolocker: Synchronization in-
ference for atomic sections. In: Proc. of POPL (2006)

16. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput.
Sci. 375(1-3), 271–307 (2007)

17. Owicki, S., Gries, D.: Verifying properties of parallel programs: An axiomatic ap-
proach. In: Proc. of CACM (1976)

18. Solar-Lezama, A., Jones, C.G., Bodik, R.: Sketching concurrent data structures.
In: Proc. of PLDI, pp. 136–148 (2008)

19. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in
an object-oriented language. In: Proc. of POPL, pp. 334–345 (2006)

20. Vechev, M., Yahav, E.: Deriving linearizable fine-grained concurrent objects. In:
Proc. of PLDI, pp. 125–135 (2008)

21. Vechev, M., Yahav, E., Yorsh, G.: Inferring synchronization under limited observ-
ability. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505,
pp. 139–154. Springer, Heidelberg (2009)

http://research.microsoft.com/en-us/projects/wypiwyg/wypiwyg_examples.zip
http://research.microsoft.com/en-us/projects/wypiwyg/wypiwyg_examples.zip

	Logical Concurrency Control from Sequential Proofs
	Introduction
	The Problem
	The Sequential Setting
	The Concurrent Setting
	Goals

	Preserving Single-State Assertions
	Algorithm Overview
	Complete Schema
	Correctness

	Extensions for 2-State Assertions
	Guaranteeing Linearizability
	Implementation
	Related Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

