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Introduction

What is Reinforcement Learning?

Reinforcement Learning is a framework for algorithms designed to
train an agent on a task through repeated interaction with the
environment.

This method is inspired by ideas in cognitive sciences and behavioral
psychology, as suggested by the titles of some of the early work done
in this field (Barto, Sutton, and Anderson Bertsekas and Tsitsiklis).
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Introduction

What is Reinforcement Learning?

RL is more related to Optimal Control Theory than it is to Machine
Learning.

It was initially developed as a method to learn controllers (or policies)
for stochastic systems1 (Kumar and Varaiya).

In RL, we typically model the environment as a Markov Decision
Process (MDP) and say that the goal is to learn a policy, π, that
learns to “solve” the MDP.

1systems modeled with random noise in their observations and their control vectors
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Background Definitions

Definition (Markov Decision Process)

An MDP is a tuple M = 〈S ,A,P,R〉 where

S is the state space of the system;

A is the set of actions that can be performed on the system;

P : S × A× S → [0, 1] is the transition probability function such that,
P(s, a, s ′) = P [st+1 = s ′ | st = s, at = a];

R is a reward function that typically maps either some s ∈ S or some
transition δ ∈ S × A× S to R.
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Background Definitions

In the standard RL problem (Sutton and Barto), a learning agent
interacts with a MDP.

The state, action, and reward at each time t ∈ {0, 1, 2, . . . } are
denoted st ∈ S , at ∈ A, and rt ∈ R respectively.

We also denote the expected reward received from taking an action
a ∈ A in state s ∈ S to be

R(s, a) = E[rt+1 | st = s, at = a]
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Background Definitions

Example: MDP

0 1 2 3
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−1

S = {(i , j)|i , j ∈ [0, 3]},i.e., each cell in the above grid.

A = {UP, DOWN, LEFT, RIGHT}.2

P(success) = 0.8, else choose an orthogonal direction;

R: +1 for goal (green) and −1 for fail (red), else 0.

We will use this MDP as a running example.

2if agent is trying to move into an obstacle, the agent shouldn’t be allowed to move
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Background Definitions

Definition (Policy)

π : S → A is a function that outputs an action a given a state s.

We can also denote the policy to be a probability distribution
π : S × A→ [0, 1] such that π(s, a) = P [at = a | st = s]

Thus, in the deterministic case, the chosen action will be the mode of
the probability distribution represented by π.
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Background Definitions

Random Policy π(s, a) = 0.25
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A Random agent is one that uniformly picks an action from the
action space A.

Here, there is no use of the reward function.
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Background Definitions

Policy under deterministic MDP (P(success) = 1)
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In the deterministic MDP case, you can use your favorite path
planning algorithm (Dijkstras, A*, D*, Bellman-Ford, etc.) to find a
the optimal policy.

We learn a policy π such that π(s, a) = 1 for correct action, 0
otherwise.
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Background Definitions

Definition (Value Function)

A function V π : S → R that outputs the total (expected) reward obtained
from starting a MDP at a certain state s and choosing actions from a
policy π, until a terminal state. 3.

V π(s) = Eπ

[ ∞∑
i=0

γ i rt+i

∣∣∣∣∣ s0 = s

]
(1)

where γ ∈ [0, 1] is the discounting factor.

Definition (Optimal Value Function)

Among all possible value functions, there exists an optimal value
function such that

V ∗(s) = max
π

V π(s)

3In future, we will drop the subscript π without loss of generality
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Background Definitions

Definition (Action-Value or Q Function)

A function Qπ : S × A→ R that outputs the expected value of the given
state s, if we take action a.

Qπ(s, a) = Eπ[R(s, a) + V π(st+1) | st = s, at = a] (2)

where R(s, a) is the expected random reward associated with the
state-action pair (s, a).

The Q-function is a measure of how good it is for an agent to pick an
action a in state s so as to maximize V (s).

The optimal Q-function Q∗(s, a) means the expected total reward
received by an agent starting in sand picks action a, then will behave
optimally afterwards.
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Background Dynamic Programming

Bellman Equation

Richard Bellman showed that a dynamic optimization problem in
discrete time can be stated in a recursive, step-by-step form known as
backward induction by writing down the relationship between the
value function in one period and the value function in the next period.

This recursive relationship is called a Bellman equation.

In dynamic programming, the existence of a Bellman equation is a
necessary condition to learn an optimal solution to a problem.
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Background Dynamic Programming

Bellman equation for Value functions

We can provide a Bellman equation for the optimal Q-function by the
following relation:

Q∗ (s, a) = R(s, a) + γEs′
[
V ∗
(
s ′
)]

= R(s, a) + γ
∑
s′∈S

P
[
s ′ | s, a

]
V ∗
(
s ′
) (3)

Since,

V ∗ (s) = max
a

Q∗ (s, a)

= max
a

[
R(s, a) + γ

∑
s′∈S

P
[
s ′ | s, a

]
V ∗
(
s ′
)] (4)

The above relation is very important for classical RL methods, and lay a
foundation for designing objective functions modern RL.
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Approaches

Objective of an RL Agent

Since V ∗ (s) is the maximum expected total reward when starting
from state s,

V ∗ (s) = max
a

Q∗ (s, a) ∀s ∈ S

And since the policy attempts to maximize V (s), the optimal policy
π∗ is

π∗(s) = arg max
a

Q∗ (s, a)

Thus, the goal of a reinforcement learning agent is to learn a policy
π ≈ π∗.
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Approaches

Approaches to learning an Optimal Policy

We will go through the following algorithms for Finite-state MDPs with
finite action space:

Linear Programming formulation

Value Iteration

Policy Iteration

Q-Learning

Anand Balakrishnan (CSCI599) Reinforcement Learning March 25 19 / 73



Approaches

Linear Programming

From (3) and (4), we can see that for finite-state MDPs, we can write
|S | linear equations for each state s ∈ S , with unknown V ∗ (s).

Thus, this linear programming formulation can easily be used to learn
a optimal Q∗ (s, a) for all (s, a) ∈ S × A for the given MDP.
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Approaches

Value Iteration

Value iteration computes the optimal state value function by iteratively
improving the estimate of V (s).

Algorithm 1 Value Iteration

1: Initialize V (s) = 0∀s ∈ S
2: repeat
3: for all s ∈ S do
4: for all a ∈ A do
5: Q (s, a)← E[r | s, a] + γEs′[V (s ′) | s, a]
6: end for
7: V (s)← maxa Q (s, a)
8: end for
9: until V (s) converges

It can be shown that V converges to V ∗ in a finite number of iterations.
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Approaches

Value Iteration in Gridworld
noise = 0.2, γ = 0.9
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Values after 1 iteration.

Run for about 100 iterations to be sure of convergence.
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Approaches

Value Iteration in Gridworld
noise = 0.2, γ = 0.9
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Values after 2 iterations.

Run for about 100 iterations to be sure of convergence.
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Approaches

Value Iteration in Gridworld
noise = 0.2, γ = 0.9

0 1 2 3

0

1

2

3

0

0

0

0

0.37

0

0

0.52

0.66

0

0

0.31

0

0.43

0.51

00.72

0.78

0.83

0

0

+1

−1

Values after 3 iterations.

Run for about 100 iterations to be sure of convergence.
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Approaches

Value Iteration in Gridworld
noise = 0.2, γ = 0.9
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Values after 4 iterations.

Run for about 100 iterations to be sure of convergence.
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Approaches

Value Iteration in Gridworld
noise = 0.2, γ = 0.9
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Values after iterations.

Run for about 100 iterations to be sure of convergence.
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Approaches

Value Iteration: Effect of noise and γ

Noise (∈ [0, 0.5])4 γ ∈ [0, 1] Effect

Low High Prefer to find the closest positive exit,
while avoiding negative exits.

High High Prefer distant positive; Risk being close
to negative.

Low Low Prefer distant positive; Avoid negative.

High Low Prefer close exit; Risk negative.

4Too much noise implies a bad model
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Approaches

Policy Iteration I

In Value Iteration, we care about the convergence of the value
function, but it is possibly for us to reach an optimal policy before the
value function converges.

In Policy Iteration, we update the policy at each iteration, rather than
the value function.
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Approaches

Policy Iteration II

Algorithm 2 Policy Iteration

1: Initialize π to arbitrary values
2: repeat
3: π′ ← π
4: for all s ∈ S do
5: V π′

(s) = E[r | s, π′(s)] + γEs′

[
V π′

(s ′)
∣∣∣ s, π′(s)

]
6: end for . Using either linear programming or iterative algorithm
7: V = V π′

8: π(s)← arg maxa

(
E[r | s, a] + γE[V π (s ′) | s, a]

)
9: until π ≈ π′
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Approaches

Model-based vs. Model-free Learning

Model-based In model-based learning, the agent is assumed to have prior
knowledge about the effects of its actions on the
environment, that is, the transition probability function P of
the MDP is known.

Model-free In model-free learning, the agent will not try to learn explicit
models of the environment state transition and reward
functions. However, it directly derives an optimal policy from
the interactions with the environment.

Policy iteration and Value iteration are model-based methods as it is
necessary to have knowledge of the probability of transitions in the MDP
to compute the expected V (s) at any given iteration of the algorithm.
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Approaches

Q-Learning (Watkins) I

Q-Learning is an example of model-free learning algorithm. It does not
assume that agent knows anything about the state-transition
and reward models. However, the agent will discover what
are the good and bad actions by trial and error.

The basic idea behind Q-learning is is to approximate the state-action
pairs Q-function from the samples of Q (s, a) that we observe during
interaction with the environment.

This approach is known as Temporal-Difference (TD) Learning.

We combine this idea with bootstrapping, where TD learning
methods update targets with regard to existing estimates rather than
exclusively relying on actual rewards and complete returns as in
Monte-Carlo methods.
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Approaches

Q-Learning (Watkins) II

The update equation for the Q-function is:

Q (s, a)← (1− α)Q (s, a) + α

(
R(s, a) + γmax

a′
Q
(
s ′, a′

))
(5)

where,
I α ∈ [0, 1] is the learning rate, such that if α ≈ 0 the Q value is

updated very slowly and α ≈ 1 simply replaces the old Q with the new
Q without any TD-learning taking place.

I maxa′ Q (s ′, a′) is the estimate of the optimal state-value function.

In Q-learning, we initialize the Q function as a table mapping all
states s ∈ S to the expected value for all actions a ∈ A.

We then update this Q-table in an iterative (episodic) manner.
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Discussion: RL Limitations and Improvements

Limitations

In the algorithms discussed up to this point, we have a general
assumption that the environment we are acting upon has finite action
and state spaces.

This is (in general) a really bad assumption as most problems we see
in the real world (especially in control theory) have either continuous
action space or continuous state space or both.
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Discussion: RL Limitations and Improvements

Approachs: Continuous or Large State Space

Discretize the state space
I Here, we convert the continuous state space to a discrete grid or bins

and use our favorite discrete state space RL agent.
I But this leads to the curse of dimensionality! This refers to the

explosion in state space with increase in the number of dimensions in
the state space.

Use Function approximators
I We can define Q and value functions as functions that act upon a

vector ~s ∈ S .
I Thus, the learning problem is that of optimizing the function using

function approximation methods (convex optimization, etc.).
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Discussion: RL Limitations and Improvements

Approachs: Continuous Action Space I

To operate on continuous action spaces, we build on function
approximators that map to a action vector. The following are a general
class of algorithms used to learn a policy that operates in continuous
action spaces:

Policy gradient (Sutton et al.) methods target at modeling and
optimizing the policy directly. The policy is usually modeled with a
parameterized function respect to θ, πθ(s). The value of the reward
(objective) function depends on this policy and then various
algorithms can be applied to optimize θ for the best reward.
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Discussion: RL Limitations and Improvements

Approachs: Continuous Action Space II

Actor-critic (Konda and Tsitsiklis) methods contain two separate
approximators defined as follows:
I Critic updates the estimate of the value function (parametrized by w),

and can either represent Qw (s, a) or Vw (s, a)
I Actor outputs the direct action a and models the (stochastic) policy

πθ(s).

Note

Actor-critic methods typically use policy gradient methods to update the
actor and TD-learning methods to update the critic.
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Discussion: RL Limitations and Improvements

Aside: On-policy and Off-policy Methods

On-policy These methods use deterministic actions (or samples) from
the target policy to train the algorithm. Examples of this are
Monte-Carlo methods that compute V π for the episode to
update π.

Off-policy They train on a distribution of transitions or episodes
produced by a different behavior policy rather than that
produced by the target policy. Example of this is Q-Learning,
where the TD error is computed against an existing (possibly
older) Q(s ′, a′) to update the current Q(s, a).
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Discussion: RL Challenges

Exploration vs. Exploitation I

Example

Say there is a sheep grazing in a very patchy and large plot of land. The
sheep can either approach a patch of grass that is somewhat small, and
exploit this patch of grass until it is depleted, and then have no idea what
to do. Otherwise, the sheep could explore the plot of land for a bit and
then come back to the largest patch of grass it finds. Who knows, it could
find some magical never-ending patch of grass! But too much exploration
end up in the sheep going too far from any patch of grass and starve
before it gets back to a known patch!

This is referred to as the exploration vs. exploitation problem.

In the context of RL, we should train the learning agent to do both
exploration and exploitation without being either too explorative or
too greedy.
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Discussion: RL Challenges

Exploration vs. Exploitation II

This is typically done by performing ε−greedy exploration, or
sampling actions from a Boltzmann distribution.

In ε−greedy exploration, a decaying ε value is used as the probability
of choosing a deterministic action (vs. a uniformly sampled action
from A).

In the Boltzmann distribution case, the action is sampled from a
distribution

P [a | s] =
eQ(s,a)/k∑

a′∈A eQ(s,a′)/k
,

where k is the temperature of the distribution. A large k implies
uniform sampling of actions (explore) and a small k chooses the
greedy strategy.
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Discussion: RL Challenges

The Deadly Triad

TD-learning + bootstrapping methods are a very efficient and flexible
class of learning algorithms. But, when we combine Off-policy,
bootstrapping methods with non-linear function approximation, the
training could be (and is most likely) unstable and hard to converge.

To tackle this, many architectures using deep learning models were
proposed to resolve the problem, including DQN to stabilize the
training with experience replay and occasionally frozen target network.
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Modern RL

Deep Reinforcement Learning

Deep RL = Deep Learning + RL.

As mentioned in the previous section, deep RL architectures were
developed to combat the so-called deadly triad, issue.

Frameworks like AlphaZero (Silver et al.) and DQN (Mnih et al.)
proposed the use of Convolutional Neural Networks to observe the
state of games (Go and Atari games respectively) from raw pixel
values and map them to discrete actions corresponding to either
moves on a board or buttons on a video game controller.

Both the above methods are off-policy methods that build off of
TD-learning and bootstrapping methods like Q-learning.

Many other works have also proposed the use of Deep RL in the
context of continuous action and state spaces, like (Mnih et al.
Schulman et al. Levine et al. Schulman et al.).
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Modern RL Deep Q-Networks

Deep Q Networks (Mnih et al.) I

When using the DQN framework, we model the Q-function as a
function approximator (deep neural network) Q (s, a; θ), where θ is
the parameters for the NN.

In the original Nature paper, the authors use a CNN that observes
Atari games using their raw pixel values, and outputs the expected
value of taking an action a at that state.
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Modern RL Deep Q-Networks

Deep Q Networks (Mnih et al.) II

Moreover, to stabilize the problem of instability due to using
TD-learning + bootstrapping with non-linear function approximators,
the authors propose the following improvements to the vanilla
Q-learning algorithm:
I Experience Replay: All previous state transitions and their associated

rewards et = (st , at , rt , st+1) are stored in one replay memory
D = {e1, . . . , et}. During update, a batch of experiences are sampled
from this memory and used to compute the loss gradient for the NN.

I Periodically Update Targets: The target for the loss is computed
against a fixed (older) Q function, which is updated periodically.
Essentially, The Q network is cloned and kept frozen as the
optimization target every C steps (C is a hyperparameter). This
modification makes the training more stable as it overcomes the
short-term oscillations.
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Modern RL Deep Q-Networks

Deep Q Networks (Mnih et al.) III

The loss function is computed as follows:

L(θ) = E(s,a,r ,s′)∼U(D)

[(
r + γmax

a′
Q
(
s ′, a′; θ−

)
− Q (s, a; θ)

)2
]
(6)

where, U(D) is a uniform distribution over the replay memory D; θ−

is the parameters of the frozen target Q-network.

Equation (6) is essentially computing the Mean-Squared Error (MSE)
over a sampled batch of experiences, thus can be easily optimized
(minimized) using Stochastic Gradient Descent (SGD).
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Modern RL Deep Q-Networks

Extensions to DQN

Several extensions to DQN have been proposed, including
(van Hasselt, Guez, and Silver Schaul et al. Z. Wang et al. Pritzel
et al.).

These build mainly on either the experience replay memory of the RL
agent (with better, more intuitive sampling as opposed to uniform
sampling) or they improve on the way the frozen target behaves in
the update stage.
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Modern RL Policy Gradient Methods

Policy Gradients I
(Sutton et al.)

The general idea is that, instead of parameterizing the value function
(as in the case of DQN) and doing policy improvement by greedily
maximizing the expected value function, we parameterize the policy
and do gradient decent along the direction that improves the policy.

The intuition is that, sometimes, the policy is easier to approximate
than the value function.

The technique of policy gradients is a relatively old idea, but only
recently has it been used along with non-linear function approximators
(deep Neural Networks), like in (Mnih et al. Silver et al. Schulman
et al. Schulman et al. Z. Wang et al. Lillicrap et al.) to name a few.
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Modern RL Policy Gradient Methods

Policy Gradients II
(Sutton et al.)

The problem is generally formulated as so:

Let πθ(a | s) be a stochastic policy that outputs the probability
distribution on the action space for a given state s, where θ parameterizes
the policy. Thus, the objective function for the optimization problem can
be written as:

J(θ) =
∑
s∈S

dπ(s)V π (s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a | s)Qπ (s, a) , (7)

where dπ(s) is the (on-policy )stationary distribution of the Markov chain
induced under the policy πθ.5

5For simplicity, we will omit θ under π when it is used in subscripts and superscripts
(like in dπ,Qπ,V π above).
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Modern RL Policy Gradient Methods

Policy Gradient Theorem
(Sutton et al.)

Theorem (Policy Gradient Theorem)

The gradient of the objective function ∇θJ(θ) can be simplified as follows:

∇θJ(θ) = ∇θ
∑
s∈S

dπ(s)
∑
a∈A

Qπ (s, a)πθ(a | s) (8)

∝
∑
s∈S

dπ(s)
∑
a∈A

Qπ (s, a)πθ(a | s)d (9)

This reduces the amount of computation required for the gradient
significantly! But the approximation of dπ and Qπ (s, a) still remains an
issue. . .
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Modern RL Policy Gradient Methods

Generalized Policy Gradients
(Schulman et al.)

Policy gradient methods maximize the objective function J(θ) by
repeatedly estimating the gradient g := ∇θJ(θ), which have the following
general form:

g = E

[ ∞∑
t=0

Ψt∇θ log πθ(at | st)

]
, (10)

where Ψ denotes the target returns, and may be one of:

1
∑∞

t=0 rt : Total Reward;
2
∑∞

t′=t rt′ : Reward following
action at ;

3
∑∞

t′=t rt′ − b(st): baselined
version of the previous form;

4 Qπ (st , at);

5 Aπ(st , at) :=
Qπ (st , at)− V π (st):
Advantage function;

6 rt + V π (st+1)− V π (st): TD
residual.
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Modern RL Policy Gradient Methods

Actor-Critic Models I
(Sutton and Barto)

Two main components in PG are the policy model and the value
function.

It makes sense to learn the value function in addition to the policy,
since knowing the value function can assist in the policy update.
I This is mainly to reduce the gradient variance in vanilla policy

gradients like REINFORCE (Williams).

As mentioned earlier, an actor-critic model consists of two parts:
I Critic updates the estimate of the value function (parametrized by w),

and can either represent Qw (s, a) or Vw (s, a)
I Actor outputs the direct action a and models the (stochastic) policy

πθ(a | s).
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Modern RL Policy Gradient Methods

Actor-Critic Models II
(Sutton and Barto)

Algorithm 3 Simple Actor-Critic

1: Initialize θ,w arbitrarily.
2: Initialize s, sample a ∼ πθ(a | s)
3: for t = 1 . . .T do
4: rt = R(s, a), s ′ ∼ P [s ′ | s, a], a′ ∼ πθ(a′ | s ′)
5: θ ← θ + αθQw (s, a)∇θ log πθ(a | s) . Update policy parameters
6: δt = rt + γQw (s ′, a′)− Qw (s, a) . Compute TD error
7: w ← w + αwδt∇wQw (s, a) . Update critic parameters
8: a← a′ and s ← s ′.
9: end for

Here, two learning rates (αθ, αw ) are predefined as training
hyper-parameters.
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Modern RL Policy Gradient Methods

Advantage Actor Critic (A2C) I
(Mnih et al.)

Figure: This algorithm is the same as Asynchronous Advantage Actor Critic
(A3C) with the exception that A2C runs in a synchronous fashion. It is shown
that A2C is generally better than A3C.
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Modern RL Policy Gradient Methods

Advantage Actor Critic (A2C) II
(Mnih et al.)

This algorithm basically leverages the power of modern distributed
computation and has multiple actors running in parallel, and
synchronize with a global critic every N steps.

Each actor, ai , runs for a specific number of steps, N, using its policy
πθ.

In A2C, after all actors complete N steps, they synchronously provide
the global coordinator with the total discounted rewards obtained
from the individual runs. Then SGD is run on this batch of target
returns (in this case the Advantage Function) to do the Actor-Critic
updates as in Algorithm 3.

In A3C, each actor talks to the global parameters independently, so it
is possible sometimes the thread-specific actor would be playing with
policies of different versions and therefore the aggregated update
would not be optimal.
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Modern RL Policy Gradient Methods

Other Extensions

Deterministic Policy Gradient (DPG) (Silver et al.) extends the PG
algorithm to deterministic policies (as opposed to stochastic).

DDPG (Lillicrap et al.) extends the DPG algorithm with ideas from
DQN, and thus extends DQN to the continuous domain.

Trust Region Policy Optimization (Schulman et al. TRPO), Proximal
Policy Optimization (Schulman et al. PPO) and ACKTR (Wu et al.)
further improve on the PG algorithm by using so-called natural
gradients that provide better approximation of the gradient direction.

ACER (Z. Wang et al.) and Soft Actor-Critic (Haarnoja et al. SAC)
both improve on the Actor-Critic algorithm by incorporating off-policy
experience replay.

SAC also incorporates the entropy measure of the stochastic policy
into the returns to encourage exploration.
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RL for Autonomous CPS Applications

Applications of RL in CPS
CPS + Formal Methods Community

Within the last few years, several works have been proposed that use
ideas from Formal Methods in the context of Cyber-Physical Systems
within RL frameworks.

This includes incorporating:
I Temporal Logics in RL algorithms, like (Aksaray et al. Li, Vasile, and

Belta Hasanbeig, Abate, and Kroening)
I Automata theory in RL (Li, Ma, and Belta);
I Barrier-certificates for constrained training (Ohnishi et al. L. Wang,

Theodorou, and Egerstedt)
I Other such ideas like (Moarref and Kress-Gazit Alshiekh et al.)
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RL for Autonomous CPS Applications

Applications of RL in CPS
RL Community

Inverse Reinforcement Learning:
I Given policy π or behavior history sampled using a given policy, find a

reward function for which the behavior is optimal.
I The goal is to essentially derive a model that discriminates good

behavior from bad, by looking at the demonstrations given by a
“expert” (human or otherwise).

I Some key works are:

“Algorithms for Inverse Reinforcement Learning”
“Apprenticeship Learning via Inverse Reinforcement Learning”
“Maximum Entropy Inverse Reinforcement Learning.”

Learning from Demonstrations/Apprenticeship Learning/Imitation
Learning:
I Goal is to learn a policy from demonstrations, using either direct

mapping (deep learning) techniques or IRL.

Anand Balakrishnan (CSCI599) Reinforcement Learning March 25 55 / 73



RL for Autonomous CPS Challenges

Challenges: RL in Autonomous CPS

Although many deep RL algorithms perform very well, they are very
sensitive to hyperparameters and design of reward functions.
I This introduces a lot of uncertainty in the training of the controller!

Moreover, the RL algorithms we have discussed work on MDPs, that
is, the environment is fully observable.
I This is, in general, not true.
I In CPS examples, there is uncertainty in states (sensor/actuation noise,

state may be observable only by estimates, etc).
I The approach to model this is by using Partially Observable MDPs

(POMDPs).

Anand Balakrishnan (CSCI599) Reinforcement Learning March 25 56 / 73



RL for Autonomous CPS Challenges

POMDPs I

POMDPs are incredibly powerful mathematical abstractions.

They have been used in recent works for various tasks:
I Navigating an office: (Åström).
I Grasping with a robot arm: (Hsiao, Kaelbling, and Lozano-Pérez).
I Wind Farm Management: (Memarzadeh Milad, Pozzi Matteo, and Zico

Kolter J.).
I Aircraft collision avoidance: (Mueller and Kochenderfer).

Anand Balakrishnan (CSCI599) Reinforcement Learning March 25 57 / 73



RL for Autonomous CPS Challenges

POMDPs II

Definition (POMDP)

It is a tuple 〈S ,A,P,R,Ω,O〉 where:

S ,A,P,R are the same as in and MDP;

Ω is a set of observations;

O : S × A× Ω→ [0, 1] is the observation function, which is a
probability distribution such that O(s, a, o) = P [o | s, a], ∀o ∈ Ω (the
probability of observing o if action a is taken in state s).

POMDPs model the information available to the agent by specifying a
function from the hidden state to the observables.
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RL for Autonomous CPS Challenges

Planning for POMDPs

Unfortunately, the observations are not Markov (because two different
states might look the same), which invalidates all of the MDP
solution techniques.

The optimal solution to this problem is to construct a belief state
MDP, where a belief state is a probability distribution over states.

Control theory is concerned with solving POMDPs, but in practice,
control theorists make strong assumptions about the nature of the
model (typically linear-Gaussian) and reward function (typically
negative quadratic loss) in order to be able to make theoretical
guarantees of optimality, etc.

By contrast, optimally solving a generic discrete POMDP is wildly
intractable. Finding tractable special cases (e.g., structured models)
is a hot research topic.
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RL for Autonomous CPS Challenges

Approachs to solve POMDPs

Research has been done since the 1960’s!

POMDPs are MDPs if they are properly updated over belief states
(Åström).

Belief states can be computed with the following general idea:
I Start in some initial belied b prior to any observations
I Compute new belief state b′ based on current belief state b, action a,

and observation o.

This is a very common approach used in popular algorithms in
robotics, like:
I Bayes Filters, Kalman Filters, and Particle Filters.
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RL for Autonomous CPS Challenges

RL for POMDPs
Adapted Policies (Singh, Jaakkola, and Jordan)

Definition (Adapted Policy)

is a mapping π : Ω× A→ [0, 1]. That is, π is a stochastic policy that
operates on the observation space Ω as opposed to the state space S .

Moreover, the value function of the POMDP is associated with a
distribution on states as opposed to a single state.
This problem is then solved for relatively small, discrete, and
low-dimensional state-spaces using a modified Q-learning algorithm.
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RL for Autonomous CPS Challenges

RL for POMDPs
Point-based Value Iteration (Porta, Spaan, and Vlassis)

In this approach,

A small set of reachable belief points is selected.

A Bellman equation is defined for those points, keeping value and
gradient.

This approach is shown to be generalized to continuous state spaces,
but not to continuous action and observation spaces.
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RL for Autonomous CPS Challenges

RL for POMDPs
Deep RL Methods

1 Use tracking techniques for Deep Learning data:
I Deep Variational Bayes Filter (Karl et al.) uses variational inference

during batch updates to learn temporal and spatial dependencies.

2 Throw an Recurrent NN (LSTM/GRU) / Forget the math!:
I DRQN (Hausknecht and Stone), RDPG (Heess et al.).
I Recurrent Predictive State Policy (Hefny et al.).

3 Use human-like differentiable memory:
I Neural Map (Parisotto and Salakhutdinov), MERLIN (Wayne et al.).
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RL for Autonomous CPS Future Work and Open Problems

Future Work and Open Problems I

Verifiable Robotics and RL:
I There are several challenges in modern RL and AI, some of which are

summarized in (Amodei et al. Leike et al.).
I Most Deep RL systems are very sensitive to hyperparameter tuning,

this a lot of empirical results are hard to reproduce in environments
that differ from the environments used in a paper.

I Interpretability of policies learned by Deep RL algorithms is another
key issue, along with the interpretability of Deep Learning systems in
general.

Anand Balakrishnan (CSCI599) Reinforcement Learning March 25 64 / 73



RL for Autonomous CPS Future Work and Open Problems

Future Work and Open Problems II

Safety in CPS + Deep Learning systems:
I This is a relatively new topic, where there have been attempts to use

Formal Methods to prove the safety of systems that use deep learning
controllers.

This is not an easy task even in standard cyber-physical systems and
hybrid systems.

The addition of a non-linear, “black-box” component just compounds
this problem.

I There have also been attempts to incorporate ideas like Temporal
Logic, Barrier Certificates, and Shields during the training of RL
systems.

I See: (Tian et al. Pei et al. S. Wang et al. Tuncali et al.)
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