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D
esigners of industrial embedded control systems, 
such as automotive, aerospace, and medical-de-
vice control systems, use verification and testing 
activities to increase their confidence that per-
formance requirements and safety standards are 

met. Since testing and verification tasks account for a sig-
nificant portion of the development effort, increasing the 

efficiency of testing and verification will have a significant 
impact on the total development cost. Existing and emerg-
ing simulation-based approaches offer improved means of 
testing and, in some cases, verifying the correctness of con-
trol system designs.

In many domains, embedded control software has been 
increasing in scale and complexity for years, and this trend 
is expected to continue for the foreseeable future. For 
example, the software systems in a premium automobile 
may contain 100 million lines of code distributed across 
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dozens of microprocessors [1]. Code complexity continues 
to increase for many reasons. One reason is the increasing 
level of autonomy for smart vehicles, such as the NASA 
Mars rovers, unmanned aerial vehicles, and self-driving 
automobiles. Increased autonomy is often achieved by 
using advanced algorithms that increase the complexity of 
the control software.

Another reason for increasing code complexity is the 
need to respond to ever-increasing government-mandated 
regulatory requirements, as exemplified by the vehicle 
efficiency, emissions, and diagnostics standards in the 
automotive domain. For example, the corporate average 
fuel economy (CAFE) standard [2], which is a U.S. govern-
ment regulation that defines requirements based on the 
total vehicles an automaker produces, mandates thresh-
olds for fuel efficiency and emissions. CAFE standards are 
met using various approaches, such as by adding new 
energy-saving and emission-reducing technologies, like 
exhaust-gas recirculation (EGR) systems. EGR systems 
help to increase overall engine efficiency, at the cost of 
adding a new physical system that must be regulated by 
the electronic control unit, which increases the control 
software complexity.

Traditional software development processes for embed-
ded control systems involve manually generating code in a 
monolithic manner and then validating the system design 
with experimental tests. This approach is expensive and 
difficult to manage for complex systems, and it results in 
inflexible controller designs, which are difficult to reconfig-
ure since they are not inherently modular (that is, there are 
not clear separations between software components). This 
lack of flexibility is problematic for complex system devel-
opment, where system requirements and plant parame-
ters often evolve during the development process.

To manage the complexity, many organizations adopt a 
model-based development (MBD) approach, which is a 
process for developing embedded control systems based on 
models that represent the dynamic behavior of the system. 
The goal of the MBD process is to provide a unified frame-
work for creating, documenting, testing, and deploying 
reliable embedded control systems.

The MBD process is illustrated in Figure 1. The process 
begins with performance requirements that define how 
the system should behave. Based on requirements, a con-
trol design model is created. The control design model is 
refined to include implementation details, such as control-
ler sampling and saturation, resulting in a specification 
model. Code (software) is generated (either manually or 
automatically) based on the specification model. The code 
is then compiled for the platform hardware, which is ulti-
mately deployed in a system that includes a real-time 
hardware platform interacting with a plant (a physical 
environment).

At each vertical level of the design V, the requirements 
or models that appear on the left side of the V define the 
behaviors that should be exhibited by the corresponding 
systems on the right side of the V. This mapping of specifi-
cations to desired behaviors (indicated by the horizontal 
lines in Figure 1) provides traceability for the performance 
specifications, meaning that there is a direct correlation 
between the design requirements or models and the corre-
sponding system under test.

The earlier stages of the development are associated with 
the left side of the design V. Identifying a problem with the 
control design at these early stages results in less expensive 
rework than if the problem is identified later in the develop-
ment process. In early development stages, simulation-
based approaches to verification are valuable because they 
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Figure 1  The model-based development design V. This process is used to develop reliable embedded control systems.



DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  47

offer a means to identify design problems using the models 
that appear on the left side of the design V.

Many techniques are used to debug and verify software 
for embedded control systems. Approaches can broadly be 
classified in terms of how well they account for the possible 
behaviors of the model and how well they scale. Some tech-
niques, such as model checking, can provide formal guaran-
tees of correctness for all behaviors of software systems, but 
these do not scale well for many industrial embedded con-
trol systems. Simulation, on the other hand, can be applied 
to models of any scale but only provides an approximation 
of behavior for a discrete set of operating conditions. For a 
discussion of the range of analysis techniques for embedded 
control systems, see “Spectrum of Analysis Techniques.”

Simulations provide numerical approximations of system 
behavior, given a mathematical model of the system, and are 
commonly used for debugging embedded control system 
designs. Simulations are used to 1) validate functional 
behavior, 2) obtain initial calibration parameter values, 3) 
obtain estimates of system performance, and 4) serve as the 
basis for the functional and software specifications.

Currently, simulations are often used in an ad hoc 
manner to check for design bugs. Engineering intuition is 
used to select operating conditions to demonstrate the 
desired behavior; however, emerging techniques are avail-
able to automatically select critical operating conditions for 
the purposes of verification and test.

This article presents an overview of traditional and 
advanced modeling, testing, and verification techniques 
used in the development of embedded control systems. The 
article begins by introducing standard techniques and 
tools used in industry to develop and test embedded con-
trol systems. Next, emerging advanced testing approaches 
are presented, followed by advanced verification tech-
niques. The article concludes with a summary of the avail-
able testing and verification approaches.

Preliminaries
General testing and verification scenarios involve a system 

,M  a (possibly infinite) set of parameters ,P  a (possibly infi-
nite) set of inputs ,U  and a property }  that should hold for 
the system. Here, M could be some model of the system, or it 
could be a physical manifestation of the system. Testing and 
verification activities are defined in terms of behaviors 
( , , ),p uMU  where , ,p P u U! !  and u is (generally speak-

ing) a function of time. The behavior of system M under 
parameter p  and input u  is denoted ( , , ),p uMU  and 
( , , )P UMU  is the set of all possible behaviors of M under the 

parameters in P  and inputs in .U  Behaviors can be obtained 
either from experiments, where behaviors are observed 
based on sensor measurements, or from simulations, where 
behaviors are estimated using numerical methods.

Assume that M  can be evaluated to determine whether 
}  holds for a particular p  and u . The notation ( , , )p uM t}U  
is used to denote that ( , , )p uMU  satisfies ;}  conversely, 

( , , )p uM F }U  denotes that ( , , )p uMU  does not satisfy .}  
When the sets P  and U  are clear from the context, then 
Mt}  is used to mean that the (possibly infinite) behav-
iors in ( , , )P UMU  satisfy } , and Mt}Y  indicates that not 
all behaviors in ( , , )P UMU  satisfy } .

The following definitions provide the testing and verifi-
cation activities that are addressed herein.

Definition 1 (Testing)
The testing task is to determine whether ( , , )P UM t }U t t  
for given sets P P3t  and U U3t , where Pt  and Ut  are finite.

Testing is the most common means of evaluating embed-
ded control system designs, but it has two significant limi-
tations. First, testing conditions may not accurately reflect 
the manner in which the system will be used once it is 
deployed. For example, testing an engine inside of a test 
cell is different than driving the vehicle on a busy highway. 
Second, note that sets Pt  and Ut  are finite in Definition 1, 
which implies that testing cannot be used to exhaustively 
evaluate continuous parameter or input ranges. This is a 
significant and fundamental limitation with testing as a 
method of performance evaluation; it typically means that 
testing cannot be used to verify whether }  holds for all 
behaviors of .M  Mathematically speaking, no matter how 
many tests are performed, the system remains, almost every-
where, untested. Verification, on the other hand, addresses 
this problem.

Definition 2 (Verification)
The verification task is to prove ( , , )P UM t }U  for a given 
P  and U .

Verification provides a formal proof of correctness of 
the system for a (possibly infinite) set of parameters and 
inputs. Technologies such as model checking and theorem 
proving can be used to perform verification for software 
systems (see “Formal Methods” for further details). Some 
of these tools can be applied to embedded control sys-
tems, but no mature tools exist that can be applied to 
detailed industrial models that capture plant behaviors, 
such as engine dynamics. If proving correctness is not 
possible, another approach is to assume that a bug exists 
and then employ a technique to actively search for the 
incorrect behavior.

Definition 3 (Falsification)
The falsification problem is to find a p P!  and u U!  such 
that ( , , ) .p uM t }U Y

The difference between testing and falsification is 
subtle. Testing determines whether a property holds for a 
given (finite) set of parameters and inputs, whereas falsifi-
cation is an activity that searches for parameters and inputs 
from (possibly infinite) sets that demonstrate that 
( , , ) .p uM t }U Y

Also, it is interesting to note that, from a logical stand-
point, verification is equivalent to determining whether the 
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system can be falsified—that is, whether there exists a 
p P!  and u U!  such that ( , , ) .p uM t }U Y  An important 
consequence of falsification is that a specific p P!  and 
u U!  that demonstrates that ( , , )p uM t }U Y  is identified. 
This parameter and input provide the user with valuable 
information that can be used to debug the design.

All testing and verification approaches rely on some 
form of requirements, either formal or informal, but the 
process of creating correct and useful requirements is an 
often underappreciated activity. Care should be taken to 
create requirements that accurately reflect the intended 
behavior of the system.

Definition 4 (Requirement Engineering)
Requirement engineering is the process of developing an 
appropriate } .

Requirement engineering remains a challenge for 
industry. Embedded control developers in many domains 
have made significant efforts to generate and document 
clear and concise requirements; however, challenges re
main due to 1) the incompatibility between the form of the 
documented requirements and the input to existing veri
fication and testing tools, 2) the ambiguous nature of 
requirements captured in natural language, 3) potential 
inconsistencies between requirements, and 4) the large 
number of requirements.

Quality Checking for Embedded  
Control Systems
This section presents an overview of modeling and simula-
tion techniques currently used in industry. Generally speak-
ing, modeling is the process of developing an appropriate 

Spectrum of Analysis Techniques

Many types of analyses can be per-

formed on embedded control sys-

tem designs. Each analysis approach 

has unique benefits and shortcomings, 

and each applies to a specific class of 

system representations.

Consider the spectrum of analysis 

techniques presented in Figure S1, which 

provides a subjective classification of var-

ious analysis approaches, based on the 

degree of exhaustiveness of the approach 

and the scale of the model to which the 

approach can be applied. Here, exhaus-

tiveness refers to how well the approach 

accounts for all possible behaviors of a 

model. The exhaustiveness is indicated 

by the horizontal position of each ap-

proach (left is less exhaustive and right 

is more exhaustive). The scale of each 

model refers to the level of detail and size 

of the models that can effectively be ad-

dressed by each approach. The scale is 

indicated by the vertical position of each 

approach (lower is smaller scale and 

higher is larger scale).

The analysis techniques on the far left side of Figure S1 are 

classified as “testing/control techniques,” since they are based 

on individual (finite) sets of behaviors of the system model or 

provide information about only local behaviors. The analysis 

techniques on the right side fall under the classification of “ver-

ification” techniques, since they account for all behaviors of the 

system models.

Consider the simulation item in Figure S1, which is intended 

to refer to approaches that use simulations based on operating 

conditions that are either manually selected or are selected 

using a Monte Carlo method. This item is located at the top-left 

of the spectrum because it can be performed for models of any 

scale but provides only one example of the system behavior. 

Therefore, simulation scales well, but it does not provide ex-

haustive results.

Two different types of linear analysis appear on the spec-

trum, numerical and symbolic. Here, linear analysis refers to 

the process of applying Lyapunov’s indirect (first) method to 
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Figure S1  The spectrum of analysis techniques. For various types of analyses, the 
spectrum illustrates how thoroughly each one accounts for system behaviors and 
the level of complexity of the models that can be considered.
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system model .M  Simulation is the process of obtaining 
particular behaviors .( , , )p uMU

Modeling Paradigms Used in Embedded Control 
Applications
Simulation-guided approaches to verification and testing 
require a model M of the system under consideration. Here, 
M can contain representations of the embedded controller, 
the plant, or a closed-loop model, which contains both. Models 
of the controller can range from simple, continuous-time rep-
resentations (such as transfer functions), to complex models 
that capture implementation details, such as sensor and actu-
ator saturation, computation time and communication 
delays, sensor noise, and actuator error. In some cases, com-
puter code can be automatically generated from the detailed 
controller models for deployment on a real-time platform.

Developing a plant model can pose a significant 
challenge for complex systems. Complex interactions of 
mechanical, hydraulic, thermal, electrical, and chemi-
cal phenomena make the problem of capturing the 
dynamical system behavior difficult, particularly when 
under a tight development schedule. In practice, a mod-
eling paradigm is chosen based on the usage scenario 
for the model.

Causal, lumped-parameter models are a common type 
used to capture plant dynamics. Causal models have a 
clear distinction between the source and destination of sig-
nals that induce system behaviors. Lumped-parameter 
models use a discrete set of descriptive components to sim-
plify the mathematical representation of phenomena that 
are continuously distributed over a physical region. In 
causal, lumped-parameter models, system dynamics are 

determine stability. Symbolic linear analysis uses partial de-

rivatives of an analytic representation of the system dynamics 

to obtain the linearized dynamics. Numerical linear analysis 

uses numerical perturbation to obtain the linearized dynamics. 

The two methods are located on the left side of the spectrum 

because they only provide an indication of system model be-

haviors locally, that is, in a neighborhood of the point of lin-

earization. The linear analysis items are located to the right of 

simulation because they provide results that apply to an infinite 

collection of behaviors (local to the point of linearization).

Test-vector generation (TVG) refers to automated process-

es for creating system inputs such that some coverage criteria 

are satisfied. TVG is located to the right of the linear analysis 

items because it is expected to explore a wide range of system 

behaviors, albeit using a finite collection of simulation traces. 

TVG is located near the middle of the scalability dimension be-

cause, although TVG techniques may be applied to any system 

for which simulation may be applied, it may not successfully 

achieve the desired level of coverage for large models.

Concolic testing refers to techniques that use concrete ex-

ecutions (simulations) of software systems combined with for-

mal analysis of decision branching conditions to satisfy some 

coverage criteria. This approach is placed near the center of 

the spectrum because it is moderately exhaustive (it can cover 

many decision branches but only those associated with a fixed 

set of executions), and it can be applied to software models of 

moderate size, since the simulations can be performed on any 

model, but the computational cost of the branch decision anal-

ysis is prohibitive (particularly if a plant model is considered). 

Note that there are several different ways that the general con-

colic testing approach may be applied, so arguments could be 

made to move the location to some other region of the spectrum.

Stability proofs refers to the process of applying Lyapunov’s 

direct (second) method to determine stability. This is placed on 

the right side of the spectrum because it can be used to prove 

properties for all behaviors of the system (for example, when the 

system is globally stable). Stability proofs are placed low on the 

scalability axis because the proofs must be constructed manu-

ally and so are difficult to apply to large-scale system models.

Reachability analysis refers to techniques that use numeri-

cal methods to conservatively approximate the set of behaviors 

that a closed-loop system model can exhibit. This approach is 

placed on the right side of the spectrum because, generally, it 

can provide a guarantee of correctness for all system behav-

iors; however, reachability analysis is not located on the extreme 

right because, for closed-loop system models, it may not provide 

exhaustive results over unbounded time. Reachability analysis 

is placed low on the scalability axis because it is computation-

ally expensive and does not scale well with the complexity of the 

model, particularly when a plant model is considered.

Model checking and theorem proving refer to formal analy-

sis techniques for strictly software system (open-loop) models 

that can provide a proof that all model behaviors satisfy a given 

logical property, often expressed in temporal logic. These ap-

proaches provide entirely exhaustive results for models but are 

computationally expensive and cannot be applied to detailed 

software models or to plant models of even moderate complex-

ity. Also, some theorem provers can handle close-loop models, 

but these tools require significant user intervention.

The falsification, multiple-shooting, RRT-REX, and simula-

tion-guided Lyapunov analysis techniques, which are detailed 

in the article, appear near the center of the spectrum. The cen-

tral horizontal location is selected because these approaches 

automatically select operating conditions to produce simula-

tions that explore the space of system behaviors as widely as 

possible. The central-to-high vertical locations are selected 

because these approaches can be applied to closed-loop dy-

namic system models of moderate-to-high complexity.
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Formal Methods

F ormal methods (FMs) are used in some software and hard-

ware development domains to verify properties of comput-

er code, such as C programs, or finite-state logical behaviors, 

such as field programmable gate arrays. Model checking is an 

FM technique that takes a model of the system (such as com-

puter code) and a property that should hold for the system, in 

the form of a temporal logic formula, and returns either a cer-

tificate of correctness or a counterexample that demonstrates 

a specific behavior that violates the requirement [S1]. Model 

checking was first applied to systems such as logic circuits 

and later to computer software [S2]. Several model-checking 

tools have been developed and successfully applied to verify 

communication protocols [S3], hardware drivers [S4], and even 

focused components of automotive control code [S5]. Model 

checkers such as SLAM [S2] and CBMC [S6] are used by in-

dustry to verify system correctness.

Theorem proof assist tools, referred to as theorem provers, 

are based on FM techniques for verifying system correctness. 

While model checkers rely on an evaluation of system behav-

iors, a theorem prover is an interactive framework that assists 

the user to construct a formal proof using deductive tech-

niques. Tools such as PVS [S7], Coq [S8], Isabelle/HOL [S9], 

and ACL2 [S10] have been used to verify software correctness. 

Recent work has combined the rigor of theorem proving us-

ing Isabelle/HOL with the performance and automation of set-

based reachability for the purpose of verification for continuous 

dynamical systems [S11]. The KeYmaera tool can be used to 

prove properties about hybrid systems [S12], and recent exten-

sions have allowed information obtained from simulations to 

be used to assist with the proof task [S13]. Though theorem 

provers can be used to provide a formal proof of correctness, 

the tools require user intervention and can be difficult for non-

experts to use.

Static analysis

Static analysis is another way to debug and check the quality 

of control code for embedded control systems. A key feature 

of static analyzers is that they operate directly on source code 

(or models) and do not need to evaluate system behaviors to 

check for problems in the design. Static code analyzers have 

become standard in most integrated development environ-

ments [S14], but most analyzers can only check for specific 

types of coding errors, such as variable-type mismatches. A 

notable exception is the Astrée tools, which can prove the ab-

sence of run-time errors in C programs and has been used to 

perform formal analysis of primary flight control software in the 

Airbus A340 airliner [S15].

Formal methods challenges

FM techniques provide a proof of system correctness but suf-

fer from fundamental and practical drawbacks. Fundamentally, 

FMs do not scale well for large, industrial systems. On the 

practical side, FMs are currently difficult for control engineers 

to use. Engineers are often unfamiliar with the temporal log-

ics that are used to specify the requirements used by FMs; 

this challenge is common to other analysis techniques, in-

cluding simulation-based approaches. Also, many tools re-

quire that an intermediate model be created, based on the 

original system model. The task of creating intermediate 

models is often performed manually and so is time consum-

ing and prone to error.
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described by ordinary differential equations (ODEs) and 
can be modeled using block diagrams connected by edges 
that represent paths for unidirectional signal flow. This 
type of model can be created in, for example, Simulink or 
Ptolemy II [3].

Figure 2(a) provides an example of a block diagram rep-
resenting a causal model. The system in the figure repre-
sents the ODEs describing a spring-mass-damper system,

( ) ( ),

( ) ( ) ( ),

x t x t

x t g M
k x t M

b x t

1 2

2 1 2

=

= - -

o

o

where ( )x t1  and ( )x t2  are the position and velocity of the 
mass, respectively, k  is the spring constant, b  is the damp-
ing constant, M  is the mass, and g  is the acceleration due 
to gravity. The integrators require initial conditions, ( )x 01  
and ( )x 02 , which determine the initial configuration of the 
system. The arrows in the diagram indicate that a signal 
value emanates from one block and is used as input to 
another. For example, the state of the integrator ( )x t1  pro-
vides a value to the k M  multiplier block, which the multi-
plier block treats as an input.

Acausal, lumped-parameter modeling techniques are 
also used to capture plant behaviors. In an acausal model, 
system dynamics are described by differential algebraic 
equations. As with causal systems, acausal systems can be 
modeled using block diagrams; however, for acausal 
models, edges between blocks represent constraints involv-
ing variables from the connected subsystems. This type of 
model can be created using, for example, the Simscape tool 
or an environment that supports the Modelica language 
(such as Dymola or MapleSim) or the VHDL-AMS language 
(for example, Simplorer).

Figure 2(b) is a block diagram representing an acausal 
model of the spring-mass-damper system described previ-
ously. The block labeled M  represents a physical object 
with mass .M  The sawtooth line represents a spring with 
spring constant .k  The element to the right of the spring 
represents a dashpot (a mechanical element that provides 
damping to the system) with damping constant .b  The 
mass block is associated with the dynamic equation 

( )Mx t1 =p   ( ),gM F t
i i+/  where ( )x t1  is the vertical position 

of the mass, g  is the acceleration due to gravity and ( )F t
i i/  

is the sum of all of the external forces on the mass. The lines 
connecting the mass, spring, and dashpot together repre-
sent a constraint. In this case, the constraint is 

( ) ( ( )F t k x t
i i 1=-/  .( )) ( ( ) ( ))x t b x t x t2 1 2- - -o o  The component 

on the bottom of the diagram represents ground. The lines 
connecting the spring and the dashpot to ground represent 
the constraints ( )x t 02 =  and ( )x t 02 =o .

Acausal models allow for a more composable approach 
to modeling, at the expense of more computation time for 
simulations. Since typical control design methods are set in 
a framework of ODEs, control designers are often more 
comfortable dealing with ODEs, and so causal models have 

traditionally been used in control design. However, this is 
beginning to change, due to the increasing complexity of 
the systems under development.

In some cases where lumped-parameter models are 
insufficient for capturing certain critical physical phenom-
ena, distributed-parameter models can be used. Partial dif-
ferential equations (PDEs) are used to model this type of 
system. PDEs can be used, for example, in cases where vital 
aspects of the system that are required to define its behavior 
over time are spread across a relatively wide physical area.

PDEs are used sparingly in embedded control design 
because producing simulations for PDEs is computation-
ally expensive. As an example, consider the dynamics of an 
automotive engine after-treatment system, which is respon-
sible for reducing the amount of toxic pollutants emitted by 
the vehicle. For some analyses, it is necessary to accurately 
model the distribution of heat along the length of the cata-
lyst (a critical component of the after-treatment system), 
which is best represented with a PDE. While some design-
ers will choose to model the system as a PDE, others will 
opt to create an ODE approximation of the dynamics by 
discretizing the spatial distribution of heat within the cata-
lyst. The ODE approximation will less accurately capture 
the dynamics but will allow for more efficient simulations 
of the behaviors (see [4], for example).

Finite-element analysis (FEA) models are used to capture 
physical phenomena best described by boundary-value prob-
lems defined over some spatial distribution, for example, 
electromagnetic fields, temperature variation, stress/strain, 
and fluid dynamics. FEA can be used to estimate critical 
aspects of the systems design. Note, however, that this type 
of model often requires a significant setup time and informa-
tion from outside of the domain of control development, and 
it is also computationally expensive. Therefore, FEA is seldom 
used to model embedded control systems.

Simulation and Testing for Embedded  
Control Applications
The term simulation refers to the process of obtaining a 
numerical estimation of system behaviors ( , , )P UMU t t  for a 
specific collection of operating conditions given by finite 
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Figure 2  Examples of dynamic models: (a) an example of a 
causal model and (b) an example of an acausal model.
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sets Pt  and .Ut  In practice, simulations are obtained using 
specialized software. The simulation software usually pro-
vides an environment to specify ,M  which can represent 
the control-system software and possibly a representation 
of the plant. Simulink, Dymola, and Simplorer are com-
monly used tools for this type of activity. Engineers use 
simulation to perform preliminary tuning of control param-
eters, estimate performance of a given control design, and 
also debug the design.

Control design simulation has parallels in the program-
analysis domain. Some program testing standards require 
that each decision path in the control code be exercised using 
some testing approach, for example, testing requirements 
based on the modified condition/decision coverage (MCDC) 
criterion [5]. In program analysis, it is common to refer to 
tests as concrete executions, or runs, of a software system. 
These concrete executions are analogous to simulations of an 
embedded control system; however, one main difference is 
that the software system executions are actual instances of 
behaviors of the system, whereas simulations of an em
bedded control system are approximations of behaviors. 
Discrepancies inevitably exist between simulations and be
haviors of the corresponding embedded control system due 
not only to parameter-estimation error and modeling simpli-
fications but also to numerical computations involved in esti-
mating the solutions to differential equations.

Software-Centric Versus System-Centric Perspectives
Either the software-centric perspective or the system-cen-
tric perspective can be taken when using simulations to 
check embedded control designs. The software-centric per-
spective assumes that all of the correct behaviors of the 
system are formally defined and captured by the require-
ments. The system-centric perspective respects that the 
requirements may not entirely characterize the correct 
system behavior, due to the unique challenges presented by 
embedded control systems.

Figure 3 illustrates the way that simulations are used to 
test control designs using a typical software-centric per-
spective. A model is created manually by a designer based 
on requirements. Simulation-based checks are performed, 
and the resulting behaviors are checked against the re
quirements. If any of the behaviors explored through simu-
lation violate the requirements, then the control design 
model is enhanced to eliminate the violating behavior. 

Once a user-defined number of simulations are found to 
satisfy the requirements, the model is used to proceed with 
the next development phase. This process could be used, 
for example, when validating the model represented by the 
control design model block on the left side of the design V 
in Figure 1.

Although it is used for some embedded control-system 
designs, the simulation-based validation process illustrated 
in Figure 3 does not take into consideration the unique chal-
lenges presented by embedded control systems. Specifi-
cally, Figure 3 does not account for the inability to create a 
set of requirements that captures all intended behaviors. 
This deficiency is particularly apparent for cyberphysical 
systems, which are systems whose performance critically 
depends on the plant behavior.

There are two main reasons why it is particularly diffi-
cult to create formal requirements for cyberphysical sys-
tems. First, it is not always possible for the design engineers 
to predict all the ways in which the physical and environ-
mental components will interact with each other. Indeed, it 
is not always possible to even predict the existence of some 
interactions. Without a priori knowledge about all possible 
component interactions, it is difficult to create require-
ments to cover all behaviors that can emerge as a result of 
the interactions. The second reason is that there are some 
qualitative system behaviors that are difficult to capture 
with formal requirements. For example, consider a system 
that the designer expects to behave in a manner generally 
consistent with a second-order linear system (a second-
order decaying exponential). This qualitative feature may 
be expected by the engineer, and failure to achieve this 
qualitative characteristic may indicate incorrect behavior. 
While commonly used performance indicators such as 
overshoot and settling time could be formally character-
ized, other qualitative aspects of the expected behavior 
such as the smoothness or the near sinusoidal behavior would 
be difficult to characterize with prevalent requirement for-
malisms used by verification tools.

Figure 4 illustrates a simulation-based model testing pro-
cess that respects the challenges unique to cyberphysical 
systems. The process is similar to the one illustrated in 
Figure 3, with some key differences. Some formal require-
ments are included, but also expected behaviors exist in the 
form of engineering insight. The engineering insight can be 
provided by the system architect as well as the model 

designer, which can be used to create 
or refine the model. Results from sim-
ulations that violate either the formal 
requirements or the engineering 
insight trigger a redesign of the model 
and also enhance the engineering 
insight. Further, results from integra-
tion tests, which occur on the right 
side of the design V shown in Figure 1, 
can provide valuable feedback 

Next Development
Phase

Requirements Model
Simulation-

Based Checks

Figure 3  The software-centric view of an embedded control design testing process. This 
process assumes that intended behaviors are thoroughly captured by the requirements.
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(about, for example, previously 
unknown physical and environmen-
tal component interactions) and can 
be used to enhance both the engi-
neering insight as well as the for
mal requirements.

Take, for example, the spring-
mass-damper system shown in 
Figure 2(a) and (b). Although this 
system contains only a plant (no con-
troller), the process in Figure 4 could 
be used to validate the model. Con-
sider formal requirements that spec-
ify acceptable maximum settling 
time and overshoot for the system, 
which would correspond to require-
ments, and also consider the informal expectation from the 
designer that the system behaves in a typical linear manner, 
which would correspond to engineering insight. The model 
contains a representation of the system and is intended to 
satisfy the formal and informal requirements. Simulations 
performed at the simulation-based checks stage indicate 
whether the modeled system meets the formal and informal 
requirements; if not, then the model is refined. Once the 
model is found to satisfy the informal and formal require-
ments, it is used as a basis for the next stage of the develop-
ment process. Eventually, a physical system is implemented, 
and integration testing results are made available. If the 
results from the tests indicate that either the formal or infor-
mal requirements did not sufficiently capture the intended 
behaviors, then the engineering insight and requirements 
are updated accordingly. For example, it may be that the 
desired time constant and overshoot are not physically real-
izable due to unmodeled nonlinearities in the spring behav-
iors. These testing results, which indicate that the system 
does not satisfy the behavior specified by the requirements, 
trigger an iteration in the development process, whereby the 
engineering insight and requirements are updated and the 
model is refined, tested, and used in the subsequent iteration 
of the development process.

The process shown in Figure 4 and described above can 
be used, for example, to create and validate the model rep-
resented by the control design model block on the left side 
of the design V in Figure 1. Iterations in the design V pro-
cess based on integration testing results that are shown to 
be inconsistent with design requirements are costly. 
Because of this, care should be taken to create thorough, 
consistent, and realistic requirements and accurate system 
models to avoid the cost associated with excessive itera-
tions in the development process.

One challenge in applying any simulation-based test-
ing process is the difficulty in accounting for inaccuracies 
that appear in the plant models. Inevitably, discrepancies 
will exist between the estimations for the physical param-
eters and the actual system parameters, due to issues such 

as machining tolerances, imperfections in materials pro-
cessing, and incorrect assumptions about the operating 
environment, such as ambient temperature. Further, 
broadly speaking, physical phenomena are not modeled 
exactly. Physical processes are sometimes neglected 
entirely, but even for the most detailed environment 
models, some behaviors and interactions between system 
components are not modeled (sometimes referred to as 
second- or third-order effects) because they are assumed 
to be noncritical for capturing the intended behaviors of 
the control system. Techniques from robust control design, 
such as H-infinity control, can be used to design control-
lers to account for modeling inaccuracies for some sys-
tems, but these techniques are difficult to apply to 
industrial problems that involve nonlinear plant dynam-
ics and other complexities such as actuator saturation and 
computation delays [6].

Testing Scenarios
Traditional testing approaches use ad hoc techniques for 
selecting test cases. In ad hoc testing, a control engineer 
manually selects some inputs to the system (for example, a 
step input) and a set of operating parameters (for example, 
proportional and integral controller gains and initial con-
ditions on the state variables). The selection of such test 
inputs and parameters is usually based on the engineer’s 
experience and insights about which inputs represent nom-
inal operating behavior, worst-case behavior, and so on. 
With the increasing complexity of embedded control sys-
tems, methods, such as ad hoc techniques, that rely on 
engineering insights are no longer scalable and are thus 
being replaced by automated testing approaches.

Current testing approaches for embedded control sys-
tems involve various manifestations of the control system, 
from computer models to experiments on the physical 
system. The testing approaches described herein are easiest 
to apply to computer models (as in the model-in-the-loop 
testing scenario described below), but it is feasible to apply 
them to many different testing scenarios. The next sections 
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Figure 4  A system-centric view of an embedded control design testing process. This per-
spective respects the challenges unique to cyberphysical systems.
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describe open- and closed-loop testing scenarios com-
monly used in industry.

Open-Loop Testing
Typically, the first step in testing a controller is open-loop 
testing to validate that it meets its functional requirements. In 
open-loop testing based on code-coverage metrics, the plant 
model is neglected, and the controller model is tested as 
though it were a computer program. The goal of the testing 
process is to automatically select inputs to the controller 
model that maximize a software code-coverage metric. There 
are several code-coverage metrics, such as MCDC [5], which 
is the most popular in the automotive domain. Tools such as 
Reactis, Simulink Design Verifier (SLDV), and TestWeaver 
use different approaches to perform coverage-based testing.

The Reactis Tester tool uses guided simulation to evalu-
ate open-loop controller models; this is a patented tech-
nique to generate test inputs using a combination of random 
and targeted methods. The targeted phase of the tool uses 
data structures to store intermediate states, and constraint-
solving algorithms to search for previously uncovered cov-
erage targets [7].

SLDV uses SAT-solving techniques provided by the 
Prover tool to automatically generate test inputs to maxi-
mize coverage criteria [8], [9]. SLDV is intended for 
open-loop (discrete-time) controller models since it cannot 
process closed-loop (hybrid) models.

Closed-Loop Testing
There are several commonly used closed-loop testing 
approaches. The test scenarios are presented below in the 
order in which they might typically occur during a stan-
dard development cycle.

»» Model-in-the-loop (MIL): In this testing scenario, M  is 
a computer model containing a representation of 
both the controller and the plant, and simulations are 
computed on a host PC. MIL testing is the scenario 
that is most applicable to the simulation-guided 
approaches presented herein.

»» Software-in-the-loop: In this testing scenario, M  is a 
computer model composed of a representation of the 
plant interacting with a controller that is implemen
ted with production computer code.

»» Processor-in-the-loop (PIL): In this test scenario, M  is 
the real-time platform, running production code, 
connected directly to a host PC that is running a 
computer model of the plant. In this case, the com-
munication between the plant and the controller uses 
a direct communication link, such as an Ethernet 
connection or a controller area network bus, and the 
system is not run in real time but, rather,  uses a syn-
chronization mechanism to synchronize the control-
ler with the PC running the plant simulation.

»» Hardware-in-the-loop: In this testing scenario, M  is 
composed of the real-time platform and a virtual 

plant, which could be a computer model of the plant 
running in real time on specialized hardware or a 
combination of a computer model and physical com-
ponents connected electronically. The virtual plant 
receives electronic inputs from the controller actua-
tor output and produces electronic outputs, which 
are received by the controller as sensor inputs. This is 
as opposed to the direct communications link that is 
used in the case of PIL testing.

»» Integration and calibration: In this scenario, all subsys-
tems are connected together with the actual plant to 
tune the control parameters and validate the perfor-
mance of the closed-loop system.

The TestWeaver tool by QTronic uses simulations of 
closed-loop models to attempt to obtain a high degree of 
coverage and also to violate system requirements [10]. Test-
Weaver uses a search algorithm that is based on proprietary 
heuristics. The tool relies on the user to quantize the input 
values and the time domain and also to manually identify 
system variables that are most sensitive to the inputs. This 
user intervention requires an understanding of the system 
dynamics and engineering intuition to use effectively.

Verification for Embedded Control Applications
The term verification is used in the computer science litera-
ture to refer to the process of formally deciding whether a 
given system model satisfies a given specification. Broadly 
speaking, verification can be performed using formal meth-
ods, which are a rich set of concepts and techniques; for fur-
ther details, see “Formal Methods.”

Testing and verification are closely related, with one 
main difference. While testing determines whether 
( , , )P UM t }U t t  for some finite Pt  and ,Ut  verification deter-

mines whether M t }  over the infinite set of parameters 
and inputs P  and .U  In this sense, verification provides a 
stronger result than testing.

While testing is often performed without the benefit of a 
formal specification ,}  a specification is required to per-
form verification. A specification }  for a verification tool is 
usually supplied in the form of a special language such as 
a temporal logic, which employs operators that are used to 
indicate desired system behavior over time. As an example, 
one such language, signal temporal logic, can express 
timed operators over fixed time ranges [11], such as

	 ( ) . ,x t 10 0[ . , . ]1 0 2 04 1/} � (1)

which means the signal x must remain lower than 10.0 
between the times t = 1.0 and t = 2.0. For further details, see 
“Temporal Logic.” Any verification procedure will return 
either of the following:

»» Verified: This result is returned if the procedure 
determines that }  holds for all of the cases. When 
a  procedure returns a verified result only if 
( , , ) ,P UM t }U  the procedure is called sound. The 
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capacity of a technique to return a sound result is 
called soundness.

»» Not Verified: This result is returned if the procedure 
cannot certify that }  holds for all cases. In some 
instances a counterexample is also returned, which 

is a concrete p  and u  that demonstrates that 
( , , ) .P UM t }U Y  The procedure may return Not Veri-

fied even when ( , , ) ,P UM t }U  because the under
lying technique overestimates the cases where
( , , )p uM F }U .

Temporal Logic

In the late 1970s, Amir Pnueli [S16] introduced temporal 

logic to computer science to reason formally about the 

temporal behaviors of reactive systems, which are systems 

that are designed to continually interact with an environment. 

This work was recognized with the 1996 ACM A.M. Turing 

Award, one of the highest honors for a researcher in com-

puter science. The use of temporal logic was originally to rea-

son about input–output systems with Boolean, discrete-time 

signals, and heavily focused on the verification, specification, 

and synthesis of concurrent systems. Several temporal logics 

were introduced to reason about real-time signals, including 

timed propositional temporal logic [S17] and metric temporal 

logic (MTL) [S18]. These logics typically allowed reasoning 

over Boolean signals but over dense-time domains. More re-

cently, signal temporal logic (STL) [S19] was proposed in the 

context of analog and mixed-signal circuits as a specification 

language for constraints on real-valued signals. Syntactically, 

an STL formula is defined recursively. The basic unit of an 

STL formula is an atomic formula that expresses constraints 

on signals, and any formula is defined using the negation of 

a subformula or using Boolean combinations (conjunctions, 

disjunctions) of subformulas, or using temporal operators 

applied to subformulas. Atomic formulas, without loss of 

generality, can be reduced to a form ( ) ,xf 0A  where x  rep-

resents the name of signal (a function from R 0$  to Rn ), 

, , , , ,1 2A! # $ =" ,  and f is an arbitrary function from Rn  to 

R . A temporal formula is formed using temporal operators 

“always” (denoted as 4), “eventually” (denoted as Z) and “un-

til” (denoted as u). Each temporal operator is indexed by an 

interval I over { }R 0 , 3$ ; this can be an open interval ( , ),a b  a 

closed interval [ , ],a b  open-closed ( , ]a b  or closed-open [ , ) .a b  

Several example STL formulas are

boost_pressure_error ,c[ , ]1 0 100 14 1/} ^ h � (S1)

rising_edge y 0.1 ,2 [0,10] [0,2]& Z 14/} ^ h � (S2)

gear gear gear1 2 1 ,3 [0,100] [0, ] [ , ]/ /Z Z4/} = = =e x x e+^ ^ hh

� (S3)

fuel_cut on
fuel_cut

throttle
off(( ) .( ))u N 650

0
[ , )

[ , ]e
4 0

0 1

&

/ Z
4/

#
}

==

=3 e
^ h o � (S4)

The requirement 1}  in (S1) specifies that for all times t in 

[ , ]0 100 , the physical quantity boost_pressure_error is 

always lower than c1  kPa. This STL requirement can be used 

to characterize maximum allowed overshoot (or undershoot). 

The requirement 2}  (S2) specifies that for all times t in [0, 10], 

whenever the Boolean proposition rising_edge is true, 

then eventually within 2 s (that is, within [ , 2]t t + ), the absolute 

value of y is lower than 0.1. This requirement can be used to 

capture settling behavior of a signal, and the time bound on 

the inner temporal operator (Z ) captures settling time. The re-

quirement 3}  (S3) specifies that if the gear  changes from one 

to two within a small time (e ), then it stays at two for at least x  s 

before changing back to one. Such a requirement can be used 

to specify the dwell time on a discrete mode of the system. 

Finally, the requirement 4}  (S4) specifies a causal behavior of 

the system. Requirement 4}  says that if the throttle  angle 

is zero, the fuel_cut mode must remain on until the engine 

speed Ne^ h drops below 650 r/min, and then the fuel_cut 
mode must turn off.

The syntax for the logic MTL is similar to STL. The only 

difference is that MTL requires that formulas be defined over 

Boolean signals; continuous-valued signals can be consid-

ered by converting them to Boolean signals based on given 

logical predicates over the continuous signals. A key feature 

of MTL and STL is that both logics are equipped with quanti-

tative semantics, which is a function mapping a given signal 

trace and an STL/MTL formula }  to a real value [S20], [S21]. 

This value is an indicator of the degree of satisfaction of ;}  

positive values indicate that the trace satisfies } , negative val-

ues denote violation of } , and the magnitude indicates the 

robustness margin. In other words, a positive value d  indicates 

that the signal can be perturbed by up to d  before it violates 

.}  STL and MTL differ in how they define the signed distance 

of a signal trace from an atomic predicate, which  impacts the 

computational complexity of the quantitative semantics for 

these logics.
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Problems Applying Verification Approaches
Applying verification techniques to embedded control sys-
tems is a challenging task. These systems can often be clas-
sified as hybrid systems, which are systems that exhibit both 
continuous and discrete behaviors. The general problem of 
verifying hybrid systems is known to be undecidable [12]. 
This undecidability result means that it is provable that no 
computer algorithm can decide whether any arbitrary 
hybrid system satisfies any given formal specification.

Tools exist for verifying specific subclasses of hybrid 
systems, but each suffers from significant limitations. 
SpaceEx verifies hybrid systems with affine continuous 
dynamics and polyhedral switching constraints [13]. The 
UPAAL tool can verify complex hybrid systems, but it is 
limited to timed automata, which are systems with continu-
ous dynamics defined by derivatives fixed at 1.0 [14]. The 
Flow* tool [15] handles systems given by ODEs that are 

expressed as polynomial functions of the state variables. 
The C2E2 tool can verify safety properties of hybrid sys-
tems but only if the designer provides sufficient annota-
tions to the models in the form of discrepancy functions, 
which characterize the maximum rate at which pairs of 
trajectories can diverge from each other [16]. SLDV pro-
vides property-proving capability for Simulink models but 
only for open-loop, discrete-time (nonhybrid) models [8].

Emerging Simulation-Guided 
Testing Approaches
Several recently developed tools use simulation-guided 
approaches to testing based on the notion of falsification. 
Optimization-guided falsification is an emerging approach 
for testing closed-loop models by intelligently obtaining 
test inputs to expose undesirable model behaviors. The 
inputs to a falsification algorithm are a closed-loop model, 
a set of correctness requirements, a specification of the 
system parameters, and a definition of the exogenous 
inputs to the closed-loop model. The overall architecture of 
an optimization-guided falsification tool is shown in 
Figure 5; two key components are a simulation engine and 
an optimizer.

The procedure illustrated in Figure 5 takes as input the 
model ,M  initial parameter values for the closed-loop model 
,p0  initial time-series values for the model inputs ,u0  and the 

property to be falsified .}  The simulation engine numeri-
cally computes time-series values for the system behaviors 

.( , , )p uMU  The cost function converts the system behaviors 
( , , )p uMU  into a numeric cost value ( ( , , ))c p uMU}  based on 

} . Note that the cost function is defined with respect to the 
correctness requirement(s) and can always be defined such 
that a negative cost corresponds to a violation of the require-
ments. If the cost is lower than zero, then the procedure 
halts, since the property has been falsified ( ( , , ) ) .p uM t }U Y  
If the cost is not lower than zero, then the optimizer selects a 
new set of operating conditions pt  and ,ut  and the procedure 
continues, with the simulation engine producing the next set 
of behaviors. The process continues until a falsifying behav-
ior is found or until a user-specified limit on the number of 
iterations is reached.

Example: Automotive Fuel Control System
Consider the automotive powertrain control example illu
strated in Figure 6. The model MFCS  is a simplified  
representation of a fuel-control subsystem (FCS) in an 
automotive engine and contains an air-fuel controller (con-
troller) and engine air-fuel dynamics (plant). The plant 
subsystem contains a mean-value model of the engine 
dynamics including the throttle, intake manifold air, and 
fuel dynamics. The purpose of the controller is to regulate 
the ratio of air to fuel in the engine to a given reference 
value. The controller has four modes of operation: the 
startup mode, the normal mode, the power mode, and the 
fault mode.

c < 0?

M, p0, u0, ψ

Bug Found!

p: = p0
u: = u0

Φ (M, p, u )

c : = cψ (Φ (M, p, u ))
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u : = û

p : = p̂

Simulation
Engine

Cost
Function

Halt

Optimizer

Figure 5  Optimization-guided falsification. This procedure is used 
to automatically search for behaviors in a control system design 
model that violate requirements.
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Figure 6  Overview of an automotive air-fuel control system example.
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As illustrated in Figure 6, the engine speed ~  is an 
input to both the controller and the plant. A throttle con-
trol subsystem converts a throttle position command ini  to 
throttle position i . The output of the plant to the controller 
is the air-fuel ratio m  and the intake manifold inlet mass 
airflow rate mafo . The controller output to the plant is the 
fuel rate command .Fc

The internal state variables for the system (not shown in 
the figure) include intake manifold pressure, two state 
variables associated with the sensor used to measure ,m  
one state variable associated with the throttle control, one 
state variable associated with the amount of fuel stored in 
the fuel film, and the state variables associated with a vari-
able transport delay. The transport delay is used to model 
the time it takes for the exhausted gas to travel from the 
engine through the exhaust system to the point where the 
air-fuel ratio is measured by a sensor. The transport delay 
gives rise to a delay differential equation (DDE); theoreti-
cally, this DDE requires an infinite number of state vari-
ables to represent with an ODE. For a detailed description 
of the model, see [17], or see [18] for a description of a mod-
ified version along with corresponding models available 
for download.

The performance of the controller is sensitive to the 
accuracy of sensors and actuators. To capture these imper-
fections, the FCS model contains multiplicative error terms 
that model calibration and other tolerances in the corre-
sponding components. Multiplicative error terms are pres-
ent in the air-fuel ratio sensor, the fuel injection actuator, 
and the mass air-flow sensor. In the experiments that 
follow, the multiplicative error terms associated with the 
fuel injection actuator and the mass air flow sensor are set 
to 1.0 (0.0% error), and the multiplicative error parameter 
for the air-fuel ratio sensor error rAF  is assumed to be 
between 0.99 to 1.01 ( . %1 0! ).

One requirement for the FCS is that the air-fuel ratio m  
should not deviate from the reference value refm  by more 
than 2% after 11.0 s, which is 1.0 s after the transition to the 
normal mode occurs (at 10.0 s). This requirement can be 
captured informally as

	 : ( ) . ,  . ,t t0 02 11 0forFCS ^ 1 _$} n= � (2)

where ( ): ( ( ) )/t t ref refn m m m= - . To check whether this 
requirement is violated for the FCS, a falsification tool 
will formulate a cost ( )cFCS $  that maps output behaviors 
of MFCS  to a real value, based on FCS} . The set of param-
eters PFCS  is the set of all values of rAF  for which 
. .r0 99 1 01AF# # , and the set of inputs UFCS  is given by 

sets of functions (·)ini  and (·)~ , defined over . .t0 0 50 0# #  
s. (·)ini  is a piecewise-constant function, such that 
. . .( )0 0 61 2in $ c1# i  (·)~  is a constant signal with a value 

between 900 and 4000 r/min. The control system operates 
in the normal mode during the interval . .t11 0 50 0# #  s. 
The goal of the falsification tool is to identify some 

parameter p rFCS AF=  and some input ( ( ), ( ))u inFCS $ $i ~= , 
such that ( ( , , )) ,c p u 0MFCS FCS FCS FCS 1z  which indicates that 

.( , , )p uMFCS FCS FCS FCStz }Y

Simulation-Guided Falsification Tools
The S-TaLiRo and Breach tools, as well as the RRT-REX and 
multiple-shooting-based approaches, use simulations to 
perform falsification. These tools and techniques are 
described below.

S-TaLiRo
The key feature of S-TaLiRo is its ability to transform a fal-
sification problem into an optimization problem by param-
eterizing the search space, which corresponds to input 
signals or model parameters [19] (visit [20] to download 
S-TaLiRo). First, users provide information about the range 
of values for inputs and parameters. Then, for each contin-
uous exogenous input, the user selects the number of con-
trol points used to construct the input signals. For example, 
if a model has one exogenous input u  with three control 
points, and the simulation time horizon is 10 s, then 
S-TaLiRo selects three values corresponding to ( ),u 0  ( ),u 5  
and  ( )u 10  (control points by default are distributed evenly 
across the time horizon). The actual ( )u t  is then obtained 
by using a user-defined interpolation (such as constant, 
piecewise constant, piecewise linear, or splines) across the 
chosen control points.

The user provides the requirements using a temporal 
logic language. Then, an optimizer turns these require-
ments into cost functions to be minimized. S-TaLiRo sup-
ports various strategies for the stochastic optimization 
engine, such as simulated annealing [21], genetic algo-
rithms, uniform random sampling, ant-colony optimiza-
tion [22], and the cross-entropy method [23].

Consider the following example describing the S-TaLiRo 
tool applied to the FCS example. The S-TaLiRo settings used 
to address the example are as follows. Since (·) c~ ~=  is a 
constant signal, only one control point is selected between 
900 and 4000 r/min. To simplify the falsification task, the 
signal (·)ini  is restricted to the class of pulse trains, with an 
amplitude . .a0 0 61 2c1#  and a period . .T5 0 10 0p# #  s. 
For each simulation, S-TaLiRo chooses one real constant 
value from 0.99 to 1.01 for the system parameter rAF . For the 
optimization solver, simulated annealing is selected to fal-
sify the requirement that the air-fuel ratio m  should not 
deviate from the reference value refm  by more than 2% 
during the interval . .t11 0 50 0# #  s. The decision variables 
for the optimizer are the parameters ,c~  a , and Tp . A maxi-
mum limit of 1000 simulations is permitted to falsify the 
requirements. S-TaLiRo successfully identifies a falsifying 
behavior in about 400 s.

A plot of the falsifying behavior is shown in Figure 7(a). 
The figure shows the input accelerator angle ( )tini  and the 
normalized air-fuel ratio ( )tn . The signals in the figure are 
shown for . .t11 0 50 0 s,# #  because the property FCS}  
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specifies bounds on air-fuel ratio behavior during this 
period. The red circles indicate instants where ( ) .t 0 021n - . 
Note that the behavior violates FCS}  since the magnitude of 
( )tn  is greater than 0.02 for . .t11 0 50 0# #  s.

Breach
Similar to S-TaLiRo, Breach [24] also parameterizes exoge-
nous inputs using ranges and control points (visit [25] to 
download Breach). A key difference is that Breach treats 
both model parameters and exogenous inputs in a uniform 
fashion. Moreover, Breach allows more freedom to place 
control points on the timeline. For instance, given a time 
horizon of ten for the input signal ( )u t  with four control 
points, users can put control points at ( ),u 0  ( ),u 5  ( . ),u 6 5  
and ( )u 10  to focus on the time duration . .t5 5 6# #  Another 
difference is that Breach uses a nonlinear global optimizer 
based on the Nelder–Mead simplex-based algorithm [26]. 
Thus, when using Breach, users need to set optimization 
options, such as the number of Nelder–Mead iterations and 
the number of restarts. Note that the performance of the 
optimization varies for different optimization options.

Consider the following example of the Breach tool 
applied to the FCS example. The example has four param-
eters. The first parameter is the constant engine speed ,c~  
where ,900 4 000c# #~  r/min. The second one is the air-
fuel ratio sensor tolerance ,rAF  where . .r0 99 1 01AF# # . The 
other two parameters specify the throttle command signal, 
where, as in the S-TaLiRo example, (·)ini  is assumed to be a 
pulse train with amplitude given by . .a0 0 61 2c1#  and 
period given by . .T5 0 10 0p# #  s. Since each of the param-
eters can be treated as a constant through the simulation, 
one control point is used for each parameter. Breach imple-
ments a more efficient algorithm to compute the cost 

function value than S-TaLiRo, given a requirement in a 
temporal logic format [27]. Breach falsifies the requirement 
in about 30 s by identifying a falsifying behavior in which 
the air-fuel ratio m  deviates from the reference value refm  by 
more than 2%. A plot of the falsifying behavior is shown in 
Figure 7(b). The figure shows the input accelerator angle 

( )tini  and the normalized air-fuel ratio ( )tn  for the period 
. .t11 0 50 0# # . The red circles indicate two instants where 
( ) .t 0 021n - . Note that the behavior violates FCS}  since the 

magnitude of ( )tn  is greater than 0.02 for . .t11 0 50 0# #  s.
Both S-TaLiRo and Breach support the mining of temporal 

requirements from closed-loop models, which is an auto-
mated procedure to obtain reasonable formal requirements 
from a design model. In such a framework, the user provides 
template requirements where certain parameter values are 
left unspecified. The tool integrates an efficient parameter 
synthesis algorithm to obtain candidate requirements from 
simulations with its falsification core that attempts to falsify 
the candidate requirement. Counterexamples obtained by 
falsification are used to refine the candidate requirement, 
and the mining procedure terminates when a user-specified 
bound on the number of iterations expires or no counterex-
ample is found by the falsifier [28]. The requirement mining 
tool can itself be thus used as a more nuanced falsification 
tool, where the optimizer used for falsification is guided by 
intermediate candidate requirements.

RRT-REX
RRT-REX is a falsification framework that leverages notions 
of coverage to optimize bug-finding performance [29]. 
Using a concept related to coverage-based testing for soft-
ware systems, RRT-REX uses a coverage metric called the 
star-discrepancy measure, which applies to the infinite 
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Figure 7  Results from falsification tools. Each plot illustrates a falsifying behavior found using one of the falsification tools featured in 
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DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  59

system states that exist in embedded control systems. Star-
discrepancy is a statistical notion that quantifies how well a 
continuous state space is covered (by states discovered with 
simulations) [30]. The key idea in this approach is to use the 
star-discrepancy measure to guide state-space exploration 
using the rapidly exploring random trees (RRT) algorithm.

The RRT algorithm builds a tree in which a node at 
depth i in the tree represents a continuous state ( )x ti  of the 
model at time ,ti  and edges ( ( ), ( ))x xt ti i 1+  are labeled by 
inputs ui  that cause the model to evolve from ( )x ti  to ( )x ti 1+  
under the action of the input signal segment correspond
ing to ui  from time ti  to .ti 1+  A rooted path in the tree 
( ), ( ), , ( )x x xt t tn0 1 f  corresponds to a partial simulation (a 

simulation over an abbreviated time horizon) of the model 
output for the input signal u(t) obtained by splicing together 
the input signals corresponding to the values , , ,u u un0 1 1f -  
on the edges in the path.

RRT-REX takes as input a Simulink model, a require-
ment in the form of a temporal logic formula, and several 
numerical parameters, such as bounds on the state vari-
ables and the length of the time segments. RRT-REX 
explores the state space of the Simulink model with the 
goal of maximizing the coverage achieved by the points in 
the tree constructed by the RRT algorithm. The tool pro-
vides additional guidance to the RRT algorithm by associ-
ating cost values (based on a given property }) for partial 
simulations corresponding to the paths in the tree. Specifi-
cally, the RRT algorithm is biased to grow the tree from an 
existing node such that the new suffix leads to a partial 
simulation with a lower robustness value. While prelimi-
nary evaluations look promising, a mature implementation 
of the tool is under development.

Applying the RRT-REX tool to the FCS example presents 
some unique challenges. The FCS example has a subsystem 
modeling the exhaust gas transport dynamics as a variable 
transport delay. A delay function describes the input–
output relation ( ) ( )y t u t D= - , where Δ is some real number. 
In the FCS example, the value of Δ is a nonlinear function of 
the model states (provided in the form of a lookup table). As 
RRT-REX constructs an exploration tree in the state space, 
systems with delays are a challenge because they corre-
spond to a system with an infinite set of state variables. For 
the purposes of constructing the tree of simulations, RRT-
REX does not attempt to store information corresponding to 
the states associated with the delay. Nevertheless, the 
underlying simulation framework, Simulink, is assumed to 
accurately capture the behaviors associated with the delay. 
Thus, while the tree does not store information regarding 
the delay states, the simulations corresponding to the nodes 
in the tree accurately capture the system behaviors, includ-
ing behaviors associated with the delay component.

For the FCS example, RRT-REX searches a seven-dimen-
sional model state space (ignoring the states associated 
with delays), by choosing input values between 0c and 

.61 0c at 2.5-s increments for the throttle angle input (except 

for the first 10.0 s, where the input is held constant). For the 
engine-speed input, one value between 900 and 4000 r/min 
is randomly chosen at the beginning of the simulation and 
held constant throughout the run of the tool (that is, for 
each partial simulation, the engine speed is held constant). 
Similarly, one value for rAF  from 0.99 to 1.01 is selected and 
used for each partial simulation. RRT-REX is able to find 
inputs that falsify the requirement that m  should not devi-
ate from refm  by more than 2.0% during the interval 

. .t10 0 50 0# #  s in an average of 325 s (since the procedure 
is stochastic, the average is provided over ten separate 
trials). A plot of one of the falsifying behaviors is shown in 
Figure 7(c). The figure shows the input accelerator angle 

( )tini  and the normalized air-fuel ratio ( )tn  for .t 11 0$  s. 
The red circle indicates an instance where ( ) .t 0 022n . 
Note that the behavior violates FCS}  since the magnitude of 
( )tn  is greater than 0.02 for .t 11 0$  s. The behavior for this 

example only extends to .t 020=  s instead of continuing to 
.t 0 05=  s, as in the other examples; this is because the RRT 

algorithm explores a tree of behaviors forward in time and 
is able to halt as soon as a falsifying behavior is identified.

Multiple-Shooting-Based Approaches
Using short disconnected partial simulations to find an 
abstract example of a falsifying simulation and using an 
optimizer to attempt to splice the partial simulations 
together to identify a concrete falsifying simulation is pro-
posed in [31]. A significant recent revision of this work 
removes the dependence on an optimizer [32]. The key idea 
here is to incorporate elements of counterexample-guided 
abstraction refinement. At each step the tool performs a 
short simulation of time td  from a chosen start state to 
obtain a simulation segment and then randomly chooses a 
new set of start states by sampling in an e-neighborhood of 
the end point of the simulation segment. The algorithm is 
initialized by randomly sampling the initial set of states. A 
segmented trace is a collection of simulation segments thus 
obtained, such that the beginning of the first segment is an 
initial state and the end point of the last segment is an 
unsafe state. Once the algorithm obtains a few promising 
segmented traces, it can then choose to refine these traces 
by decreasing e or td . At the end of each search step, before 
refining the traces, the tool can choose to perform a con-
cretization step that involves doing a complete simulation 
from the initial states corresponding to the most promis-
ing segmented traces. Ongoing investigations with this 
approach include evaluating their applicability to practical 
closed-loop control models, where the models could be 
described in Simulink or where there may be practical con-
cerns regarding full-state observability.

A prototype tool called S3CAM implements the app
roach to splice segmented traces to obtain simulations 
that falsify a safety property. Several issues must be 
addressed to apply the S3CAM tool to the FCS example. 
Since S3CAM explicitly requires full observability of the 
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state space and an explicit representation for the states, cer-
tain model features are not supported by the tool. These 
features include delays because, as mentioned above, a 
delay element represents an infinite number of states, and 
S3CAM requires the model to have a finite dimensional, 
compact state space. To investigate the practical aspects of 
S3CAM, the FCS model was simplified to remove the delay 
elements, approximating these with a first-order delay.

The settings used to apply the S3CAM to the FCS model 
are described below. The engine speed input is held con-
stant during the simulations and is picked from the range 
900–4000 r/min, and the throttle angle input is parame-
terized as a pulse signal with period between 5.0 and 10.0 s 
and amplitude between .0 0c and ..61 1c  As with the other 
experiments described above, the multiplicative error factor 
on the air-fuel ratio sensor measurement was assumed to be 
in the range 0.99–1.01, and the remaining sensors and actua-
tors were assumed to have no errors. Using these settings, 
the S3CAM tool attempted to falsify the requirement FCS}  
using segmented traces of 0.01-s duration, over a time hori-
zon that extended to 50.0 s. No falsifying trace was found 
before the memory limit of the machine was reached. To 
demonstrate the falsifying performance of S3CAM, the tool 
was applied again, this time using a larger air-fuel ratio 
measurement error term range of 0.98–1.02 and a time hori-
zon out to 15.0 s. Using this larger parameter range, the 
S3CAM was able to identify a simulation that falsifies the 
property FCS}  in approximately 30 s. A plot of the falsifying 
behavior is shown in Figure 7(d). The figure shows the input 
accelerator angle ( )tini  and the normalized air-fuel ratio 
( )tn  for .t 11 0$  s. The red oval indicates an instance where 
( ) .t 0 022n . Note that the behavior violates FCS}  since 
( ) .t 0 022n  for . .t11 0 50 0# #  s.

Emerging Simulation-Guided  
Verification Approaches
Verification of embedded control systems using tradi-
tional techniques is difficult or impossible for even the 
simplest embedded control systems. To increase the 
effectiveness of existing verification tools, new appro
aches are using information gleaned from simulations to 
assist the verification tools. Two emerging techniques 
address the issue of verification for embedded control 
systems using information obtained from simulations: 
simulation-guided Lyapunov analysis and simulation-
guided contraction analysis.

Simulation-Guided Lyapunov Analysis
Informally, a dynamical system is asymptotically stable if 
any behavior converges to an equilibrium point of the 
system. Asymptotic stability can be used to prove that a 
system satisfies desirable performance criteria, such as the 
convergence of the system state to a given reference value. 
An effective technique to prove stability is to supply a 
Lyapunov function :v RRn " , where n is the number of state 

variables, that satisfies Lyapunov conditions in a given neigh-
borhood of an equilibrium point:

a)	 �v  is positive everywhere in the domain (except at the 
equilibrium, where it is zero).

b)	 The time-derivative of v  along the system dynamics 
is negative everywhere in the domain (except at the 
equilibrium, where it is zero).

In addition to proving stability, Lyapunov functions 
can also be used to characterize performance bounds 
and to perform safety verification. Three verification 
tasks that may be addressed using Lyapunov functions 
are as follows:

»» Stability: For this verification task, :} = “The system 
is stable.” To verify this property, it is sufficient to 
identify a function v  that satisfies a) and b).

»» Performance bounds: For this verification task, :} =
”The system remains within some set S .” To verify 
this property, it is sufficient to identify a function v  
that satisfies a) and b) and a sublevel set St  of v , 
where ( )x xv lS #=t " ,, such that S S3t . Note that 
this only guarantees }  if the system is initiated 
within St . For this reason, it is often preferable to 
identify a St  that is of maximal size.

»» Barrier certificate: For this verification task, :} =
”Given that the system is initiated in X0 , it will never 
reach .F ” To verify this property, it is sufficient to 
identify a function v  that satisfies a) and b) and sub-
level set St  of v  such that SX0 3 t  and .0S F+ =t Y

The search for a Lyapunov function is widely recog-
nized as a hard problem. In [33] the authors present a 
simulation-guided approach to synthesize Lyapunov func-
tions. The key idea, which is based on [34], is to assume that 
the desired Lyapunov function has a certain parameterized 
template form, namely a sum-of-squares polynomial of 
fixed degree. A set of linear constraints on the parameters 
in the Lyapunov function are obtained from simulations. 
Given a set of such constraints, the search for a Lyapunov 
function reduces to solving a linear program (LP) to obtain 
a candidate Lyapunov function.

The procedure is illustrated in Figure 8. The procedure 
takes as input the system dynamics ,M  initial parameters 
p0 , initial inputs u0 , an initial candidate Lyapunov func-
tion v0 , and the property to be proved } . The initial candi-
date Lyapunov function can be selected randomly based on 
a given template. Based on the inputs, the process simula-
tion-based falsification uses a stochastic global optimizer 
to search the region of interest for states that violate the 
Lyapunov conditions for the given candidate. The search is 
guided by a cost function that is based on the time deriva-
tive of the candidate Lyapunov function. If the minimum 
cost is lower than zero, then the minimizing argument pro-
vides a witness that the candidate Lyapunov function is 
invalid. After the global optimizer obtains counterexam-
ples, the associated linear constraints are included in an LP 
problem and the linear program solver obtains a solution 
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corresponding to an updated candidate Lyapunov func
tion v . Based on the updated candidate, formulate solver 
query constructs a logical query over the system variables 
that is only satisfiable if .M t }Y  Run solver is used to check 
whether the query is satisfiable. If the query is satisfiable 
(sat), then the solver returns counterexample conditions 

,P Uc c  that demonstrate .M t }Y  these counterexample con-
ditions are used in the next iteration of simulation-based 
falsification to improve the candidate Lyapunov function. 
If the query is not satisfiable, then the procedure terminates 
(halt) with the result .M t }

A key component of the procedure illustrated in 
Figure 8 is run solver, which employs nonlinear satisfiabil-
ity modulo theories (SMT) tools. SMT tools use automated 
reasoning techniques to solve a general class of logical que-
ries [35]. SMT tools based on interval constraint-propaga-
tion (such as dReal [36]) can be used to check the validity of 
the queries and will return counterexample conditions. 
Symbolic tools relying on quantifier elimination as imple-
mented by the Reduce command in Mathematica [37] are 
also used to check validity of the queries, but these tools do 
not provide counterexample conditions; these tools are 
used in conjunction with interval constraint-propagation 
tools to provide counterexamples.

A related approach [38] performs program analysis. In 
that work, the authors use information from program exe-
cutions to construct linear constraints; then a constraint 
solver is employed to determine valuations for each of a set 
of parameters. The result is a ranking function or a pro-
gram invariant, which can be used to perform verification 
for the program code.

Example: Lyapunov Analysis for  
Automotive Fuel Control System
To better understand the simulation-guided Lyapunov 
approach, consider the following simplified version of the 
FCS example, which is taken from [33, ex. 5]. In this version 
of the FCS example, the discrete-time controller is replaced 
with a continuous-time approximation, and several other 
simplifications are made to the dynamic equations, such 
as removing the variable transport delay. Further, ini  and 
~  are assumed to be fixed at .15 0c  and approximately 
1909.9 r/min (200.0 rad/s), respectively, and the multipli-
cative error terms are fixed at 1.0 (0.0%). Also, the system 
states are translated so that the equilibrium point coin-
cides with the origin. The resulting model MLyap  is a 
nonlinear ODE with four state variables and no input   
(ULyap Q= ). The specification is that m  should remain 
within 10% of a given refm , or

	 : ( ) . ,t 0 1Lyap ^ 1 _} n= � (3)

if the system is initiated within a small region around the 
equilibrium point, given by the set .{ . }x xP 0 022Lyap 1=  
The verification task is to prove ( ,, )P U,MLyap Lyap Lyap Lyaptz }  

which can be established by a barrier certificate. If a func-
tion v  is identified that satisfies a) and b), and a sublevel set 
St  of v  contains PLyap  and excludes the set of states such 
that | ( ) | .t 0 1$n , then (3) holds.

The procedure illustrated in Figure 8 was able to identify 
a barrier certificate that establishes (3) for this version of the 
FCS. The candidate barrier was found in 1413.73 s using 
simulations that explored a total of  258,078 system states. 
Verification by the dReal tool took 1157.42 s.

Since this is a verification example, it assumes that the 
controller is given, and the task is to verify that the closed-
loop system satisfies performance bounds. An alternative 
way to approach the general engineering task of develop-
ing a correct control system would be to synthesize the con-
troller using a correct-by-design technique that provides 
guarantees on the performance bounds. Lyapunov-related 
control synthesis techniques compute control-invariant 
sets, which are regions of the state space that the system 
will remain within for some control output and that satisfy 
performance bounds. The controller measures (or estimates) 
the system state, and the control output is selected to main-
tain the system within the control invariant set (see [39], for 
example). These techniques can be applied to nonlinear 
dynamical systems, like the FCS example, but they are 
computationally intensive and may not scale well with the 
dimension of the system.
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Figure 8  Automatic Lyapunov analysis. This procedure can be 
used to discover Lyapunov functions, forward invariant sets, or 
barrier certificates for control-design models.
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Simulation-Guided Contraction Analysis
In contraction analysis or incremental stability analysis, 
instead of asking whether system trajectories converge to a 
known nominal behavior, the question is whether trajectories 
converge to each other. This type of property could establish, 
for example, that the system converges to a reference trajec-
tory. Such a property is established with the help of a contrac-
tion metric, which is analogous to a Lyapunov function, but 
instead of showing stability to an equilibrium point, as does a 
Lyapunov function, a contraction metric shows that pairs of 
trajectories converge. Contraction analysis can be used to per-
form bounded-time estimation of reachable sets of behaviors 
for the purpose of verification [40]–[42].

Related work uses auto-bisimulation functions to show that, 
for a given finite-time simulation with initial condition ( )x 0 , 
finite-time trajectories that start inside a ball of radius d  cen-
tered at ( )x 0  lie within a “tube” of radius d  around ( )x t  [43], 
[44]. This allows for performing a comprehensive verification 
analysis by exploring only a few candidate simulations.

The ability to perform contraction analysis hinges on the 
ability to identify a contraction metric for a given system, 
which is a difficult task in general. The search for a contraction 
metric can, in some cases, be formulated as a convex optimi-
zation problem, which can be solved using semidefinite pro-
gramming optimization tools [45]. Recent work [46] proposes 
a simulation-guided approach to find contraction metrics, in 
similar vein to the approach described in [33]. Here, the con-
traction metric is defined by a matrix, the entries of which are 
polynomials of some fixed degree but with undetermined 
coefficients. Using simulations, a set of necessary constraints 
for the contraction metric are obtained, each constraint is a 
linear matrix inequality. A semidefinite programming solver is 
used to obtain a candidate contraction metric. As in [33], a 
tandem of global optimization and nonlinear solving tech-
nology (to solve slightly more sophisticated contraction 
constraints) is used to obtain counterexamples to refine the 

contraction metric. If no counterexample is found, the algo-
rithm terminates.

Example: Contraction Analysis for Automotive  
Fuel Control System
To illustrate the simulation-guided contraction analysis 
technique, consider the model MLyap  described above. In 
[46], a contraction metric for this system is constructed 
within the region .{ . }x xP 0 012Lyap 1=  This contraction 
metric could be used to conservatively estimate the 
reachable set of states (behaviors). The conservative esti-
mate of behaviors could then be used to prove properties 
for the system.

The C2E2 tool [16] uses a related approach to verify 
properties of hybrid systems using discrepancy functions 
instead of contraction metrics. Discrepancy functions are 
based on system dynamics and are used to characterize the 
rate at which pairs of behaviors diverge from each other. 
The C2E2 tool uses as input a Simulink model of the system 
annotated with a corresponding discrepancy function. The 
annotations are used to estimate the set of reachable system 
states to prove properties. In [47], C2E2 is used to prove 
properties, such as worst-case air-fuel ratio error, for a sim-
plified version of system .MFCS

Conclusions
Industrial embedded control system designs are increasing 
in scale and complexity, which presents industry with model-
ing and quality-checking challenges. The MBD paradigm can 
be used to manage the complexity, and it provides the ability 
to simulate the modeled system. The simulations obtained 
from development models can be used to test control algo-
rithms, identify flaws, and increase the quality of the design.

Several traditional and emerging tools and techniques 
use simulation-based approaches for embedded control 
system design, test, and verification. Table 1 summarizes 

Table 1 E merging simulation-guided techniques for PTC design analysis. Maturity scale (1–5): 1) academic implementation, 
2) significant user effort required, 3) can handle some industrial models, 4) ready for industrial deployment, but not 
commercialized, and 5) fully commercialized and supported.

Technique/Tool Type of Analysis Can Include Plant Scale of Model Maturity

Reactis Coverage System 5 

TestWeaver Falsification ✓ System 5 

SLDV (TVG) Coverage ✓ System 5 

SLDV (verifier) Verification Module 5 

S-TaLiRo Falsification ✓ System 4 

Breach Falsification ✓ System 4 

RRT-REX Falsification ✓ Feature 3 

Multiple shooting Falsification ✓ Module 2 

Lyapunov analysis Verification ✓ Module 1 

Contraction analysis Verification ✓ Module 1 
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the techniques discussed in this article. For each technique 
in the table, the second column indicates the type of analy-
sis that the technique performs (coverage, falsification, or 
verification). The third column indicates whether the anal-
ysis can effectively include a representation of the plant 
dynamics. The fourth column indicates the scale of the 
model that can be addressed effectively. The model scale is 
subjective and is described by three categories: module 
(small), feature (medium), and system (large). Module-scale 
models implement some focused functional behavior. For 
controller models (without a plant), this could be a single 
functional behavior, like computing the desired spark 
timing for an automotive engine, and may consist of 100–
1000 lines of code. For closed-loop models (with a plant), 
the functional behavior could be a single PID loop imple-
menting control over a plant with 1–4 state variables. Fea-
ture-scale models implement some functionality that 
requires a composition of several modules. For example, 
this could be a collection of modules that is used to imple-
ment a startup mode for a jet engine. System-scale models 
represent some complete control design, such as a control-
ler for an electronic insulin pump. The relative maturity 
level of the technology or tool is indicated in the last 
column. Maturity levels are indicated as a number between 
1 and 5, where 1 indicates that the technique has only been 
implemented as an academic tool, and 5 indicates that the 
technique is implemented in a fully commercialized and 
supported tool.
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