
Homework Assignment 1

CS 599: Autonomous Cyber-Physical Systems

Instructor: Jyotirmoy V. Deshmukh

Due Date: Feburary 1, 2018, Time: AoE (UTC -12)

Problem 1. [25 points]
(a) In this problem, we will design a synchronous reactive component to set the
cruising speed of a vehicle. This component corresponds to the SetSpeed com-
ponent in the cruise-control system CruiseController. The SetSpeed compo-
nent takes the following inputs:
1. event(bool) cruise: This event models the user turning the cruise control

on or off.
2. nat speed : This input models the speed input from the vehicle (corresponds

to the current speed of the vehicle).
3. event inc: This input models the user requesting an increase in the cruising

speed.
4. event dec: This input models the user requesting a decrease in the cruising

speed.

It has two outputs:
1. event(nat) cruiseSpeed : This output, if present, contains the current cruising

speed.
2. bool status: This output is 1 if the cruise control is on, and is 0 if it is off.

There are two constants called minSpeed and maxSpeed that we will use within
the component. The operation of the component is as follows. You can assume
that the component uses one or more state variables to keep track of its state.
Let one of the state variables be a Boolean variable called on. The component
updates the state variable on according to the following rule: every time the
event cruise occurs, the variable on is toggled. Whenever the on variable is
set to 1, then the component outputs the cruising speed using the cruiseSpeed
output variable. If the current speed speed is within the legal range minSpeed

and maxSpeed, then the cruiseSpeed variable is set to speed ; if not, it is set to
the closest legal value (i.e. minSpeed or maxSpeed). Also, when on is 1, if a dec
event is received, then the cruising speed is decremented (restricting the low-
est speed to minSpeed), and when the inc event is received, the cruising speed
is incremented (restricting the highest speed to maxSpeed). If the on variable
is set to 0, all input events except cruise are ignored, and there is no output

1

produced on cruiseSpeed , and we output a 0 on status. Show the synchronous
reactive component that implements this functionality.

(b) Now consider the design of the SetSpeed component with two additional
input signals: brake and resume. Whenever the SetSpeed component has the on
state set to 1, if it receives the brake command, the SetSpeed component stops
producing the output (i.e. can be considered to be temporarily suspended). In
this state, the cruiseSpeed output should be absent, the status output should
still indicate that the cruise control is on, and events inc and dec should be
ignored. Upon receiving the resume event, the cruise controller should restore
the desired speed to the last known cruise speed setting. In this state, receiving
a cruise event should turn the SetSpeed component off, and reset all state
variables to the initial states. In the off state, receiving resume or brake events
will have no effect. Redesign SetSpeed with the new functionality. Comment
on whether you require additional state variables. You can choose to show
your design either as a synchronous reactive component block diagram, or as an
extended state machine.

Problem 2. [25 points] Design a synchronous reactive component with the fol-
lowing functionality. It has three inputs A, B and reset, and one output O. All
inputs and outputs are Boolean. It starts in an idle state, and once it receives
an input on both A and B (in the same round or in different rounds), it emits
output on O. If in any round it receives the input reset, it goes back to the idle
state without emitting output. Show the extended state machine representing
this component. Explain if your component is finite-state, if it is deterministic,
and if it is input-enabled in one sentence each.

** If you are interested, read the wikipedia article on the synchronous program-
ming language Esterel. The article shows the Esterel code for this example!

Problem 3. [25 points] When you have a team of autonomous agents trying
to achieve consensus over some action, it is common to employ a distributed
consensus seeking algorithm. There are numerous distributed consensus algo-
rithms in the literature, and in this example, we will look at a very simple form
of consensus seeking. Consensus algorithms are usually backed with a proof
that as the number of communication rounds between agents tends to infinity,
the “information” states of the agents converge to each other asymptotically.

In this problem, we will consider three UAVs that are trying to decide on
a location to rendezvous. Each UAV uses an asynchronous process to achieve
consensus. Consider the asynchronous process Pi for agent i shown in Fig. 1:

Process Pi has three state variables, both of type real. The variable xi

stores a desired location for the rendezvous for process Pi. The variables sumi

and nRcvi are used as temporary variables during computation of the average
of the information states across all processes. It has three inputs:
• bool sendReqj ,sendReqk : These inputs receive requests from Processes Pj

and Pk respectively.

2

idlei recvi

sendij

sendik

sendReqi!1;
nRcvi := 0;
sumi := xi

nRcvi ≥ 2→
xi := sumi/3

ini? ∧ nRcv < 2→
sumi := sumi + ini;
nRcvi := nRcvi + 1

else

(sendReqj == 1)?

inj !xi

(sendReqk == 1)?

ink!xi

xi := initi

Figure 1: Process Pi

• real ini : This input receives some real value from either Pj or Pk.

It has three outputs:
• bool sendReqi: This output channel is used to send a request to processes
Pj and Pk.

• real inj , ink: These output channel is used to send the values of the state
variable xi to processes Pj and Pk respectively.
The extended state machines for Process Pj and Pk are symmetric versions

of Fig. 1, i.e. for process Pj , all indices i and j are swapped, and for process
Pk, k ↔ i.

(a) Consider an execution where the three processes are initialized such that
initi, initj, initk are respectively 10, 15, and 17.Show one possible execution
containing at least 10 actions of the composition of the three processes. Assume
that the scheduler chooses the process executions such that Pi sends a request
first, and when Pi transitions back to the state idlei, Pj sends a request, and
when Pj transitions back to the state idlej , Pk sends a request.

(b) What would change if you had one more autonomous agent? Sketch the
modified asynchronous process Pi.

3

Problem 4. [25 points] Consider the following timed process:

• Set of input channels I = {in},
• Set of output channels O = {out1, out2},
• Set of clock variables C (to be determined)
• Set of discrete modes (to be determined)

The behavior of the timed process can be described in following steps:
Step 1: It awaits an input on in and once it receives this input, it produces an
output on out1 at least 3 seconds later, and at most 5 seconds later. It ignores
any input received during this time (i.e. after receiving input on in and before
producing output on out1).
Step 2: After producing the output on out1, it again awaits an input on in.
Once it receives this input, it then produces an output on out2 at most 4 sec-
onds later. Again, it ignores any inputs received in the interim. After producing
output on out2, it goes back to Step 1.

(a) Draw a state machine representation for the timed process.
(b) Make a note of how many clock variables you had to use and the number

of discrete modes.

4

