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Abstract—We propose an approach for verifying non-linear
hybrid systems using higher-order Taylor models that are a
combination of bounded degree polynomials over the initial
conditions and time, bloated by an interval. Taylor models are an
effective means for computing rigorous bounds on the complex
time trajectories of non-linear differential equations. As a result,
Taylor models have been successfully used to verify properties of
non-linear continuous systems. However, the handling of discrete
(controller) transitions remains a challenging problem.

In this paper, we provide techniques for handling the effect of
discrete transitions on Taylor model flowpipe construction. We
explore various solutions based on two ideas: domain contraction
and range over-approximation. Instead of explicitly computing
the intersection of a Taylor model with a guard set, domain
contraction makes the domain of a Taylor model smaller by
cutting away parts for which the intersection is empty. It is
complemented by range over-approximation that translates Taylor
models into commonly used representations such as template
polyhedra or zonotopes, on which intersections with guard sets
have been previously studied. We provide an implementation of
the techniques described in the paper and evaluate the various
design choices over a set of challenging benchmarks.

I. INTRODUCTION

The safety verification of software-enabled real-time control

systems requires simultaneous reasoning about the control

software as well as the physical environment into which

it is embedded. Hybrid systems exhibit both discrete and

continuous behavior. Therefore, they are a natural modeling

formalism for such systems Although the reachability problem

for hybrid systems is undecidable for all but the simplest

subclasses [1], [2], in the recent years there has been much

progress in the verification of affine hybrid systems, leading

to tools such as SpaceEx [3]. However, very few practical

verification approaches exist for the more general class of non-
linear hybrid systems. In this paper, we present a promising

approach using Taylor models.

Taylor models (TM), originally developed by Berz and

Makino [4], [5], [6], [7], approximate continuous and k + 1
times differentiable functions by their Taylor polynomials

of degree up to k bloated by an interval representing the

remainder. TM arithmetic lifts the basic arithmetic operations

of addition, multiplication, division, time derivatives and anti-

derivatives (integrals) over the underlying functions to their
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TM approximations. We use TMs to represent flowpipes, i.e.,

a set of states reachable by continuous dynamics from an initial

set within a given time interval. As a result, they can be used to

provide guaranteed enclosures to the solutions of ordinary dif-

ferential equations (ODEs), often involving trigonometric and

exponential functions. They have been observed to scale quite

well and produce accurate results for complex systems [8].

The goal of this paper is to explore the use of TMs in

the reachability analysis of hybrid systems using flowpipe

construction [9], [10]. While TMs are well suited for handling

ODEs in the flowpipe construction for purely continuous

systems, their use in hybrid systems verification requires

techniques for computing intersections of TMs with the guards

of discrete transitions.

In this paper we propose techniques for handling the inter-
sections of TMs with guard sets of discrete transitions. This

operation forms a key primitive for the overall verification

procedure for hybrid systems involving Taylor models to

represent flowpipes. Our approach to compute intersections is

based on two main ideas, which form the core contributions

of this work:

1) We use domain contraction, inspired by interval con-

straint propagation (ICP) [11], to side-step the need

to compute intersections with guards explicitly. Instead,

domain contraction prunes away parts of the initial states

and time intervals which lead to an empty intersection

with the transition guard.

2) Since domain contraction is not always sufficiently ac-

curate, we introduce range over-approximation methods

which can be combined with domain contraction. We

translate TMs into other widely used representations such

as support functions [12], [3], template polyhedra [13]

and zonotopes [14], [15], [12]. The intersections of these

representations with the guard set has been well-studied

by earlier approaches focussing mostly on affine hybrid

systems. We translate the result of the intersection com-

putation back to a TM for further flowpipe computations.

We have implemented the various techniques in this paper

as a safety verification tool for hybrid systems. We evaluate

the proposed approaches over a set of benchmark systems that

are mostly beyond the reach of other currently available tools.

One of the benchmarks used in our evaluation is a case-study

for verifying closed-loop control systems proposed for con-
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trolling plasma blood glucose levels in diabetic patients [16],

[17]. The results show that our Taylor model approach is a

promising direction for the verification of non-linear hybrid

systems. A detailed description of the benchmarks used, the

implementation and proofs of our results are available online 1.

Related Work: The safety verification of non-linear hybrid

systems has been addressed using a wide variety of techniques

in the past [2]. We discuss in the following, only the most

closely related works.

Interval analysis techniques [18], [7], [19], [20] have been

used to find validated solutions to ODEs. However, there have

been fewer applications of these methods to hybrid systems,

chiefly due to the problem of handling discrete transitions.

Henzinger et al. [21] used validated integration of ODEs

inside modes and a simple handling of discrete transitions.

Therein, a rectangular over-estimation of a flowpipe segment

is used to detect if an intersection with a guard is possible. If

so, the intersection’s rectangular hull is transformed according

to the transition and used as the starting set for the subsequent

mode. However, such an approach is prone to gross over-

approximations due to the wrapping effect. Similar ideas were

proposed for rigorous event detection by Nedialkov et al. [22].

Recently, Ramdani et al. [23] proposed a technique that

uses Taylor model interval methods to construct flowpipes for

hybrid systems. Their work encodes the problem of detect-

ing flowpipe guard intersections as a constraint-satisfaction

problem, and proceeds to use interval constraint propagation.

However, the key difference lies in the use of branch-and-

prune to characterize the intersection accurately. In this paper,

we use ICP to narrow down the possible ranges of initial

conditions and the intersection times. However, instead of

using branch-and-prune, we use range over-approximations.

Frameworks such as Newton, RealPaver, HySAT/iSAT, and

CalCs implement some of the primitives needed for effective

domain contraction [24], [25], [26], [27]. The key primitive

of ICP has been used by the HySAT/iSAT solvers [24] to

solve the reachability verification problem in terms of Boolean,

differential and algebraic constraints. A key difference here

lies in the use of guaranteed integration to construct flowpipes

within modes: we use interval constraint propagation only

when intersections with guards are computed but not in the

flowpipe construction. Another difference is that our tech-

niques apply range over-approximation instead of branch-and-

prune to improve the result of interval constraint propagation.

Althoff et al. [28] propose an approach for avoiding inter-

sction computations in flowpipe construction for linear hybrid

systems that is similar to domain contraction. Their approach

seeks computes a time to possibly reach the guard as a function

of the initial state. The domain contraction technique proposed

here differs in that it applies to non-linear systems and seeks

to prune away initial states as well as time intervals.

Ratschan and She presented an interval-based technique

for verifying hybrid systems in [29]. Here the state-space is

discretized into finitely many rectangular cells and ICP is used

1http://systems.cs.colorado.edu/research/cyberphysical/taylormodels/

to refine this abstraction to account for intersections with the

transition guards and unsafe sets, thus avoiding unnecessary

subdivisions. In contrast, we avoid subdividing the state-space

in this work. Such a subdivision is often exponential in the

number of state variables of the system.

TMs are also used in the Ariadne tool, which provides a rig-

orous framework for building hybrid systems verification tools

based on the approximation of smooth functions [30]. Ari-

adne’s core algorithm subdivides the state space into finitely

many rectangular cells, where the degree of subdivision is

determined dynamically according to some precision bounds.

At each step, the flowpipes starting from previously reached

cells are computed and those cells which intersect with these

flowpipes are marked as reached.

Prabhakar et al. [31] present a scheme for reachability

analysis for linear ODEs using degree-bounded polynomials

to approximate the flow. The algorithm uses Bernstein poly-

nomials (instead of Taylor polynomials used here) to approx-

imate the time trajectories inside each mode. The approach

therein is to sample some trajectories of the system and use

Bernstein polynomials to compute piecewise approximations

of the trajectories, keeping the overall error bounds to within ε.
However, the approach does not explicitly tackle the problem

of intersections with guards, which is the main focus of our

work. This is a significant consideration for tackling hybrid

systems. The key idea of a priori bounding the overall error of

the flowpipe to guide the degree of the approximation is quite

attractive. However, such schemes are generally intractable in

the presence of discrete transitions.

II. TAYLOR MODELS

In this section, we present some preliminary notions of

Taylor models. Further details are available from the works

of Berz and Makino [4], [7], [5].

Let N be the set of natural numbers and R be the set of real

numbers. We use I to denote the set of all intervals I = [�, u] ⊆
R with �, u ∈ R and � ≤ u. Multi-dimensional intervals are

Cartesian products of such single intervals. In the paper we

also call them intervals.

A given polynomial p is a k-order (Taylor) approximation
of a function f : D → R iff

(a) all partial derivatives of f up to order k exist and are

continuous, denoted by f ∈ Ck, and

(b) f(�c) = p(�c) for the center point �c of D and for each

0 < m ≤ k, all of the order m partial derivatives of f and

p coincide at �c.

For any f, g ∈ Ck and k ≥ 0, we write f ≡k g iff there is a

polynomial p which is a k-order approximation of both f and

g. Taylor models are based on the equivalence relation ≡k.

Definition 2.1 (Taylor Model): A Taylor model (TM) of or-

der k>0 over a domain D ∈ I
n is a pair (p, I) of a polynomial

p of degree at most k over n variables �x and a remainder inter-
val I ∈ I. We say that (p, I) is a k-order over-approximation
of a function f : D → R, written f ∈ (p, I), iff (i) p ≡k f
and (ii) ∀�x ∈ D. f(�x) ∈ p(�x) + I := {p(�x) + �y | �y ∈ I}.
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Polynomials can be naturally extended to vectors to approx-

imate functions f : Rn → R
m. In what follows, we allow

polynomials and TMs to have multi-dimensional ranges.

Example 2.1: Consider the transcendental function

f(x1, x2) = x1e
−x2 + 2x2 sin(x1) with (x1, x2) ∈ [−1, 1]2 .

The TM (p3, I3) = (x1 + x1x2 +
1
2x1x

2
2, [−1, 1]) is a 3-order

over-approximation of f , and

(p4, I4) =

(
x1+x1x2+

1

2
x1x

2
2−

1

6
x1x

3
2−

1

3
x3
1x2, [−0.1, 0.1]

)

is a 4-order over-approximation. Generally, a higher order

approximation yields a smaller remainder interval. �
A TM for a given function f over a domain D can be

obtained by computing a degree k Taylor polynomial pk for

f around �x = �c and a conservative interval I for the error

|f(�x)− pk(�x)| over D.

Taylor Model Arithmetic: TM arithmetic supports basic

arithmetic operations of addition, scaling and multiplication

of TMs over the same domain. Let (p1, I1) and (p2, I2) be

two TMs. We define interval multiplication and addition as

[�1, u1]⊗ [�2, u2] := [ min
ci∈{�i,ui}

(c1c2), max
ci∈{�i,ui}

(c1c2)] ,

[�1, u1]⊕ [�2, u2] := [�1 + �2, u1 + u2] .

For any given scalars a, b we define

a(p1, I1) + b(p2, I2) := (ap1 + bp2, (a⊗ I1)⊕ (b⊗ I2))
(p1, I1) · (p2, I2) :=

(p1·p2, (B(p2)⊗ I1)⊕ (B(p1)⊗ I2)⊕ (I1 ⊗ I2)) ,

wherein B(p) denotes a safe interval enclosure of the range

p(D) := {p(�x) | �x∈D} of p over D. Such an enclosure can be

computed using standard interval arithmetic techniques [18].

Likewise, TM approximations of division (p1, I1) � (p2, I2)
can be obtained, provided that 0 �∈ B(p2)⊕ I2.

Note that for any f1 ∈ (p1, I1) and f2 ∈ (p2, I2) we have

that af1 + bf2 ∈ a(p1, I1) + b(p2, I2)
Functions such as

√
x, sin(x), cos(x), ex and log(x) can

be approximated by means of power series expansions. In

turn, these expansions along with the models for elementary

arithmetic operations provide a systematic approach for ap-

proximating any function specified symbolically as a TM.

A common convention used for TMs is to normalize the

domain of a TM to [−1, 1]n using basic TM arithmetic,

without changing the range defined.

For TMs T1, T2, we simply write T1+T2, T1·T2 for the TMs

defined by the TM arithmetic. For a TM (p, I) over variables

(�x, �y) and a TM T we write p(T, �y) + I for the TM resulting

from (p, I) by substituting T in the place of �x.

Order Lowering: It is often necessary to conservatively

simplify a given order n TM (pn, In) to a lower order k TM

(pk, Ik), where k < n. To do so, we write pn = pk + rn−k

where pk represents all monomials of degree k or less in pn
and rn−k represents the remaining terms. The simplified TM

is given by (pk, In⊕B(rn−k)). Specifically, lowering the order

to n = 1 results in the linearization of a TM.

However, the true utility of TMs lie in their ability to

represent functions that are, in general, not known in a

closed form. We will now discuss how TMs can be used to

conservatively approximate the time trajectories of ordinary

differential equations (ODEs) and hybrid systems.

III. TAYLOR MODEL INTEGRATION

We will now outline the methodology for guaranteed in-

tegration of ODEs using TMs. The outline here is intended

to serve as a tutorial introduction to TMs. Further details are

discussed in, e.g., [5], [7], [4].

Definition 3.1 (Initial Value Problem): An instance of the

initial value problem (IVP) consists of an ODE d�x
dt = F (�x, t)

over the state �x ∈ R
n, an initial interval �x(0) ∈ X0 ∈ I

n for

the values of �x at time 0 and a time interval [t1, t2] ∈ I. The

goal is to compute an enclosure X[t1,t2] of the states reachable

from X0 over the time interval [t1, t2] according to the ODE.

We assume that the ODE F (�x, t) is locally Lipschitz

continuous, assuring existence and uniqueness of the time

trajectories over some time interval [−Δ,Δ] with Δ > 0 and

[t1, t2] ⊆ [0,Δ].
Example 3.1: Consider the IVP given by dx

dt = 1+x2 with

initial interval x(0) ∈ [0, 1
2 ] and time interval t ∈ [0, 1

10 ].
Throughout this section, we will demonstrate the application

of TM integration over this running example.

Our approach to solving the IVP is to perform a flowpipe

construction [9], [10]:

1) Starting with the initial set X0, we compute an approxi-

mation X[0,δ1] for the states reachable from X0 in time

[0, δ1]. The set X[0,δ1] is called the first flowpipe segment.
2) Starting from the ith flowpipe segment X[δi−1,δi], we ad-

vance our approximation to a flowpipe segment X[δi,δi+1]

for some time δi+1 > δi.
3) The answer to the IVP is given as the set union of the

corresponding flowpipe segments that cover the interval

[t1, t2] of interest.

Flowpipe construction may be fixed timestep approxima-

tions wherein δi+1 − δi = h, for an input h > 0, or adaptive
wherein the time advance in each step is determined by

considerations that may include proximity to the guards or

the nature of the derivatives in a neighborhood.

Flow Map: The assumptions made for our IVPs guarantee

the existence of a flow map �x(t) = ϕ(�x0, t) over �x0 ∈ X0

and some time range t ∈ [−Δ,Δ], Δ > 0 that maps a given

initial condition �x(0) = �x0 to the state reached at time t [32].

Nevertheless, the map ϕ cannot be expressed in a known

closed form for all but the simplest of ODEs. However, as we

will show in the ensuing discussion, it is possible to compute
a TM (pk, I) of any given order k ∈ N for the map ϕ for
�x0 ∈ X0 and t ∈ [−Δ,Δ].

Example 3.2: Consider the ODE from Example 3.1. For

this simple case, we have a closed form solution yielding the

flow map ϕ(x0, t) = tan(t+ tan−1(x0)). Knowing this flow

map, the Taylor series expansion around t = 0 yields an order

4 Taylor polynomial p4(x0, t) = t+ x0 + x2
0t+ x0t

2 + t3

3 .
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The TM for ϕ is (p4, I) where I is some safe enclosure of

the error ϕ(x0, t)− p4(x0, t) over x0 ∈ [0, 1
2 ] and t ∈ [0, 1

10 ].

The challenge here is to compute a conservative model

(pk, I) for a flow map ϕ, without knowing the flow map in a
simple closed form. This is key since most non-linear systems

cannot be integrated (unlike our simple running example).

Assume that X0 is given by a TM over some domain D0 ∈
I
n. For i ≥ 1, the construction of the ith TM flowpipe proceeds

in the following steps: (1) Determine a k-order approximation

pk(�x0, t) for the flow map ϕ starting from the initial set Xi−1

(a TM) within the time interval [0, δi − δi−1]. The domain

of pk is �x0 ∈ Xi−1 and t ∈ [0, δi − δi−1]. (2) Evaluate a

proper interval I such that (pk, I) is an over-approximation of

the ϕ. (3) The ith flowpipe X[δi−1,δi] is computed as the TM

pk(Xi−1, t) + I by TM arithmetic. Then the initial set Xi for

the next flowpipe is the TM pk(Xi−1, δi−δi−1)+I . TM order

lowering is often necessary to keep the degrees of successive

flowpipe segments low.

Therefore all of the flowpipes can be computed as the TMs

over the domain D0 and a time interval w.r.t. the corresponding

time step.

Computing the Polynomial pk: The polynomial pk can be

computed in one of two ways: (a) applying Picard iteration

over TMs for finitely many times, or (b) using a truncated

Lie series by computing Lie derivatives of order m, wherein

0 ≤ m ≤ k. Given an ODE d�x
dt = F (�x, t) and a function

g(�x0, t) the Picard operator defined by F is given by

PF (g)(�x0, t) = �x0 +

∫ t

0

F (g(�x0, s), s) ds .

It is well known that if F is Lipschitz continuous then the

operator PF is contractive and its unique fixed point defines

the solution to the ODE.

The Picard operator can be applied to derive a Taylor

expansion pn of order n for its fixed point. Let pF be the

Taylor polynomial for function F . The TM Picard operator is

given by PF (gi) = �x0+
∫ t

0
pF (gi(�x0, s), s) ds. The monomials

of degree greater than n in the result are dropped and the

process is iterated until it converges. Convergence of this

process follows, since each non-convergent iteration can be

shown to result in the addition of at least one monomial

whose degree is higher than the monomials encountered in

the previous iteration. Therefore, at most n Picard iterations

are needed to generate an order n Taylor expansion.

Example 3.3: Consider the ODE dx
dt = 1 + x2 from Ex-

ample 3.1. Table I shows the Picard iterates obtained for

computing p4, a 4-order approximation. At each iterative step,

we retain the monomial terms of degree up to 4 in the result.

Since g2 = g3, the iteration converges after 3 iterations.

An alternative approach is to use the Lie derivatives of �x(t)
to compute the Taylor expansion for the flow map. Recall

that the Lie derivative of a function g(�x, t) w.r.t a vector field

F (�x, t) is given by LF (g) = (∇x g) · F (�x, t) + ∂tg. The

Lie derivative gives the value of the time derivative of the

function g(�x(t), t) applied to any time trajectory �x(t). We may

TABLE I
THE COMPUTATION OF 4-ORDER APPROXIMATION TO FLOW MAP BY

PICARD ITERATION.

Picard Iterate Order 4 Taylor polynomial
x0 g0 : x0

x0 +
∫ t
0 (1 + g20)dt g1 : x0 + t+ x2

0t

x0 +
∫ t
0 (1 + g21)dt g2 : x0 + t+ x2

0t+ x0t2 + t3

3

x0 +
∫ t
0 (1 + g22)dt g3 : x0 + t+ x2

0t+ x0t2 + t3

3

therefore write the truncated series as

gn(�x0, t) =g(�x0, 0) + LF (g(�x0, 0))t+ L2
F (g(�x0, 0))

t2

2!

+ · · ·+ Ln
F (g(�x0, 0))

tn

n!
.

Our goal is to derive a Taylor expansion for �x(t) as a

function of �x0 and t. To this end, we apply the truncated Lie

series for each function fj(�x) = xj , the jth component of �x.

Example 3.4: Consider the ODE dx
dt = 1+x2 given in Ex-

ample 3.1. We wish to compute the polynomial p4 representing

the Taylor expansion of degree 4 for the flow map which is

assumed not to be known. The Lie derivatives are:

L(x) : 1 + x2, L2(x) : 2x+ 2x3, L3(x) : 2 + 8x2 + 6x4,

L4(x) : 16x+ 40x3 + 24x5 .

To construct p4, we consider the expansion around x = x0

and t = 0, i.e.,

g4(x0, t) =x0 + (1 + x2
0)t+ (2x0 + 2x3

0)
t2

2!

+ (2 + 8x2
0 + 6x4

0)
t3

3!
+ (16x0 + 40x3

0 + 24x5
0)
t4

4!
.

Next, we compute a polynomial of order 4 for the truncated

Lie series. Since the RHS of the ODE is a polynomial in this

case, this operation simply consists of dropping monomials

of degree greater than 4. As a result, we obtain, p4(x0, t) =

x0 + t + x2
0t + x0t

2 + t3

3 . Not surprisingly, this is the same

result as the Picard iteration.

Computing the Remainder Interval: Thus far, we have

computed a Taylor expansion pk of order k for the flow map

ϕ. Our goal is to derive a bound for the error e(�x0, t) =
ϕ(�x0, t)− pn(�x0, t) �x0 ∈ X0, t ∈ [0,Δ].

A standard approach is to find an interval I such that

evaluating the Picard operator over (pk, I) yields a TM of the

form (pk, J) wherein J ⊆ I . In other words, we wish to find

an interval I over which the Picard iteration is contractive.

This proceeds by first choosing an initial interval I0 (an

estimate) and computing the Picard operator over pk + I0 to

yield (p′k, J). We then compute an enclosure of p′k − pk + J .

If the resulting enclosure is contained in I0, then we stop and

declare I0 to be a valid over-approximation. Otherwise, we

simply expand I0 by multiplying it with a suitable scale factor.

If the Picard operator is contractive on a computed enclosure

In, we can further refine this by repeatedly applying Picard

iteration to it 2 [7].

2This process is reminiscent of widening and narrowing in abstract inter-
pretation to accelerate convergence to a fixed point [33].
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Fig. 1. Taylor model flowpipes for the Van-der-Pol Oscillator.

Example 3.5: Consider the running example again. We

wish to consider the Taylor model (p4, [−1, 1]). We first carry

out the Picard iteration given by p′4 = x0+
∫ t

0
(1+(p4+I0)

2)dt.

We obtain p′4 = p4+
∫ t

0
([0, 0.107]⊕[−2.96, 2.96]⊕[0, 1])dt =

p4+[−2.96, 4.067]⊗[0, 1
5 ]. This yields, p′4 = p4+[−0.6, 0.82].

As a result, the Picard operator is contractive on (p4, [−1, 1]).
This suggests that (p4, [−1, 1]) is a valid over-approximation

over the time interval [0, 0.2]. In fact, using the Picard it-

eration suggests that (p4, [−0.6, 0.82]) is also a valid over-

approximation. The Picard operator is repeatedly applied until

no significant improvement of the error interval is seen.

The remainder interval is a potential source of inaccuracies

due to the wrapping effect [18]. Several techniques have been

proposed to overcome this limitation [34], [35], [20].

Example 3.6 (Van-der-Pol Oscillator): The Van-der-Pol

Oscillator is defined by dx
dt = y, dy

dt = y − x − x2y with the

initial set x(0) ∈ [1.1, 1.4] and y(0) ∈ [2.35, 2.45]. Figure 1

shows the TM flowpipe constructed until oscillation is

detected. The simulation trajectories (dark blue) are overlaid

on the TM approximation.

A. Hybrid Systems Verification

We now briefly recall the overall strategy for exploring

behaviors of a hybrid system using the presented TM flowpipe

construction and motivate the problem of handling discrete

transitions. Hybrid systems are formalized by hybrid au-

tomata [36], [1], [2]. Flowpipe construction itself is a widely-

studied approach to hybrid systems verification. We refer the

reader to earlier works and references therein, for an exposition

of flowpipe construction techniques [10], [3].

A hybrid automaton consists of a finite set of modes

Q and continuous variables �x that belong to a state space

X ⊆ R
n. The dynamics of the system are defined by means

of ODEs specifying the dynamics of �x in each mode and

by discrete transitions between modes modeling instantaneous

mode changes. A state 〈q,�v〉 of a hybrid automaton represents

a mode q and a valuation �v to the continuous variables �x.

Definition 3.2 (Safety Verification): Given a hybrid system

H and a set of unsafe states U , the safety verification problem

is to decide if any state in U is reachable from some initial

state of H.

A popular approach to safety verification is through flowpipe

construction, wherein the reachable states of the hybrid system

are explored symbolically and incrementally. Then we check

the emptiness of the intersection between the flowpipes and the

unsafe set. Flowpipe construction for hybrid systems consists

of two key primitives: (1) Time elapse: Given an initial set

of states S0 all belonging to mode q, compute the states

reachable inside mode q due to the continuous evolution of

state variables �x according to the ODE d�x
dt = Fq(�x, t).

(2) Image computation: Given a set of states S inside mode

q and a transition τ : 〈q, q′, G, P 〉, check if τ is enabled on

any state in S and if so, compute the image S′ of S w.r.t τ .

B. Image Computation

Image computation across a discrete transition has two

parts: (a) compute the intersection of the segment Sj with

the guard set G of the transition; and (b) compute the image

of the set Sj ∩G across the transformation �x′ = P (�x).

Intersection Computation: Given a TM (pj , Ij) for segment

Sj and a guard set G, we wish to consider techniques for

computing the intersection Sj∩G. A straightforward approach

is to conjoin the guard constraint for G to the TM (pj , Ij).

However, manipulating such constrained TMs inside a

flowpipe construction scheme can be quite cumbersome: (a) it

is unclear how arithmetic on such models can be performed,

or the guaranteed integration scheme can be adapted; and (b)

simply carrying around constraints does not solve the problem

of having to check emptiness and subsumption during the

verification process.

In this paper, we present two classes of strategies:

Domain Contraction: The constraint �x ∈ G can be used to

provide a contraction of the domain D0 and time interval for

t. This results in a conservative TM approximation of the set

Sj∩G. Domain contraction uses ideas from interval constraint

propagation (ICP), and can be applied to guard sets G specified

by non-linear constraints.

Range Over-Approximation: We transform the Sj into

a different representation Pj such as a zonotope or support

function, and use standard techniques over these represen-

tations to over-approximate the intersection Pj ∩ G. Next,

we transform the intersection back into a TM. Each step is

carried out conservatively, so that the overall result is an over-

approximation.

Image across Transformation: Let (p, I) represent the

TM for Sj∩G. We wish to compute the image across the

reset map �x′ = P (�x). This is achieved first computing

the Taylor polynomial rk for P up to some order k. The

Taylor polynomial for the result is given by the composition

rk(p(�x0, t)). Next, we compute the interval error by over-

approximating the error e = P (p(�x0, t) + I) − rk(p(�x0, t))
over the intervals bounding �x0 and t. We can use standard

interval arithmetic techniques to estimate safe interval bounds

Ie on the error e [18]. The overall TM for the image is given

by (rk(p), Ie).
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Fig. 2. Illustration of the domain contraction method.

IV. INTERSECTIONS OF TAYLOR MODELS AND GUARDS

We now present techniques for domain contraction and

range over-approximation.

A. Domain Contraction

Domain contraction side-steps the need to compute an

intersection of the TM segment with the guard by computing

an approximation of the time intervals and starting states inside

the mode which lead to an intersection with the guard for a

particular enabled discrete transition.

Consider a TM flowpipe Sj : (pj(�x0, t), Ij) over �x0 ∈
D0, t ∈ J , and a guard set G defined by predicate γ(�x).
The intersection is given by

�x = pj(�x0, t) + Ij ∧ �x0 ∈ D0 ∧ t ∈ J︸ ︷︷ ︸
TM Flowpipe Segment

∧ γ(�x)︸︷︷︸
Guard

.

The constraint γ(�x) on the range implies as smaller domain

D′0 ⊆ D0 for �x0 and J ′ ⊆ J for t. The contracted

TM (pj(�x0, t), Ij), where �x0 ∈ D′0, t ∈ J ′ is an over-

approximation of Sj ∩G.

If the contraction procedure results in an empty domain,

then we conclude that the intersection is empty. We illustrate

the process of domain contraction by a simple example and

discuss algorithms and heuristics for domain contraction.

Definition 4.1 (Domain Contraction): Let (pj , Ij) be a TM

flowpipe, �x0 ∈ D0, t ∈ J , and γ(�x) be a predicate over �x.

Subsets D′0 ⊆ D0, J
′ ⊆ J are valid contracted domains for

�x0, t iff the following entailment holds:

�x0∈D0 ∧ t∈J ∧ �x∈pj(�x0, t)+I ∧ γ(�x) |= �x0∈D′0 ∧ t∈J ′ .
Example 4.1 (Domain Contraction): We show an example

of domain contraction by using ICP. Consider a TM

x1 = −5x0 + x0t+ [−0.1, 0.1]
x2 = x0t− t2 + [−0.1, 0.1]

wherein �x0 ∈ [−1, 0.01] and t ∈ [0, 0.8]. The guard set is

given by γ(x1, x2) : x1 ≤ x2. Substituting x1, x2 in terms of

x0, t on the guard predicate, we obtain

−5x0 + [−0.1, 0.1] ≤ −t2 + [−0.1, 0.1]
This yields t ∈ [0, 0.5]. We propagate this new constraint to

contract the range of x0 and obtain x0 ∈ [−0.4, 0.01]. The

contracted domain is t ∈ [0, 0.5] ∧ x0 ∈ [−0.4, 0.01].
We now discuss algorithms for domain contraction. Domain

contraction will be repeatedly performed for each flowpipe

segment to determine if an intersection with a guard exists.

It is therefore of great importance to consider algorithms that

trade-off precision in terms of avoiding spurious intersections

with the need to keep the running time as small as possible.

Contraction as Optimization: We first note that domain

contraction is a non-linear optimization problem, where we

wish to compute bounds on each component of �x0 and t
subject to the non-linear constraints �x0 ∈ D0, t ∈ J, �x ∈
pj(�x0) + I, γ(�x), encoding the domain, the flowpipe segment

and the guard, respectively.

It is well-known that general non-linear programming is NP-

hard. Most approaches that find local optima using gradient

descent cannot be used in this setting to yield a sound verifi-

cation procedure. Techniques such as Sum-of-Squares (SOS)

Relaxation [37] can be used to achieve domain contraction.

However, our experience with using SOS programming for

domain contraction problems encountered during flowpipe

construction is that (a) SOS programming can be often quite

slow, leading to an unacceptable slowdown in the overall

flowpipe computation and (b) numerical errors in the solution

may propagate through the flowpipe construction, ultimately

leading to an unsound result.

Interval Constraint Propagation: Instead of using nonlin-

ear solvers, we contract the interval for �x0, t using interval

constraint propagation (ICP) [11]. Example 4.1 illustrates an

application of this idea. We first express the constraints in

terms of �x0 and t by substituting pj(�x0) + �u for �x, where

�u ∈ I is a fresh set of variables to represent uncertainty. We

can now use ICP to contract the domain �x0 and t until the

overall set of constraints are hull consistent. Using ICP for

domain contraction is easy to implement and has been found

to be a very effective trade-off in our experiments.

Contraction Using Branch-and-Prune: The process of

contraction using ICP can be improved by using branch-and-

prune. This is implemented by partitioning the result of ICP

into many subsets and performing contraction recursively on

each subset. The resulting contraction is obtained as a disjoint

union of many domains D′1 ∪ . . . ∪ D′m. There are various

methods which can be used to compute such a non-convex

contraction, such as the one from Ramdani et al. [23].

The complexity of using branch-and-prune can be expo-

nential in the depth of the recursive calls. Another source

of complexity lies in the creation of a large number of tiny

flowpipe segments, all of which need to be propagated as part

of the overall construction.

An Efficient Trade-Off: An efficient trade-off between

the various approaches presented here is to perform inter-

val contraction with branch-and-prune until the intervals are

smaller than some cutoff width ε. The main difference between

our approach and the standard interval branch-and-prune ap-

proach [11] is that we only keep one subdivision in every

branching step, as presented by Algorithm 2.

(a) We denote by �y the composition 〈�x0, t〉. The algorithm

computes the bound for each component (�y)j of �y sepa-

rately for j = 1, . . . , n+1, combining the disjoint intervals

188



Input: TM (pj(�y), Ij) with domain �y ∈ D.

Output: The contracted domain.

1: for all i = 1, . . . , n do
2: Compute a conservative approximation lo for the

lower bound of the (Dmin)i;
3: Compute a conservative approximation up for the

upper bound of the (Dmin)i;
4: if lo ≤ up then
5: Update (D)i to [lo, up].
6: else
7: Set D empty and break;

8: end if
9: end for

10: return D;
Algorithm 1: Main procedure of domain contraction

Input: TM (pj(�y), Ij) with domain �y ∈ D, i and ε.
Output: Approximation of the lower bound in dimension i.

1: Set lo as the lower bound of (D)i;
2: Set up as the upper bound of (D)i;
3: while the size of [lo, up] is larger than ε do
4: Split [lo, up] into [lo, a] and [a, up] wherein a = lo+up

2 ;

5: if (pj(�y), Ij) with �y ∈ D and (�y)i ∈ [lo, a] intersects

the guard then
6: up ← a;

7: else
8: lo ← a;

9: end if
10: end while
11: return lo;

Algorithm 2: Lower Bound approximation search.

that could potentially contain a solution into a single

interval.

(b) Each step consists of a branch-and-prune over the dimen-

sion j for which a lower bound is currently being searched.

(c) Finally, the contracted lower bound for (�y)i is used in turn

to improve future contractions for (�y)j for j > i.

Another key improvement is the use of linear programming

(LP) solvers in addition to ICP to improve efficiency. This

is achieved by lowering the order of all TMs to degree 1,

making them affine constraints. LP solvers are then used

to successively compute bounds for each of the dimensions

(�x0)j , where 1 ≤ j ≤ n and the time variable t. The

procedures are summarized by the Algorithms 1 and 2.

Theorem 4.1: Algorithm 1 yields a valid domain contrac-

tion according to Definition 4.1.

Example 4.2: We consider once again the Van-der-Pol sys-

tem from Example 3.6. This time, we add a guard set x ≥ 2.

Figure 3 shows the result of domain contraction on the

flowpipes generated. It is interesting to see that the result

of contraction eliminates unreachable states that are in the

intersection of the original flowpipe segments and the guards.

The result also includes states that are not in the guard set.

Fig. 3. Domain contraction for guard sets.

This will be improved by combining domain contraction with

range over-approximations.

Finally, we note that the process of domain contraction can

also be used to handle invariant sets that are commonly

specified for hybrid automata modes.

B. Range Over-Approximation

Range over-approximation seeks a temporary change of

representations, using geometric objects like template poly-

hedra, zonotopes and support functions on which intersection

computation with guard sets have been well-studied.

Support Functions: A support function over-approximation

of a set S provides for every input direction �l an intercept
zl such that �x ∈ S |= �lT�x ≤ zl. Template polyhedra are

support functions wherein the domain of directions �l belong

to a finite set of template directions L. Template polyhedra

and support functions have been used to construct flowpipes

for affine hybrid systems [13], [3], [12]. The transformation

from TMs to support functions allows us to use the available

methods [12] for intersections.

The construction of support function (or template polyhe-

dral) over-approximation for a Taylor model flowpipe segment

S : p(�x0, t) + I is conceptually simple. Once again, we may

carry out the optimization zl : max �lT�x s.t. �x ∈ p(�x0, t) +
I ∧ γ(�x). If the degree of p is high, this is a general non-

linear, non-convex mathematical programming problem. Also

here, global optimization is intractable. However, numerous

techniques can be used to obtain an upper bound for zl,
yielding a sound support function over-approximation. Given

that the interval ranges for �x0, t are known, it is possible to

evaluate �lT directly using interval arithmetic. However, this

cannot take the guard γ into account, unless γ contains a

constraint of the form �lT�x ≤ c. A better strategy for polyhedral
guard sets is to formulate the optimization as a linear program

by linearizing the TM.

Zonotopes: We may also use the methods proposed for

zonotopes to handle TM/guard intersections. A zonotope can

be viewed as the image of a hyper-rectangle under an affine

mapping [38]. Therefore we have the following lemma show-

ing the connection between zonotopes and TMs.

Lemma 4.1: A zonotope is a TM of order 1. Every TM

lowered to order 1 yields a zonotope.

189



A zonotope with generator-based representation can be easily

transformed to a TM. Given a zonotope Z = (c, 〈g1, . . . , gm〉),
the set of Z can be represented by the TM (p(�x), [0, 0]m) such

that p(�x) = c + (g1, . . . , gm)�x and �x ∈ [−1, 1]n. The other

direction is also not difficult, given an order 1 TM (p, I), we

compute the generator-based representations for the set p and

I respectively and then sum them up. The conversion from

a high order TM to a zonotope proceeds by (a) performing

a degree reduction procedure that computes a safe enclosure

of the non-linear terms and (b) casting the resulting set as a

zonotope. Hence, a TM/guard intersection can be handled by

(1) over-approximating the TM by a zonotope, (2) computing

a zonotopic enclosure for the zonotope/guard intersection by

some available method, (3) transforming the enclosure back

to a TM.

V. IMPLEMENTATION AND EVALUATION

We now briefly discuss the implementation of the ideas in

this paper and present an experimental evaluation over some

benchmark problems.

Implementation: The techniques presented thus far have

been implemented in C++ using a guaranteed interval arith-

metic library supported by the exact arithmetic package

MPFR. Our implementation currently supports non-linear hy-

brid systems with polynomial dynamics inside modes and

discrete transitions with polyhedral guards. The implementa-

tion of guaranteed integration for handling dynamics inside

a mode uses the basic algorithm of Berz and Makino [5]

with numerous modifications for supporting its application

to hybrid systems. Domain contraction is implemented using

ICP. We have also implemented range over-approximations

using support functions, template polyhedra and zonotopes.

Finally, we implemented preconditioned TMs, wherein a linear

change of basis transformation improves the precision and the

efficiency of the computation [35].

Evaluation: We first describe the results on some of the

benchmark instances and a comparison with the Ariadne

tool [30], which is perhaps the only available tool that handles

non-linear hybrid systems robustly. Table II shows the results

on some benchmark examples taken from related approaches

to verifying non-linear hybrid systems [39] and some control

systems for glycemic control in diabetic patients [16], [17].

All experiments were tested on a i7-860 2.8GHz CPU with

4GB RAM running Ubuntu Linux.

Glycemic Control in Diabetic Patients: We formulated a

simple hybrid model of glycemic control in diabetic patients

following the description of feedback control strategies by

Fisher [17] and Furler et al. [16]. The dynamics of insulin

glucose in a type I diabetic patient is modeled by the Bergman

minimal model with three state variables (G, I,X) wherein G
is plasma glucose concentration above the basal value GB and

I is the plasma insulin concentration above the basal value IB .

Fig. 4. Flowpipes constructed for the glycemic control schemes of (left)
Furler et al. [16] and (right) Fisher [17].

X is the insulin concentration in an interstitial chamber.

dG
dt = −p1G−X(G+GB) + g(t)
dX
dt = −p2X + p3I
dI
dt = −n(I + Ib) +

1
VI
i(t) .

Typical parameter values are p1 = 0.01, p2 = 0.025, p3 =
1.3 × 10−5, VI = 12, n = 0.093, GB = 4.5, Ib = 15.

The functions g(t) and i(t) model the infusion of glucose

and insulin into the bloodstream. The insulin control scheme

i1(t) due to Furler et al. [16] and i2(t) due to Fisher [17]

assume that G(t) is measured using frequent blood glucose

tests (assumed to be error free):

i1(t) =

⎧⎨
⎩

25
3 G(t) ≤ 4
25
3 (G(t)− 3) G(t) ∈ [4, 8]
125
3 G(t) ≥ 8

i2(t) =

{
1 + 2G(t)

9 G(t) < 6
50
3 G(t) ≥ 6

.

The influx of glucose after a meal is modeled as:

g(t) =

⎧⎨
⎩

t
60 t ≤ 30
120−t
180 t ∈ [30, 120]

0 t ≥ 120
.

The initial conditions are G(0) ∈ [−2, 2], X(0) = 0, I(0) ∈
[−0.1, 0.1]. Our goal is to simulate the system for a total of t =
360 minutes to conclude upper and lower limits on the value

of G(t). Modeling of g(t) and i(t) values yields a 9 mode

hybrid automaton for the control scheme i1(t) and 6 modes

for the control scheme i2(t). Figure 4 shows the constructed

TM flowpipes (plotted by their box enclosures) along some

simulated trajectories (in blue color). In the red circle, we can

see that the intersection of the guard and box enclosures is

much larger than our intersection over-approximation.

Vehicle Model: The dynamics of a non-holonomic vehicle

is given as follows,

dx
dt = vct

dy
dt = vst

dv
dt = u1

dct
dt = σv2st

dst
dt = −σv2ct dσ

dt = u2

where u1, u2 are control inputs. We consider the case of a

vehicle with three control modes m1,m2,m3. The control

inputs are given by (u1, u2) = (−0.05,−0.1), for mode m1,

(0, 0) for m2 and (0.05, 0.1) for m3.The transitions between
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TABLE II
EXPERIMENTAL RESULTS OVER SOME BENCHMARK SYSTEMS. LEGEND − DEG: DEGREE OF THE DYNAMICS, LOC: NUMBER OF LOCATIONS, VAR:

NUMBER OF VARIABLES, δ: TIME STEP, T: TIME HORIZON, ORD: ORDER OF THE TMS, T.T.: TOTAL TIME (S), T.I.: TIME OF COMPUTING INTERSECTIONS

(S), MEM: MEMORY USED (MB), D.C.: DOMAIN CONTRACTION, R.M.: RANGE OVER-APPROXIMATION METHOD, Z: ZONOTOPES, S.F.: SUPPORT

FUNCTIONS, EXC: THREW AN EXCEPTION, NR: CANNOT FIND A PROPER REMAINDER.

Our tool Ariadne
Benchmark DEG LOC VAR δ T ORD T.T. T.I. MEM D.C. R.M. T.T MEM
Brusselator 3 1 2 0.05 [0,10] 4 77 0 4 - - 34 12
Brusselator 3 1 2 0.03 [0,15] 4 152 0 8 - - EXC -
Watertank 1 4 2 0.1 [0,80] 3 9 5 8

√
Z 7 24

Van-der-PolE 3 2 3 0.01 [0,6] 4 71 37 4
√

Z EXC -
Lotka-Volterra 2 1 3 0.01 [0,3] 4 14 0 8 - - 52 8

Hallstah 3 1 2 0.01 [0,7] 3 19 0 ≤1 - - 0.6 ≤1
B.B. no drag 1 1 4 0.02 [0,3] 3 0.8 0.3 ≤1

√
- 0.2 ≤1

B.B. const drag 1 2 4 0.02 [0,3] 3 2 0.8 ≤1
√

- 0.6 ≤1
B.B. Stokes-Einstein 2 2 4 0.02 [0,3] 3 8 2 ≤1

√
- EXC -

Diabetic [16] 2 9 4 0.02 [0,360] 9 2138 663 430
√

Z EXC -
Diabetic [17] 2 6 4 0.02 [0,360] 9 1804 443 410

√
Z EXC -

Watt governor [40] 4 1 5 1e-4 [0,15] 5 NR - - - - EXC -
Vehicle 4 3 6 0.1 [0,10] 9 85 40 4

√
S.F. EXC -

Angiogenesis [39] 2 1 12 1e-8 [0,2e-6] 4 34 0 12 - - EXC -
Coll-avoid-2 [41] 2 3 12 0.01 [0,10] 3 27 8 3

√
- EXC -

m1 m2 m3

st > 0.7

st < 0.65

st > 0.8

st < 0.75

Fig. 5. Hybrid automaton of the vehicle model.

Fig. 6. Flowpipe constructed for the vehicle model.

modes are shown in Figure 5. We start the TM flowpipe

construction from m1 with the initial variable values

x ∈ [1, 1.2] y ∈ [1, 1.2] v ∈ [0.8, 0.81]
st ∈ [0.7, 0.71] ct ∈ [0.7, 0.71] σ ∈ [0, 0.05] .

The projection of the result on x, y is shown in Figure 6,

where the TM flowpipes are plotted by their octagon over-

approximations, and the simulation trajectories are in blue.

This model is a good evaluation platform for the flow-

pipe/guard intersection techniques. Since lots of flowpipes

intersect the guard in each mode, if the intersections can not

be accurately over-approximated, the overestimation would

increase drastically in the forthcoming integration steps.

Angiogenesis Model: We consider the Angiogenesis model

which is presented in [42]. It is a non-linear ODE with 12 state

variables. The initial conditions and parameters are as reported

in [39]. The TM approach is able to construct a flowpipe with

a time step as small as 10−8. The TM construction fails if a

larger time step is used.

Collision Avoidance: We apply our method to the algebraic

abstraction of the collision avoidance system analyzed recently

by Platzer et al. [43] and earlier in [44] and [41]. We consider

the instance of two aircrafts. The abstracted hybrid automaton

has 3 modes and 12 variables. Initially, the distance between

the two aircrafts is 20. We define the alert distance by 5 and

the other parameters are same as those in [41]. We performed

the TM flowpipe construction for the time horizon [0, 10] and

detected no collision. The results are given in Table II.
In addition, we consider many other benchmarks including

the bouncing ball with various kinds of air friction, the Van-

der-PolE and Hallstah examples from the HSolver suite 3, the

Lotka-Volterra and the Brusellator systems.

Comparison with Other Tools: We compared our tech-

nique with the tools HySAT/iSAT [24] and Ariadne [30].

HySAT/iSAT both failed to complete on most of the bench-

marks presented here (to be fair, HySAT/iSAT are meant

to be generic non-linear constraint solvers). Table II shows

the comparison with Ariadne. We note that our approach

produced results in many cases where Ariadne fails due to

too many subdivisions of the state-space. On the other hand,

whenever Ariadne was able to complete, it computed the

reach-set notably faster than our method. The implementations

reported by Ramdani et al. [23] and Prabhakar et al. [31] were

unavailable for comparisons at the time of writing.

VI. CONCLUSION

In conclusion, we have presented techniques for hybrid sys-

tem verification using Taylor models combined with domain

3http://hsolver.sourceforge.net/benchmarks
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contraction and range over-approximations. Our approach has

demonstrated a lot of promise on the benchmarks used in our

evaluation. However, a lot remains to be done to make non-

linear hybrid system verification truly practical. For instance,

the error in TM flowpipes can be considerable if the initial

set is large. A standard approach there is to subdivide the

initial set and perform the analysis separately on each subset.

We are investigating template TMs to reuse work in this

setting. We are also investigating integration of our tools inside

environments such as Simulink/Stateflow, to enable direct

evaluation on challenging control system benchmarks.
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