
1066-033X/16©2016ieee DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  45

An overview of traditional and advanced modeling,
testing, and verification techniques

James Kapinski, Jyotirmoy V. Deshmukh, Xiaoqing Jin,
Hisahiro Ito, and Ken Butts

Simulation-Based Approaches
 for Verification of

Embedded Control Systems

D
esigners of industrial embedded control systems,
such as automotive, aerospace, and medical-de-
vice control systems, use verification and testing
activities to increase their confidence that per-
formance requirements and safety standards are

met. Since testing and verification tasks account for a sig-
nificant portion of the development effort, increasing the

efficiency of testing and verification will have a significant
impact on the total development cost. Existing and emerg-
ing simulation-based approaches offer improved means of
testing and, in some cases, verifying the correctness of con-
trol system designs.

In many domains, embedded control software has been
increasing in scale and complexity for years, and this trend
is expected to continue for the foreseeable future. For
example, the software systems in a premium automobile
may contain 100 million lines of code distributed across

Digital Object Identifier 10.1109/MCS.2016.2602089

Date of publication: 11 November 2016

46  IEEE CONTROL SYSTEMS MAGAZINE »  DECEMBER 2016

dozens of microprocessors [1]. Code complexity continues
to increase for many reasons. One reason is the increasing
level of autonomy for smart vehicles, such as the NASA
Mars rovers, unmanned aerial vehicles, and self-driving
automobiles. Increased autonomy is often achieved by
using advanced algorithms that increase the complexity of
the control software.

Another reason for increasing code complexity is the
need to respond to ever-increasing government-mandated
regulatory requirements, as exemplified by the vehicle
efficiency, emissions, and diagnostics standards in the
automotive domain. For example, the corporate average
fuel economy (CAFE) standard [2], which is a U.S. govern-
ment regulation that defines requirements based on the
total vehicles an automaker produces, mandates thresh-
olds for fuel efficiency and emissions. CAFE standards are
met using various approaches, such as by adding new
energy-saving and emission-reducing technologies, like
exhaust-gas recirculation (EGR) systems. EGR systems
help to increase overall engine efficiency, at the cost of
adding a new physical system that must be regulated by
the electronic control unit, which increases the control
software complexity.

Traditional software development processes for embed-
ded control systems involve manually generating code in a
monolithic manner and then validating the system design
with experimental tests. This approach is expensive and
difficult to manage for complex systems, and it results in
inflexible controller designs, which are difficult to reconfig-
ure since they are not inherently modular (that is, there are
not clear separations between software components). This
lack of flexibility is problematic for complex system devel-
opment, where system requirements and plant parame-
ters often evolve during the development process.

To manage the complexity, many organizations adopt a
model-based development (MBD) approach, which is a
process for developing embedded control systems based on
models that represent the dynamic behavior of the system.
The goal of the MBD process is to provide a unified frame-
work for creating, documenting, testing, and deploying
reliable embedded control systems.

The MBD process is illustrated in Figure 1. The process
begins with performance requirements that define how
the system should behave. Based on requirements, a con-
trol design model is created. The control design model is
refined to include implementation details, such as control-
ler sampling and saturation, resulting in a specification
model. Code (software) is generated (either manually or
automatically) based on the specification model. The code
is then compiled for the platform hardware, which is ulti-
mately deployed in a system that includes a real-time
hardware platform interacting with a plant (a physical
environment).

At each vertical level of the design V, the requirements
or models that appear on the left side of the V define the
behaviors that should be exhibited by the corresponding
systems on the right side of the V. This mapping of specifi-
cations to desired behaviors (indicated by the horizontal
lines in Figure 1) provides traceability for the performance
specifications, meaning that there is a direct correlation
between the design requirements or models and the corre-
sponding system under test.

The earlier stages of the development are associated with
the left side of the design V. Identifying a problem with the
control design at these early stages results in less expensive
rework than if the problem is identified later in the develop-
ment process. In early development stages, simulation-
based approaches to verification are valuable because they

Earlier Phase:

Focus on Control Algorithms,
High-Level Requirements,
Easier and Cheaper to Debug
and Repair Code

Later Phase:

Focus on Control Implementations,
Real-Time/Platform-Aware
Requirements, Harder and
More Expensive to Debug
and Repair

Test Cases, Requirements

Simulation-Based
Analysis

Requirements

Control
Design Model

Specification
Model

Code

Platform
Hardware

Platform + Plant

Figure 1  The model-based development design V. This process is used to develop reliable embedded control systems.

DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  47

offer a means to identify design problems using the models
that appear on the left side of the design V.

Many techniques are used to debug and verify software
for embedded control systems. Approaches can broadly be
classified in terms of how well they account for the possible
behaviors of the model and how well they scale. Some tech-
niques, such as model checking, can provide formal guaran-
tees of correctness for all behaviors of software systems, but
these do not scale well for many industrial embedded con-
trol systems. Simulation, on the other hand, can be applied
to models of any scale but only provides an approximation
of behavior for a discrete set of operating conditions. For a
discussion of the range of analysis techniques for embedded
control systems, see “Spectrum of Analysis Techniques.”

Simulations provide numerical approximations of system
behavior, given a mathematical model of the system, and are
commonly used for debugging embedded control system
designs. Simulations are used to 1) validate functional
behavior, 2) obtain initial calibration parameter values, 3)
obtain estimates of system performance, and 4) serve as the
basis for the functional and software specifications.

Currently, simulations are often used in an ad hoc
manner to check for design bugs. Engineering intuition is
used to select operating conditions to demonstrate the
desired behavior; however, emerging techniques are avail-
able to automatically select critical operating conditions for
the purposes of verification and test.

This article presents an overview of traditional and
advanced modeling, testing, and verification techniques
used in the development of embedded control systems. The
article begins by introducing standard techniques and
tools used in industry to develop and test embedded con-
trol systems. Next, emerging advanced testing approaches
are presented, followed by advanced verification tech-
niques. The article concludes with a summary of the avail-
able testing and verification approaches.

Preliminaries
General testing and verification scenarios involve a system

,M a (possibly infinite) set of parameters ,P a (possibly infi-
nite) set of inputs ,U and a property } that should hold for
the system. Here, M could be some model of the system, or it
could be a physical manifestation of the system. Testing and
verification activities are defined in terms of behaviors
(, ,),p uMU where , ,p P u U! ! and u is (generally speak-

ing) a function of time. The behavior of system M under
parameter p and input u is denoted (, ,),p uMU and
(, ,)P UMU is the set of all possible behaviors of M under the

parameters in P and inputs in .U Behaviors can be obtained
either from experiments, where behaviors are observed
based on sensor measurements, or from simulations, where
behaviors are estimated using numerical methods.

Assume that M can be evaluated to determine whether
} holds for a particular p and u . The notation (, ,)p uM t}U
is used to denote that (, ,)p uMU satisfies ;} conversely,

(, ,)p uM F }U denotes that (, ,)p uMU does not satisfy .}
When the sets P and U are clear from the context, then
Mt} is used to mean that the (possibly infinite) behav-
iors in (, ,)P UMU satisfy } , and Mt}Y indicates that not
all behaviors in (, ,)P UMU satisfy } .

The following definitions provide the testing and verifi-
cation activities that are addressed herein.

Definition 1 (Testing)
The testing task is to determine whether (, ,)P UM t }U t t
for given sets P P3t and U U3t , where Pt and Ut are finite.

Testing is the most common means of evaluating embed-
ded control system designs, but it has two significant limi-
tations. First, testing conditions may not accurately reflect
the manner in which the system will be used once it is
deployed. For example, testing an engine inside of a test
cell is different than driving the vehicle on a busy highway.
Second, note that sets Pt and Ut are finite in Definition 1,
which implies that testing cannot be used to exhaustively
evaluate continuous parameter or input ranges. This is a
significant and fundamental limitation with testing as a
method of performance evaluation; it typically means that
testing cannot be used to verify whether } holds for all
behaviors of .M Mathematically speaking, no matter how
many tests are performed, the system remains, almost every-
where, untested. Verification, on the other hand, addresses
this problem.

Definition 2 (Verification)
The verification task is to prove (, ,)P UM t }U for a given
P and U .

Verification provides a formal proof of correctness of
the system for a (possibly infinite) set of parameters and
inputs. Technologies such as model checking and theorem
proving can be used to perform verification for software
systems (see “Formal Methods” for further details). Some
of these tools can be applied to embedded control sys-
tems, but no mature tools exist that can be applied to
detailed industrial models that capture plant behaviors,
such as engine dynamics. If proving correctness is not
possible, another approach is to assume that a bug exists
and then employ a technique to actively search for the
incorrect behavior.

Definition 3 (Falsification)
The falsification problem is to find a p P! and u U! such
that (, ,) .p uM t }U Y

The difference between testing and falsification is
subtle. Testing determines whether a property holds for a
given (finite) set of parameters and inputs, whereas falsifi-
cation is an activity that searches for parameters and inputs
from (possibly infinite) sets that demonstrate that
(, ,) .p uM t }U Y

Also, it is interesting to note that, from a logical stand-
point, verification is equivalent to determining whether the

48  IEEE CONTROL SYSTEMS MAGAZINE »  DECEMBER 2016

system can be falsified—that is, whether there exists a
p P! and u U! such that (, ,) .p uM t }U Y An important
consequence of falsification is that a specific p P! and
u U! that demonstrates that (, ,)p uM t }U Y is identified.
This parameter and input provide the user with valuable
information that can be used to debug the design.

All testing and verification approaches rely on some
form of requirements, either formal or informal, but the
process of creating correct and useful requirements is an
often underappreciated activity. Care should be taken to
create requirements that accurately reflect the intended
behavior of the system.

Definition 4 (Requirement Engineering)
Requirement engineering is the process of developing an
appropriate } .

Requirement engineering remains a challenge for
industry. Embedded control developers in many domains
have made significant efforts to generate and document
clear and concise requirements; however, challenges re
main due to 1) the incompatibility between the form of the
documented requirements and the input to existing veri
fication and testing tools, 2) the ambiguous nature of
requirements captured in natural language, 3) potential
inconsistencies between requirements, and 4) the large
number of requirements.

Quality Checking for Embedded
Control Systems
This section presents an overview of modeling and simula-
tion techniques currently used in industry. Generally speak-
ing, modeling is the process of developing an appropriate

Spectrum of Analysis Techniques

Many types of analyses can be per-

formed on embedded control sys-

tem designs. Each analysis approach

has unique benefits and shortcomings,

and each applies to a specific class of

system representations.

Consider the spectrum of analysis

techniques presented in Figure S1, which

provides a subjective classification of var-

ious analysis approaches, based on the

degree of exhaustiveness of the approach

and the scale of the model to which the

approach can be applied. Here, exhaus-

tiveness refers to how well the approach

accounts for all possible behaviors of a

model. The exhaustiveness is indicated

by the horizontal position of each ap-

proach (left is less exhaustive and right

is more exhaustive). The scale of each

model refers to the level of detail and size

of the models that can effectively be ad-

dressed by each approach. The scale is

indicated by the vertical position of each

approach (lower is smaller scale and

higher is larger scale).

The analysis techniques on the far left side of Figure S1 are

classified as “testing/control techniques,” since they are based

on individual (finite) sets of behaviors of the system model or

provide information about only local behaviors. The analysis

techniques on the right side fall under the classification of “ver-

ification” techniques, since they account for all behaviors of the

system models.

Consider the simulation item in Figure S1, which is intended

to refer to approaches that use simulations based on operating

conditions that are either manually selected or are selected

using a Monte Carlo method. This item is located at the top-left

of the spectrum because it can be performed for models of any

scale but provides only one example of the system behavior.

Therefore, simulation scales well, but it does not provide ex-

haustive results.

Two different types of linear analysis appear on the spec-

trum, numerical and symbolic. Here, linear analysis refers to

the process of applying Lyapunov’s indirect (first) method to

Less Formal/Exhaustive More Formal/Exhaustive

Le
ss

 S
ca

la
bl

e
M

or
e

S
ca

la
bl

e

Testing/Control Techniques Verification

• Simulation

• Linear Analysis
 (Numerical)

• Test Vector
 Generation for
 Model Coverage

• Linear Analysis
 (Symbolic)

• Falsification

• Multiple-Shooting

• RRT-REX

• Concolic Testing

• Simulation-Guided
 Lyapunov Analysis

• Stability
 Proofs

• Reachability
 Analysis

• Model
 Checking
• Theorem
 Proving

Figure S1  The spectrum of analysis techniques. For various types of analyses, the
spectrum illustrates how thoroughly each one accounts for system behaviors and
the level of complexity of the models that can be considered.

DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  49

system model .M Simulation is the process of obtaining
particular behaviors .(, ,)p uMU

Modeling Paradigms Used in Embedded Control
Applications
Simulation-guided approaches to verification and testing
require a model M of the system under consideration. Here,
M can contain representations of the embedded controller,
the plant, or a closed-loop model, which contains both. Models
of the controller can range from simple, continuous-time rep-
resentations (such as transfer functions), to complex models
that capture implementation details, such as sensor and actu-
ator saturation, computation time and communication
delays, sensor noise, and actuator error. In some cases, com-
puter code can be automatically generated from the detailed
controller models for deployment on a real-time platform.

Developing a plant model can pose a significant
challenge for complex systems. Complex interactions of
mechanical, hydraulic, thermal, electrical, and chemi-
cal phenomena make the problem of capturing the
dynamical system behavior difficult, particularly when
under a tight development schedule. In practice, a mod-
eling paradigm is chosen based on the usage scenario
for the model.

Causal, lumped-parameter models are a common type
used to capture plant dynamics. Causal models have a
clear distinction between the source and destination of sig-
nals that induce system behaviors. Lumped-parameter
models use a discrete set of descriptive components to sim-
plify the mathematical representation of phenomena that
are continuously distributed over a physical region. In
causal, lumped-parameter models, system dynamics are

determine stability. Symbolic linear analysis uses partial de-

rivatives of an analytic representation of the system dynamics

to obtain the linearized dynamics. Numerical linear analysis

uses numerical perturbation to obtain the linearized dynamics.

The two methods are located on the left side of the spectrum

because they only provide an indication of system model be-

haviors locally, that is, in a neighborhood of the point of lin-

earization. The linear analysis items are located to the right of

simulation because they provide results that apply to an infinite

collection of behaviors (local to the point of linearization).

Test-vector generation (TVG) refers to automated process-

es for creating system inputs such that some coverage criteria

are satisfied. TVG is located to the right of the linear analysis

items because it is expected to explore a wide range of system

behaviors, albeit using a finite collection of simulation traces.

TVG is located near the middle of the scalability dimension be-

cause, although TVG techniques may be applied to any system

for which simulation may be applied, it may not successfully

achieve the desired level of coverage for large models.

Concolic testing refers to techniques that use concrete ex-

ecutions (simulations) of software systems combined with for-

mal analysis of decision branching conditions to satisfy some

coverage criteria. This approach is placed near the center of

the spectrum because it is moderately exhaustive (it can cover

many decision branches but only those associated with a fixed

set of executions), and it can be applied to software models of

moderate size, since the simulations can be performed on any

model, but the computational cost of the branch decision anal-

ysis is prohibitive (particularly if a plant model is considered).

Note that there are several different ways that the general con-

colic testing approach may be applied, so arguments could be

made to move the location to some other region of the spectrum.

Stability proofs refers to the process of applying Lyapunov’s

direct (second) method to determine stability. This is placed on

the right side of the spectrum because it can be used to prove

properties for all behaviors of the system (for example, when the

system is globally stable). Stability proofs are placed low on the

scalability axis because the proofs must be constructed manu-

ally and so are difficult to apply to large-scale system models.

Reachability analysis refers to techniques that use numeri-

cal methods to conservatively approximate the set of behaviors

that a closed-loop system model can exhibit. This approach is

placed on the right side of the spectrum because, generally, it

can provide a guarantee of correctness for all system behav-

iors; however, reachability analysis is not located on the extreme

right because, for closed-loop system models, it may not provide

exhaustive results over unbounded time. Reachability analysis

is placed low on the scalability axis because it is computation-

ally expensive and does not scale well with the complexity of the

model, particularly when a plant model is considered.

Model checking and theorem proving refer to formal analy-

sis techniques for strictly software system (open-loop) models

that can provide a proof that all model behaviors satisfy a given

logical property, often expressed in temporal logic. These ap-

proaches provide entirely exhaustive results for models but are

computationally expensive and cannot be applied to detailed

software models or to plant models of even moderate complex-

ity. Also, some theorem provers can handle close-loop models,

but these tools require significant user intervention.

The falsification, multiple-shooting, RRT-REX, and simula-

tion-guided Lyapunov analysis techniques, which are detailed

in the article, appear near the center of the spectrum. The cen-

tral horizontal location is selected because these approaches

automatically select operating conditions to produce simula-

tions that explore the space of system behaviors as widely as

possible. The central-to-high vertical locations are selected

because these approaches can be applied to closed-loop dy-

namic system models of moderate-to-high complexity.

50  IEEE CONTROL SYSTEMS MAGAZINE »  DECEMBER 2016

Formal Methods

F ormal methods (FMs) are used in some software and hard-

ware development domains to verify properties of comput-

er code, such as C programs, or finite-state logical behaviors,

such as field programmable gate arrays. Model checking is an

FM technique that takes a model of the system (such as com-

puter code) and a property that should hold for the system, in

the form of a temporal logic formula, and returns either a cer-

tificate of correctness or a counterexample that demonstrates

a specific behavior that violates the requirement [S1]. Model

checking was first applied to systems such as logic circuits

and later to computer software [S2]. Several model-checking

tools have been developed and successfully applied to verify

communication protocols [S3], hardware drivers [S4], and even

focused components of automotive control code [S5]. Model

checkers such as SLAM [S2] and CBMC [S6] are used by in-

dustry to verify system correctness.

Theorem proof assist tools, referred to as theorem provers,

are based on FM techniques for verifying system correctness.

While model checkers rely on an evaluation of system behav-

iors, a theorem prover is an interactive framework that assists

the user to construct a formal proof using deductive tech-

niques. Tools such as PVS [S7], Coq [S8], Isabelle/HOL [S9],

and ACL2 [S10] have been used to verify software correctness.

Recent work has combined the rigor of theorem proving us-

ing Isabelle/HOL with the performance and automation of set-

based reachability for the purpose of verification for continuous

dynamical systems [S11]. The KeYmaera tool can be used to

prove properties about hybrid systems [S12], and recent exten-

sions have allowed information obtained from simulations to

be used to assist with the proof task [S13]. Though theorem

provers can be used to provide a formal proof of correctness,

the tools require user intervention and can be difficult for non-

experts to use.

Static analysis

Static analysis is another way to debug and check the quality

of control code for embedded control systems. A key feature

of static analyzers is that they operate directly on source code

(or models) and do not need to evaluate system behaviors to

check for problems in the design. Static code analyzers have

become standard in most integrated development environ-

ments [S14], but most analyzers can only check for specific

types of coding errors, such as variable-type mismatches. A

notable exception is the Astrée tools, which can prove the ab-

sence of run-time errors in C programs and has been used to

perform formal analysis of primary flight control software in the

Airbus A340 airliner [S15].

Formal methods challenges

FM techniques provide a proof of system correctness but suf-

fer from fundamental and practical drawbacks. Fundamentally,

FMs do not scale well for large, industrial systems. On the

practical side, FMs are currently difficult for control engineers

to use. Engineers are often unfamiliar with the temporal log-

ics that are used to specify the requirements used by FMs;

this challenge is common to other analysis techniques, in-

cluding simulation-based approaches. Also, many tools re-

quire that an intermediate model be created, based on the

original system model. The task of creating intermediate

models is often performed manually and so is time consum-

ing and prone to error.

References
[S1] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp.
1512–1542, 1994.
[S2] T. Ball, V. Levin, and S. K. Rajamani, “A decade of software model
checking with slam,” Commun. ACM, vol. 54, no. 7, pp. 68–76, July
2011.
[S3] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas, “PVS:
Combining specification, proof checking, and model checking,” in
Computer Aided Verification, R. Alur and T. A. Henzinger, Eds. New
York: Springer, 1996, pp. 411–414.
[S4] T. A Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software verifi-
cation with blast,” in Model Checking Software, T. Ball and S. K. Rajamani,
Eds. New York: Springer, 2003, pp. 235–239.
[S5] T. Kaga, M. Adachi, I. Hosotani, and M. Konishi, “Validation of con-
trol software specification using design interests extraction and model
checking,” in Proc. SAE World Congr. and Exhibition, 2012.
[S6] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-
C programs,” in Tools and Algorithms for the Construction and Anal-
ysis of Systems (Lecture Notes in Computer Science, vol. 2988),
J. Kurt and A. Podelski, Eds. Berlin, Germany: Springer, 2004, pp.
168–176.
[S7] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype veri-
fication system,” in 11th International Conference on Automated De-
duction (CADE) (Lecture Notes in Artificial Intelligence, vol. 607), D.
Kapur, Ed. Saratoga, NY: Springer-Verlag, 1992, pp. 748–752.
[S8] Y. Bertot and P. Cast’eran. Interactive Theorem Proving and Pro-
gram Development. New York: Springer, 2004.
[S9] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. Berlin, Germany: Springer-Verlag,
2002.
[S10] M. Kaufmann, J. Strother Moore, and P. Manolios. Computer-
Aided Reasoning: An Approach. Norwell, MA: Kluwer Academic, 2000.
[S11] F. Immler, “Verified reachability analysis of continuous systems,”
in Proc. 21st Int. Conf. Tools and Algorithms for the Construction and
Analysis of Systems, 2015, pp. 37–51.
[S12] A. Platzer and J.-D. Quesel, “KeYmaera: A hybrid theorem prover
for hybrid systems,” in. IJCAR, (Lecture Notes in Computer Science,
vol. 5195), A. Armando, P. Baumgartner, and G. Dowek, Eds. New York:
Springer, 2008, pp. 171–178.
[S13] N. Arechiga, J. Kapinski, J. Deshmukh, A. Platzer, and B. Krogh,
“Forward invariant cuts to simplify proofs for safety,” in Proc. Int. Conf.
Embedded Software, Amsterdam, The Netherlands, 2015, pp. 227–
236.
[S14] P. Emanuelsson and U. Nilsson, “A comparative study of industrial
static analysis tools. Electronic notes in theoretical computer science,”
in Proc. 3rd Int. Workshop on Systems Software Verification, 2008, vol.
217, pp. 5–21.
[S15] D. Delmas and J. Souyris, “Astrée: From research to industry,”
in Static Analysis, (Lecture Notes in Computer Science, vol. 4364),
H. Riis Nielson and G. Filé, Eds. Berlin, Germany: Springer, 2007, pp.
437–451.

DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  51

described by ordinary differential equations (ODEs) and
can be modeled using block diagrams connected by edges
that represent paths for unidirectional signal flow. This
type of model can be created in, for example, Simulink or
Ptolemy II [3].

Figure 2(a) provides an example of a block diagram rep-
resenting a causal model. The system in the figure repre-
sents the ODEs describing a spring-mass-damper system,

() (),

() () (),

x t x t

x t g M
k x t M

b x t

1 2

2 1 2

=

= - -

o

o

where ()x t1 and ()x t2 are the position and velocity of the
mass, respectively, k is the spring constant, b is the damp-
ing constant, M is the mass, and g is the acceleration due
to gravity. The integrators require initial conditions, ()x 01
and ()x 02 , which determine the initial configuration of the
system. The arrows in the diagram indicate that a signal
value emanates from one block and is used as input to
another. For example, the state of the integrator ()x t1 pro-
vides a value to the k M multiplier block, which the multi-
plier block treats as an input.

Acausal, lumped-parameter modeling techniques are
also used to capture plant behaviors. In an acausal model,
system dynamics are described by differential algebraic
equations. As with causal systems, acausal systems can be
modeled using block diagrams; however, for acausal
models, edges between blocks represent constraints involv-
ing variables from the connected subsystems. This type of
model can be created using, for example, the Simscape tool
or an environment that supports the Modelica language
(such as Dymola or MapleSim) or the VHDL-AMS language
(for example, Simplorer).

Figure 2(b) is a block diagram representing an acausal
model of the spring-mass-damper system described previ-
ously. The block labeled M represents a physical object
with mass .M The sawtooth line represents a spring with
spring constant .k The element to the right of the spring
represents a dashpot (a mechanical element that provides
damping to the system) with damping constant .b The
mass block is associated with the dynamic equation

()Mx t1 =p (),gM F t
i i+/ where ()x t1 is the vertical position

of the mass, g is the acceleration due to gravity and ()F t
i i/

is the sum of all of the external forces on the mass. The lines
connecting the mass, spring, and dashpot together repre-
sent a constraint. In this case, the constraint is

() (()F t k x t
i i 1=-/ .()) (() ())x t b x t x t2 1 2- - -o o The component

on the bottom of the diagram represents ground. The lines
connecting the spring and the dashpot to ground represent
the constraints ()x t 02 = and ()x t 02 =o .

Acausal models allow for a more composable approach
to modeling, at the expense of more computation time for
simulations. Since typical control design methods are set in
a framework of ODEs, control designers are often more
comfortable dealing with ODEs, and so causal models have

traditionally been used in control design. However, this is
beginning to change, due to the increasing complexity of
the systems under development.

In some cases where lumped-parameter models are
insufficient for capturing certain critical physical phenom-
ena, distributed-parameter models can be used. Partial dif-
ferential equations (PDEs) are used to model this type of
system. PDEs can be used, for example, in cases where vital
aspects of the system that are required to define its behavior
over time are spread across a relatively wide physical area.

PDEs are used sparingly in embedded control design
because producing simulations for PDEs is computation-
ally expensive. As an example, consider the dynamics of an
automotive engine after-treatment system, which is respon-
sible for reducing the amount of toxic pollutants emitted by
the vehicle. For some analyses, it is necessary to accurately
model the distribution of heat along the length of the cata-
lyst (a critical component of the after-treatment system),
which is best represented with a PDE. While some design-
ers will choose to model the system as a PDE, others will
opt to create an ODE approximation of the dynamics by
discretizing the spatial distribution of heat within the cata-
lyst. The ODE approximation will less accurately capture
the dynamics but will allow for more efficient simulations
of the behaviors (see [4], for example).

Finite-element analysis (FEA) models are used to capture
physical phenomena best described by boundary-value prob-
lems defined over some spatial distribution, for example,
electromagnetic fields, temperature variation, stress/strain,
and fluid dynamics. FEA can be used to estimate critical
aspects of the systems design. Note, however, that this type
of model often requires a significant setup time and informa-
tion from outside of the domain of control development, and
it is also computationally expensive. Therefore, FEA is seldom
used to model embedded control systems.

Simulation and Testing for Embedded
Control Applications
The term simulation refers to the process of obtaining a
numerical estimation of system behaviors (, ,)P UMU t t for a
specific collection of operating conditions given by finite

g

x2(0) = 0 x1(0) = 0

+

−

−

(a)

M

k b

(b)

∫∑

b
M

k
M

Figure 2  Examples of dynamic models: (a) an example of a
causal model and (b) an example of an acausal model.

52  IEEE CONTROL SYSTEMS MAGAZINE »  DECEMBER 2016

sets Pt and .Ut In practice, simulations are obtained using
specialized software. The simulation software usually pro-
vides an environment to specify ,M which can represent
the control-system software and possibly a representation
of the plant. Simulink, Dymola, and Simplorer are com-
monly used tools for this type of activity. Engineers use
simulation to perform preliminary tuning of control param-
eters, estimate performance of a given control design, and
also debug the design.

Control design simulation has parallels in the program-
analysis domain. Some program testing standards require
that each decision path in the control code be exercised using
some testing approach, for example, testing requirements
based on the modified condition/decision coverage (MCDC)
criterion [5]. In program analysis, it is common to refer to
tests as concrete executions, or runs, of a software system.
These concrete executions are analogous to simulations of an
embedded control system; however, one main difference is
that the software system executions are actual instances of
behaviors of the system, whereas simulations of an em
bedded control system are approximations of behaviors.
Discrepancies inevitably exist between simulations and be
haviors of the corresponding embedded control system due
not only to parameter-estimation error and modeling simpli-
fications but also to numerical computations involved in esti-
mating the solutions to differential equations.

Software-Centric Versus System-Centric Perspectives
Either the software-centric perspective or the system-cen-
tric perspective can be taken when using simulations to
check embedded control designs. The software-centric per-
spective assumes that all of the correct behaviors of the
system are formally defined and captured by the require-
ments. The system-centric perspective respects that the
requirements may not entirely characterize the correct
system behavior, due to the unique challenges presented by
embedded control systems.

Figure 3 illustrates the way that simulations are used to
test control designs using a typical software-centric per-
spective. A model is created manually by a designer based
on requirements. Simulation-based checks are performed,
and the resulting behaviors are checked against the re
quirements. If any of the behaviors explored through simu-
lation violate the requirements, then the control design
model is enhanced to eliminate the violating behavior.

Once a user-defined number of simulations are found to
satisfy the requirements, the model is used to proceed with
the next development phase. This process could be used,
for example, when validating the model represented by the
control design model block on the left side of the design V
in Figure 1.

Although it is used for some embedded control-system
designs, the simulation-based validation process illustrated
in Figure 3 does not take into consideration the unique chal-
lenges presented by embedded control systems. Specifi-
cally, Figure 3 does not account for the inability to create a
set of requirements that captures all intended behaviors.
This deficiency is particularly apparent for cyberphysical
systems, which are systems whose performance critically
depends on the plant behavior.

There are two main reasons why it is particularly diffi-
cult to create formal requirements for cyberphysical sys-
tems. First, it is not always possible for the design engineers
to predict all the ways in which the physical and environ-
mental components will interact with each other. Indeed, it
is not always possible to even predict the existence of some
interactions. Without a priori knowledge about all possible
component interactions, it is difficult to create require-
ments to cover all behaviors that can emerge as a result of
the interactions. The second reason is that there are some
qualitative system behaviors that are difficult to capture
with formal requirements. For example, consider a system
that the designer expects to behave in a manner generally
consistent with a second-order linear system (a second-
order decaying exponential). This qualitative feature may
be expected by the engineer, and failure to achieve this
qualitative characteristic may indicate incorrect behavior.
While commonly used performance indicators such as
overshoot and settling time could be formally character-
ized, other qualitative aspects of the expected behavior
such as the smoothness or the near sinusoidal behavior would
be difficult to characterize with prevalent requirement for-
malisms used by verification tools.

Figure 4 illustrates a simulation-based model testing pro-
cess that respects the challenges unique to cyberphysical
systems. The process is similar to the one illustrated in
Figure 3, with some key differences. Some formal require-
ments are included, but also expected behaviors exist in the
form of engineering insight. The engineering insight can be
provided by the system architect as well as the model

designer, which can be used to create
or refine the model. Results from sim-
ulations that violate either the formal
requirements or the engineering
insight trigger a redesign of the model
and also enhance the engineering
insight. Further, results from integra-
tion tests, which occur on the right
side of the design V shown in Figure 1,
can provide valuable feedback

Next Development
Phase

Requirements Model
Simulation-

Based Checks

Figure 3  The software-centric view of an embedded control design testing process. This
process assumes that intended behaviors are thoroughly captured by the requirements.

DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  53

(about, for example, previously
unknown physical and environmen-
tal component interactions) and can
be used to enhance both the engi-
neering insight as well as the for
mal requirements.

Take, for example, the spring-
mass-damper system shown in
Figure 2(a) and (b). Although this
system contains only a plant (no con-
troller), the process in Figure 4 could
be used to validate the model. Con-
sider formal requirements that spec-
ify acceptable maximum settling
time and overshoot for the system,
which would correspond to require-
ments, and also consider the informal expectation from the
designer that the system behaves in a typical linear manner,
which would correspond to engineering insight. The model
contains a representation of the system and is intended to
satisfy the formal and informal requirements. Simulations
performed at the simulation-based checks stage indicate
whether the modeled system meets the formal and informal
requirements; if not, then the model is refined. Once the
model is found to satisfy the informal and formal require-
ments, it is used as a basis for the next stage of the develop-
ment process. Eventually, a physical system is implemented,
and integration testing results are made available. If the
results from the tests indicate that either the formal or infor-
mal requirements did not sufficiently capture the intended
behaviors, then the engineering insight and requirements
are updated accordingly. For example, it may be that the
desired time constant and overshoot are not physically real-
izable due to unmodeled nonlinearities in the spring behav-
iors. These testing results, which indicate that the system
does not satisfy the behavior specified by the requirements,
trigger an iteration in the development process, whereby the
engineering insight and requirements are updated and the
model is refined, tested, and used in the subsequent iteration
of the development process.

The process shown in Figure 4 and described above can
be used, for example, to create and validate the model rep-
resented by the control design model block on the left side
of the design V in Figure 1. Iterations in the design V pro-
cess based on integration testing results that are shown to
be inconsistent with design requirements are costly.
Because of this, care should be taken to create thorough,
consistent, and realistic requirements and accurate system
models to avoid the cost associated with excessive itera-
tions in the development process.

One challenge in applying any simulation-based test-
ing process is the difficulty in accounting for inaccuracies
that appear in the plant models. Inevitably, discrepancies
will exist between the estimations for the physical param-
eters and the actual system parameters, due to issues such

as machining tolerances, imperfections in materials pro-
cessing, and incorrect assumptions about the operating
environment, such as ambient temperature. Further,
broadly speaking, physical phenomena are not modeled
exactly. Physical processes are sometimes neglected
entirely, but even for the most detailed environment
models, some behaviors and interactions between system
components are not modeled (sometimes referred to as
second- or third-order effects) because they are assumed
to be noncritical for capturing the intended behaviors of
the control system. Techniques from robust control design,
such as H-infinity control, can be used to design control-
lers to account for modeling inaccuracies for some sys-
tems, but these techniques are difficult to apply to
industrial problems that involve nonlinear plant dynam-
ics and other complexities such as actuator saturation and
computation delays [6].

Testing Scenarios
Traditional testing approaches use ad hoc techniques for
selecting test cases. In ad hoc testing, a control engineer
manually selects some inputs to the system (for example, a
step input) and a set of operating parameters (for example,
proportional and integral controller gains and initial con-
ditions on the state variables). The selection of such test
inputs and parameters is usually based on the engineer’s
experience and insights about which inputs represent nom-
inal operating behavior, worst-case behavior, and so on.
With the increasing complexity of embedded control sys-
tems, methods, such as ad hoc techniques, that rely on
engineering insights are no longer scalable and are thus
being replaced by automated testing approaches.

Current testing approaches for embedded control sys-
tems involve various manifestations of the control system,
from computer models to experiments on the physical
system. The testing approaches described herein are easiest
to apply to computer models (as in the model-in-the-loop
testing scenario described below), but it is feasible to apply
them to many different testing scenarios. The next sections

Next
Development

Phase

Results from
Integration Tests

Informal

Incomplete

Requirements Model
Simulation-

Based Checks

Engineering
Insight

Figure 4  A system-centric view of an embedded control design testing process. This per-
spective respects the challenges unique to cyberphysical systems.

54  IEEE CONTROL SYSTEMS MAGAZINE »  DECEMBER 2016

describe open- and closed-loop testing scenarios com-
monly used in industry.

Open-Loop Testing
Typically, the first step in testing a controller is open-loop
testing to validate that it meets its functional requirements. In
open-loop testing based on code-coverage metrics, the plant
model is neglected, and the controller model is tested as
though it were a computer program. The goal of the testing
process is to automatically select inputs to the controller
model that maximize a software code-coverage metric. There
are several code-coverage metrics, such as MCDC [5], which
is the most popular in the automotive domain. Tools such as
Reactis, Simulink Design Verifier (SLDV), and TestWeaver
use different approaches to perform coverage-based testing.

The Reactis Tester tool uses guided simulation to evalu-
ate open-loop controller models; this is a patented tech-
nique to generate test inputs using a combination of random
and targeted methods. The targeted phase of the tool uses
data structures to store intermediate states, and constraint-
solving algorithms to search for previously uncovered cov-
erage targets [7].

SLDV uses SAT-solving techniques provided by the
Prover tool to automatically generate test inputs to maxi-
mize coverage criteria [8], [9]. SLDV is intended for
open-loop (discrete-time) controller models since it cannot
process closed-loop (hybrid) models.

Closed-Loop Testing
There are several commonly used closed-loop testing
approaches. The test scenarios are presented below in the
order in which they might typically occur during a stan-
dard development cycle.

»» Model-in-the-loop (MIL): In this testing scenario, M is
a computer model containing a representation of
both the controller and the plant, and simulations are
computed on a host PC. MIL testing is the scenario
that is most applicable to the simulation-guided
approaches presented herein.

»» Software-in-the-loop: In this testing scenario, M is a
computer model composed of a representation of the
plant interacting with a controller that is implemen
ted with production computer code.

»» Processor-in-the-loop (PIL): In this test scenario, M is
the real-time platform, running production code,
connected directly to a host PC that is running a
computer model of the plant. In this case, the com-
munication between the plant and the controller uses
a direct communication link, such as an Ethernet
connection or a controller area network bus, and the
system is not run in real time but, rather, uses a syn-
chronization mechanism to synchronize the control-
ler with the PC running the plant simulation.

»» Hardware-in-the-loop: In this testing scenario, M is
composed of the real-time platform and a virtual

plant, which could be a computer model of the plant
running in real time on specialized hardware or a
combination of a computer model and physical com-
ponents connected electronically. The virtual plant
receives electronic inputs from the controller actua-
tor output and produces electronic outputs, which
are received by the controller as sensor inputs. This is
as opposed to the direct communications link that is
used in the case of PIL testing.

»» Integration and calibration: In this scenario, all subsys-
tems are connected together with the actual plant to
tune the control parameters and validate the perfor-
mance of the closed-loop system.

The TestWeaver tool by QTronic uses simulations of
closed-loop models to attempt to obtain a high degree of
coverage and also to violate system requirements [10]. Test-
Weaver uses a search algorithm that is based on proprietary
heuristics. The tool relies on the user to quantize the input
values and the time domain and also to manually identify
system variables that are most sensitive to the inputs. This
user intervention requires an understanding of the system
dynamics and engineering intuition to use effectively.

Verification for Embedded Control Applications
The term verification is used in the computer science litera-
ture to refer to the process of formally deciding whether a
given system model satisfies a given specification. Broadly
speaking, verification can be performed using formal meth-
ods, which are a rich set of concepts and techniques; for fur-
ther details, see “Formal Methods.”

Testing and verification are closely related, with one
main difference. While testing determines whether
(, ,)P UM t }U t t for some finite Pt and ,Ut verification deter-

mines whether M t } over the infinite set of parameters
and inputs P and .U In this sense, verification provides a
stronger result than testing.

While testing is often performed without the benefit of a
formal specification ,} a specification is required to per-
form verification. A specification } for a verification tool is
usually supplied in the form of a special language such as
a temporal logic, which employs operators that are used to
indicate desired system behavior over time. As an example,
one such language, signal temporal logic, can express
timed operators over fixed time ranges [11], such as

	 () . ,x t 10 0[. , .]1 0 2 04 1/} � (1)

which means the signal x must remain lower than 10.0
between the times t = 1.0 and t = 2.0. For further details, see
“Temporal Logic.” Any verification procedure will return
either of the following:

»» Verified: This result is returned if the procedure
determines that } holds for all of the cases. When
a procedure returns a verified result only if
(, ,) ,P UM t }U the procedure is called sound. The

DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  55

capacity of a technique to return a sound result is
called soundness.

»» Not Verified: This result is returned if the procedure
cannot certify that } holds for all cases. In some
instances a counterexample is also returned, which

is a concrete p and u that demonstrates that
(, ,) .P UM t }U Y The procedure may return Not Veri-

fied even when (, ,) ,P UM t }U because the under
lying technique overestimates the cases where
(, ,)p uM F }U .

Temporal Logic

In the late 1970s, Amir Pnueli [S16] introduced temporal

logic to computer science to reason formally about the

temporal behaviors of reactive systems, which are systems

that are designed to continually interact with an environment.

This work was recognized with the 1996 ACM A.M. Turing

Award, one of the highest honors for a researcher in com-

puter science. The use of temporal logic was originally to rea-

son about input–output systems with Boolean, discrete-time

signals, and heavily focused on the verification, specification,

and synthesis of concurrent systems. Several temporal logics

were introduced to reason about real-time signals, including

timed propositional temporal logic [S17] and metric temporal

logic (MTL) [S18]. These logics typically allowed reasoning

over Boolean signals but over dense-time domains. More re-

cently, signal temporal logic (STL) [S19] was proposed in the

context of analog and mixed-signal circuits as a specification

language for constraints on real-valued signals. Syntactically,

an STL formula is defined recursively. The basic unit of an

STL formula is an atomic formula that expresses constraints

on signals, and any formula is defined using the negation of

a subformula or using Boolean combinations (conjunctions,

disjunctions) of subformulas, or using temporal operators

applied to subformulas. Atomic formulas, without loss of

generality, can be reduced to a form () ,xf 0A where x rep-

resents the name of signal (a function from R 0$ to Rn),

, , , , ,1 2A! # $ =" , and f is an arbitrary function from Rn to

R . A temporal formula is formed using temporal operators

“always” (denoted as 4), “eventually” (denoted as Z) and “un-

til” (denoted as u). Each temporal operator is indexed by an

interval I over { }R 0 , 3$; this can be an open interval (,),a b a

closed interval [,],a b open-closed (,]a b or closed-open [,) .a b

Several example STL formulas are

boost_pressure_error ,c[,]1 0 100 14 1/} ^ h � (S1)

rising_edge y 0.1 ,2 [0,10] [0,2]& Z 14/} ^ h � (S2)

gear gear gear1 2 1 ,3 [0,100] [0,] [,]/ /Z Z4/} = = =e x x e+^ ^ hh

� (S3)

fuel_cut on
fuel_cut

throttle
off(() .())u N 650

0
[,)

[,]e
4 0

0 1

&

/ Z
4/

#
}

==

=3 e
^ h o � (S4)

The requirement 1} in (S1) specifies that for all times t in

[,]0 100 , the physical quantity boost_pressure_error is

always lower than c1 kPa. This STL requirement can be used

to characterize maximum allowed overshoot (or undershoot).

The requirement 2} (S2) specifies that for all times t in [0, 10],

whenever the Boolean proposition rising_edge is true,

then eventually within 2 s (that is, within [, 2]t t +), the absolute

value of y is lower than 0.1. This requirement can be used to

capture settling behavior of a signal, and the time bound on

the inner temporal operator (Z) captures settling time. The re-

quirement 3} (S3) specifies that if the gear changes from one

to two within a small time (e), then it stays at two for at least x s

before changing back to one. Such a requirement can be used

to specify the dwell time on a discrete mode of the system.

Finally, the requirement 4} (S4) specifies a causal behavior of

the system. Requirement 4} says that if the throttle angle

is zero, the fuel_cut mode must remain on until the engine

speed Ne^ h drops below 650 r/min, and then the fuel_cut
mode must turn off.

The syntax for the logic MTL is similar to STL. The only

difference is that MTL requires that formulas be defined over

Boolean signals; continuous-valued signals can be consid-

ered by converting them to Boolean signals based on given

logical predicates over the continuous signals. A key feature

of MTL and STL is that both logics are equipped with quanti-

tative semantics, which is a function mapping a given signal

trace and an STL/MTL formula } to a real value [S20], [S21].

This value is an indicator of the degree of satisfaction of ;}

positive values indicate that the trace satisfies } , negative val-

ues denote violation of } , and the magnitude indicates the

robustness margin. In other words, a positive value d indicates

that the signal can be perturbed by up to d before it violates

.} STL and MTL differ in how they define the signed distance

of a signal trace from an atomic predicate, which impacts the

computational complexity of the quantitative semantics for

these logics.

References
[S16] A. Pnueli, “The temporal logic of programs,” in Proc. Symp. Foun-
dations of Computer Science, 1977, pp. 46–57.
[S17] R. Alur and T. A. Henzinger, “A really temporal logic,” in Proc.
Symp. Foundations of Computer Science, 1989, pp. 164–169.
[S18] R. Koymans, “Specifying real-time properties with metric tempo-
ral logic,” Real-Time Syst., vol. 2, no. 4, pp. 255–299, 1990.
[S19] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Proc. Formal Modeling and Analysis of Timed Sys-
tems Conf., 2004, pp. 152–166.
[S20] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic
specifications for continuous-time signals,” Theoretical Comp. Sci., vol.
410, no. 42, pp. 4262–4291, 2009.
[S21] A. Donzé and O. Maler, “Robust satisfaction of temporal logic
over real-valued signals,” in Proc. Formal Modeling and Analysis of
Timed Systems Conf., 2010, pp. 92–106.

56  IEEE CONTROL SYSTEMS MAGAZINE »  DECEMBER 2016

Problems Applying Verification Approaches
Applying verification techniques to embedded control sys-
tems is a challenging task. These systems can often be clas-
sified as hybrid systems, which are systems that exhibit both
continuous and discrete behaviors. The general problem of
verifying hybrid systems is known to be undecidable [12].
This undecidability result means that it is provable that no
computer algorithm can decide whether any arbitrary
hybrid system satisfies any given formal specification.

Tools exist for verifying specific subclasses of hybrid
systems, but each suffers from significant limitations.
SpaceEx verifies hybrid systems with affine continuous
dynamics and polyhedral switching constraints [13]. The
UPAAL tool can verify complex hybrid systems, but it is
limited to timed automata, which are systems with continu-
ous dynamics defined by derivatives fixed at 1.0 [14]. The
Flow* tool [15] handles systems given by ODEs that are

expressed as polynomial functions of the state variables.
The C2E2 tool can verify safety properties of hybrid sys-
tems but only if the designer provides sufficient annota-
tions to the models in the form of discrepancy functions,
which characterize the maximum rate at which pairs of
trajectories can diverge from each other [16]. SLDV pro-
vides property-proving capability for Simulink models but
only for open-loop, discrete-time (nonhybrid) models [8].

Emerging Simulation-Guided
Testing Approaches
Several recently developed tools use simulation-guided
approaches to testing based on the notion of falsification.
Optimization-guided falsification is an emerging approach
for testing closed-loop models by intelligently obtaining
test inputs to expose undesirable model behaviors. The
inputs to a falsification algorithm are a closed-loop model,
a set of correctness requirements, a specification of the
system parameters, and a definition of the exogenous
inputs to the closed-loop model. The overall architecture of
an optimization-guided falsification tool is shown in
Figure 5; two key components are a simulation engine and
an optimizer.

The procedure illustrated in Figure 5 takes as input the
model ,M initial parameter values for the closed-loop model
,p0 initial time-series values for the model inputs ,u0 and the

property to be falsified .} The simulation engine numeri-
cally computes time-series values for the system behaviors

.(, ,)p uMU The cost function converts the system behaviors
(, ,)p uMU into a numeric cost value ((, ,))c p uMU} based on

} . Note that the cost function is defined with respect to the
correctness requirement(s) and can always be defined such
that a negative cost corresponds to a violation of the require-
ments. If the cost is lower than zero, then the procedure
halts, since the property has been falsified ((, ,)) .p uM t }U Y
If the cost is not lower than zero, then the optimizer selects a
new set of operating conditions pt and ,ut and the procedure
continues, with the simulation engine producing the next set
of behaviors. The process continues until a falsifying behav-
ior is found or until a user-specified limit on the number of
iterations is reached.

Example: Automotive Fuel Control System
Consider the automotive powertrain control example illu
strated in Figure 6. The model MFCS is a simplified
representation of a fuel-control subsystem (FCS) in an
automotive engine and contains an air-fuel controller (con-
troller) and engine air-fuel dynamics (plant). The plant
subsystem contains a mean-value model of the engine
dynamics including the throttle, intake manifold air, and
fuel dynamics. The purpose of the controller is to regulate
the ratio of air to fuel in the engine to a given reference
value. The controller has four modes of operation: the
startup mode, the normal mode, the power mode, and the
fault mode.

c < 0?

M, p0, u0, ψ

Bug Found!

p: = p0
u: = u0

Φ (M, p, u)

c : = cψ (Φ (M, p, u))

No

Yes

u : = û

p : = p̂

Simulation
Engine

Cost
Function

Halt

Optimizer

Figure 5  Optimization-guided falsification. This procedure is used
to automatically search for behaviors in a control system design
model that violate requirements.

ω

Fc

θ in

θ

λ

maf
.

Air-Fuel
Controller

Throttle
Control

Engine
Air-Fuel

Dynamics

Figure 6  Overview of an automotive air-fuel control system example.

DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  57

As illustrated in Figure 6, the engine speed ~ is an
input to both the controller and the plant. A throttle con-
trol subsystem converts a throttle position command ini to
throttle position i . The output of the plant to the controller
is the air-fuel ratio m and the intake manifold inlet mass
airflow rate mafo . The controller output to the plant is the
fuel rate command .Fc

The internal state variables for the system (not shown in
the figure) include intake manifold pressure, two state
variables associated with the sensor used to measure ,m
one state variable associated with the throttle control, one
state variable associated with the amount of fuel stored in
the fuel film, and the state variables associated with a vari-
able transport delay. The transport delay is used to model
the time it takes for the exhausted gas to travel from the
engine through the exhaust system to the point where the
air-fuel ratio is measured by a sensor. The transport delay
gives rise to a delay differential equation (DDE); theoreti-
cally, this DDE requires an infinite number of state vari-
ables to represent with an ODE. For a detailed description
of the model, see [17], or see [18] for a description of a mod-
ified version along with corresponding models available
for download.

The performance of the controller is sensitive to the
accuracy of sensors and actuators. To capture these imper-
fections, the FCS model contains multiplicative error terms
that model calibration and other tolerances in the corre-
sponding components. Multiplicative error terms are pres-
ent in the air-fuel ratio sensor, the fuel injection actuator,
and the mass air-flow sensor. In the experiments that
follow, the multiplicative error terms associated with the
fuel injection actuator and the mass air flow sensor are set
to 1.0 (0.0% error), and the multiplicative error parameter
for the air-fuel ratio sensor error rAF is assumed to be
between 0.99 to 1.01 (. %1 0!).

One requirement for the FCS is that the air-fuel ratio m
should not deviate from the reference value refm by more
than 2% after 11.0 s, which is 1.0 s after the transition to the
normal mode occurs (at 10.0 s). This requirement can be
captured informally as

	 : () . , . ,t t0 02 11 0forFCS ^ 1 _$} n= � (2)

where (): (())/t t ref refn m m m= - . To check whether this
requirement is violated for the FCS, a falsification tool
will formulate a cost ()cFCS $ that maps output behaviors
of MFCS to a real value, based on FCS} . The set of param-
eters PFCS is the set of all values of rAF for which
. .r0 99 1 01AF# # , and the set of inputs UFCS is given by

sets of functions (·)ini and (·)~ , defined over . .t0 0 50 0# #
s. (·)ini is a piecewise-constant function, such that
. . .()0 0 61 2in $ c1# i (·)~ is a constant signal with a value

between 900 and 4000 r/min. The control system operates
in the normal mode during the interval . .t11 0 50 0# # s.
The goal of the falsification tool is to identify some

parameter p rFCS AF= and some input ((), ())u inFCS $ $i ~= ,
such that ((, ,)) ,c p u 0MFCS FCS FCS FCS 1z which indicates that

.(, ,)p uMFCS FCS FCS FCStz }Y

Simulation-Guided Falsification Tools
The S-TaLiRo and Breach tools, as well as the RRT-REX and
multiple-shooting-based approaches, use simulations to
perform falsification. These tools and techniques are
described below.

S-TaLiRo
The key feature of S-TaLiRo is its ability to transform a fal-
sification problem into an optimization problem by param-
eterizing the search space, which corresponds to input
signals or model parameters [19] (visit [20] to download
S-TaLiRo). First, users provide information about the range
of values for inputs and parameters. Then, for each contin-
uous exogenous input, the user selects the number of con-
trol points used to construct the input signals. For example,
if a model has one exogenous input u with three control
points, and the simulation time horizon is 10 s, then
S-TaLiRo selects three values corresponding to (),u 0 (),u 5
and ()u 10 (control points by default are distributed evenly
across the time horizon). The actual ()u t is then obtained
by using a user-defined interpolation (such as constant,
piecewise constant, piecewise linear, or splines) across the
chosen control points.

The user provides the requirements using a temporal
logic language. Then, an optimizer turns these require-
ments into cost functions to be minimized. S-TaLiRo sup-
ports various strategies for the stochastic optimization
engine, such as simulated annealing [21], genetic algo-
rithms, uniform random sampling, ant-colony optimiza-
tion [22], and the cross-entropy method [23].

Consider the following example describing the S-TaLiRo
tool applied to the FCS example. The S-TaLiRo settings used
to address the example are as follows. Since (·) c~ ~= is a
constant signal, only one control point is selected between
900 and 4000 r/min. To simplify the falsification task, the
signal (·)ini is restricted to the class of pulse trains, with an
amplitude . .a0 0 61 2c1# and a period . .T5 0 10 0p# # s.
For each simulation, S-TaLiRo chooses one real constant
value from 0.99 to 1.01 for the system parameter rAF . For the
optimization solver, simulated annealing is selected to fal-
sify the requirement that the air-fuel ratio m should not
deviate from the reference value refm by more than 2%
during the interval . .t11 0 50 0# # s. The decision variables
for the optimizer are the parameters ,c~ a , and Tp . A maxi-
mum limit of 1000 simulations is permitted to falsify the
requirements. S-TaLiRo successfully identifies a falsifying
behavior in about 400 s.

A plot of the falsifying behavior is shown in Figure 7(a).
The figure shows the input accelerator angle ()tini and the
normalized air-fuel ratio ()tn . The signals in the figure are
shown for . .t11 0 50 0 s,# # because the property FCS}

58  IEEE CONTROL SYSTEMS MAGAZINE »  DECEMBER 2016

specifies bounds on air-fuel ratio behavior during this
period. The red circles indicate instants where () .t 0 021n - .
Note that the behavior violates FCS} since the magnitude of
()tn is greater than 0.02 for . .t11 0 50 0# # s.

Breach
Similar to S-TaLiRo, Breach [24] also parameterizes exoge-
nous inputs using ranges and control points (visit [25] to
download Breach). A key difference is that Breach treats
both model parameters and exogenous inputs in a uniform
fashion. Moreover, Breach allows more freedom to place
control points on the timeline. For instance, given a time
horizon of ten for the input signal ()u t with four control
points, users can put control points at (),u 0 (),u 5 (.),u 6 5
and ()u 10 to focus on the time duration . .t5 5 6# # Another
difference is that Breach uses a nonlinear global optimizer
based on the Nelder–Mead simplex-based algorithm [26].
Thus, when using Breach, users need to set optimization
options, such as the number of Nelder–Mead iterations and
the number of restarts. Note that the performance of the
optimization varies for different optimization options.

Consider the following example of the Breach tool
applied to the FCS example. The example has four param-
eters. The first parameter is the constant engine speed ,c~
where ,900 4 000c# #~ r/min. The second one is the air-
fuel ratio sensor tolerance ,rAF where . .r0 99 1 01AF# # . The
other two parameters specify the throttle command signal,
where, as in the S-TaLiRo example, (·)ini is assumed to be a
pulse train with amplitude given by . .a0 0 61 2c1# and
period given by . .T5 0 10 0p# # s. Since each of the param-
eters can be treated as a constant through the simulation,
one control point is used for each parameter. Breach imple-
ments a more efficient algorithm to compute the cost

function value than S-TaLiRo, given a requirement in a
temporal logic format [27]. Breach falsifies the requirement
in about 30 s by identifying a falsifying behavior in which
the air-fuel ratio m deviates from the reference value refm by
more than 2%. A plot of the falsifying behavior is shown in
Figure 7(b). The figure shows the input accelerator angle

()tini and the normalized air-fuel ratio ()tn for the period
. .t11 0 50 0# # . The red circles indicate two instants where
() .t 0 021n - . Note that the behavior violates FCS} since the

magnitude of ()tn is greater than 0.02 for . .t11 0 50 0# # s.
Both S-TaLiRo and Breach support the mining of temporal

requirements from closed-loop models, which is an auto-
mated procedure to obtain reasonable formal requirements
from a design model. In such a framework, the user provides
template requirements where certain parameter values are
left unspecified. The tool integrates an efficient parameter
synthesis algorithm to obtain candidate requirements from
simulations with its falsification core that attempts to falsify
the candidate requirement. Counterexamples obtained by
falsification are used to refine the candidate requirement,
and the mining procedure terminates when a user-specified
bound on the number of iterations expires or no counterex-
ample is found by the falsifier [28]. The requirement mining
tool can itself be thus used as a more nuanced falsification
tool, where the optimizer used for falsification is guided by
intermediate candidate requirements.

RRT-REX
RRT-REX is a falsification framework that leverages notions
of coverage to optimize bug-finding performance [29].
Using a concept related to coverage-based testing for soft-
ware systems, RRT-REX uses a coverage metric called the
star-discrepancy measure, which applies to the infinite

11

0

20

40

60

Time (s)

Time (s)

θ i
n
(°

)
θ i

n
(°

)

20 30 40 50 11
Time (s)

20 30 40 50

11
Time (s)

12 13 14 15

−0.02

0

(a) (b)

11 12 14 16 18 20
0

20

40

60

0

20

40

60

θ i
n
(°

)
θ i

n
(°

)

0

20

40

60

12 14 16 18 20

−0.02

0

0.02

µ
(t

)
µ

(t
)

−0.02

0

0

0.02

µ
(t

)
µ

(t
)

(c) (d)

Figure 7  Results from falsification tools. Each plot illustrates a falsifying behavior found using one of the falsification tools featured in
the article. Falsifying behavior found (a) by S-TaLiRo, (b) by Breach, (c) by RRT, and (d) by S3CAM.

DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  59

system states that exist in embedded control systems. Star-
discrepancy is a statistical notion that quantifies how well a
continuous state space is covered (by states discovered with
simulations) [30]. The key idea in this approach is to use the
star-discrepancy measure to guide state-space exploration
using the rapidly exploring random trees (RRT) algorithm.

The RRT algorithm builds a tree in which a node at
depth i in the tree represents a continuous state ()x ti of the
model at time ,ti and edges ((), ())x xt ti i 1+ are labeled by
inputs ui that cause the model to evolve from ()x ti to ()x ti 1+
under the action of the input signal segment correspond
ing to ui from time ti to .ti 1+ A rooted path in the tree
(), (), , ()x x xt t tn0 1 f corresponds to a partial simulation (a

simulation over an abbreviated time horizon) of the model
output for the input signal u(t) obtained by splicing together
the input signals corresponding to the values , , ,u u un0 1 1f -
on the edges in the path.

RRT-REX takes as input a Simulink model, a require-
ment in the form of a temporal logic formula, and several
numerical parameters, such as bounds on the state vari-
ables and the length of the time segments. RRT-REX
explores the state space of the Simulink model with the
goal of maximizing the coverage achieved by the points in
the tree constructed by the RRT algorithm. The tool pro-
vides additional guidance to the RRT algorithm by associ-
ating cost values (based on a given property }) for partial
simulations corresponding to the paths in the tree. Specifi-
cally, the RRT algorithm is biased to grow the tree from an
existing node such that the new suffix leads to a partial
simulation with a lower robustness value. While prelimi-
nary evaluations look promising, a mature implementation
of the tool is under development.

Applying the RRT-REX tool to the FCS example presents
some unique challenges. The FCS example has a subsystem
modeling the exhaust gas transport dynamics as a variable
transport delay. A delay function describes the input–
output relation () ()y t u t D= - , where Δ is some real number.
In the FCS example, the value of Δ is a nonlinear function of
the model states (provided in the form of a lookup table). As
RRT-REX constructs an exploration tree in the state space,
systems with delays are a challenge because they corre-
spond to a system with an infinite set of state variables. For
the purposes of constructing the tree of simulations, RRT-
REX does not attempt to store information corresponding to
the states associated with the delay. Nevertheless, the
underlying simulation framework, Simulink, is assumed to
accurately capture the behaviors associated with the delay.
Thus, while the tree does not store information regarding
the delay states, the simulations corresponding to the nodes
in the tree accurately capture the system behaviors, includ-
ing behaviors associated with the delay component.

For the FCS example, RRT-REX searches a seven-dimen-
sional model state space (ignoring the states associated
with delays), by choosing input values between 0c and

.61 0c at 2.5-s increments for the throttle angle input (except

for the first 10.0 s, where the input is held constant). For the
engine-speed input, one value between 900 and 4000 r/min
is randomly chosen at the beginning of the simulation and
held constant throughout the run of the tool (that is, for
each partial simulation, the engine speed is held constant).
Similarly, one value for rAF from 0.99 to 1.01 is selected and
used for each partial simulation. RRT-REX is able to find
inputs that falsify the requirement that m should not devi-
ate from refm by more than 2.0% during the interval

. .t10 0 50 0# # s in an average of 325 s (since the procedure
is stochastic, the average is provided over ten separate
trials). A plot of one of the falsifying behaviors is shown in
Figure 7(c). The figure shows the input accelerator angle

()tini and the normalized air-fuel ratio ()tn for .t 11 0$ s.
The red circle indicates an instance where () .t 0 022n .
Note that the behavior violates FCS} since the magnitude of
()tn is greater than 0.02 for .t 11 0$ s. The behavior for this

example only extends to .t 020= s instead of continuing to
.t 0 05= s, as in the other examples; this is because the RRT

algorithm explores a tree of behaviors forward in time and
is able to halt as soon as a falsifying behavior is identified.

Multiple-Shooting-Based Approaches
Using short disconnected partial simulations to find an
abstract example of a falsifying simulation and using an
optimizer to attempt to splice the partial simulations
together to identify a concrete falsifying simulation is pro-
posed in [31]. A significant recent revision of this work
removes the dependence on an optimizer [32]. The key idea
here is to incorporate elements of counterexample-guided
abstraction refinement. At each step the tool performs a
short simulation of time td from a chosen start state to
obtain a simulation segment and then randomly chooses a
new set of start states by sampling in an e-neighborhood of
the end point of the simulation segment. The algorithm is
initialized by randomly sampling the initial set of states. A
segmented trace is a collection of simulation segments thus
obtained, such that the beginning of the first segment is an
initial state and the end point of the last segment is an
unsafe state. Once the algorithm obtains a few promising
segmented traces, it can then choose to refine these traces
by decreasing e or td . At the end of each search step, before
refining the traces, the tool can choose to perform a con-
cretization step that involves doing a complete simulation
from the initial states corresponding to the most promis-
ing segmented traces. Ongoing investigations with this
approach include evaluating their applicability to practical
closed-loop control models, where the models could be
described in Simulink or where there may be practical con-
cerns regarding full-state observability.

A prototype tool called S3CAM implements the app
roach to splice segmented traces to obtain simulations
that falsify a safety property. Several issues must be
addressed to apply the S3CAM tool to the FCS example.
Since S3CAM explicitly requires full observability of the

60  IEEE CONTROL SYSTEMS MAGAZINE »  DECEMBER 2016

state space and an explicit representation for the states, cer-
tain model features are not supported by the tool. These
features include delays because, as mentioned above, a
delay element represents an infinite number of states, and
S3CAM requires the model to have a finite dimensional,
compact state space. To investigate the practical aspects of
S3CAM, the FCS model was simplified to remove the delay
elements, approximating these with a first-order delay.

The settings used to apply the S3CAM to the FCS model
are described below. The engine speed input is held con-
stant during the simulations and is picked from the range
900–4000 r/min, and the throttle angle input is parame-
terized as a pulse signal with period between 5.0 and 10.0 s
and amplitude between .0 0c and ..61 1c As with the other
experiments described above, the multiplicative error factor
on the air-fuel ratio sensor measurement was assumed to be
in the range 0.99–1.01, and the remaining sensors and actua-
tors were assumed to have no errors. Using these settings,
the S3CAM tool attempted to falsify the requirement FCS}
using segmented traces of 0.01-s duration, over a time hori-
zon that extended to 50.0 s. No falsifying trace was found
before the memory limit of the machine was reached. To
demonstrate the falsifying performance of S3CAM, the tool
was applied again, this time using a larger air-fuel ratio
measurement error term range of 0.98–1.02 and a time hori-
zon out to 15.0 s. Using this larger parameter range, the
S3CAM was able to identify a simulation that falsifies the
property FCS} in approximately 30 s. A plot of the falsifying
behavior is shown in Figure 7(d). The figure shows the input
accelerator angle ()tini and the normalized air-fuel ratio
()tn for .t 11 0$ s. The red oval indicates an instance where
() .t 0 022n . Note that the behavior violates FCS} since
() .t 0 022n for . .t11 0 50 0# # s.

Emerging Simulation-Guided
Verification Approaches
Verification of embedded control systems using tradi-
tional techniques is difficult or impossible for even the
simplest embedded control systems. To increase the
effectiveness of existing verification tools, new appro
aches are using information gleaned from simulations to
assist the verification tools. Two emerging techniques
address the issue of verification for embedded control
systems using information obtained from simulations:
simulation-guided Lyapunov analysis and simulation-
guided contraction analysis.

Simulation-Guided Lyapunov Analysis
Informally, a dynamical system is asymptotically stable if
any behavior converges to an equilibrium point of the
system. Asymptotic stability can be used to prove that a
system satisfies desirable performance criteria, such as the
convergence of the system state to a given reference value.
An effective technique to prove stability is to supply a
Lyapunov function :v RRn " , where n is the number of state

variables, that satisfies Lyapunov conditions in a given neigh-
borhood of an equilibrium point:

a)	 �v is positive everywhere in the domain (except at the
equilibrium, where it is zero).

b)	 The time-derivative of v along the system dynamics
is negative everywhere in the domain (except at the
equilibrium, where it is zero).

In addition to proving stability, Lyapunov functions
can also be used to characterize performance bounds
and to perform safety verification. Three verification
tasks that may be addressed using Lyapunov functions
are as follows:

»» Stability: For this verification task, :} = “The system
is stable.” To verify this property, it is sufficient to
identify a function v that satisfies a) and b).

»» Performance bounds: For this verification task, :} =
”The system remains within some set S .” To verify
this property, it is sufficient to identify a function v
that satisfies a) and b) and a sublevel set St of v ,
where ()x xv lS #=t " ,, such that S S3t . Note that
this only guarantees } if the system is initiated
within St . For this reason, it is often preferable to
identify a St that is of maximal size.

»» Barrier certificate: For this verification task, :} =
”Given that the system is initiated in X0 , it will never
reach .F ” To verify this property, it is sufficient to
identify a function v that satisfies a) and b) and sub-
level set St of v such that SX0 3 t and .0S F+ =t Y

The search for a Lyapunov function is widely recog-
nized as a hard problem. In [33] the authors present a
simulation-guided approach to synthesize Lyapunov func-
tions. The key idea, which is based on [34], is to assume that
the desired Lyapunov function has a certain parameterized
template form, namely a sum-of-squares polynomial of
fixed degree. A set of linear constraints on the parameters
in the Lyapunov function are obtained from simulations.
Given a set of such constraints, the search for a Lyapunov
function reduces to solving a linear program (LP) to obtain
a candidate Lyapunov function.

The procedure is illustrated in Figure 8. The procedure
takes as input the system dynamics ,M initial parameters
p0 , initial inputs u0 , an initial candidate Lyapunov func-
tion v0 , and the property to be proved } . The initial candi-
date Lyapunov function can be selected randomly based on
a given template. Based on the inputs, the process simula-
tion-based falsification uses a stochastic global optimizer
to search the region of interest for states that violate the
Lyapunov conditions for the given candidate. The search is
guided by a cost function that is based on the time deriva-
tive of the candidate Lyapunov function. If the minimum
cost is lower than zero, then the minimizing argument pro-
vides a witness that the candidate Lyapunov function is
invalid. After the global optimizer obtains counterexam-
ples, the associated linear constraints are included in an LP
problem and the linear program solver obtains a solution

DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  61

corresponding to an updated candidate Lyapunov func
tion v . Based on the updated candidate, formulate solver
query constructs a logical query over the system variables
that is only satisfiable if .M t }Y Run solver is used to check
whether the query is satisfiable. If the query is satisfiable
(sat), then the solver returns counterexample conditions

,P Uc c that demonstrate .M t }Y these counterexample con-
ditions are used in the next iteration of simulation-based
falsification to improve the candidate Lyapunov function.
If the query is not satisfiable, then the procedure terminates
(halt) with the result .M t }

A key component of the procedure illustrated in
Figure 8 is run solver, which employs nonlinear satisfiabil-
ity modulo theories (SMT) tools. SMT tools use automated
reasoning techniques to solve a general class of logical que-
ries [35]. SMT tools based on interval constraint-propaga-
tion (such as dReal [36]) can be used to check the validity of
the queries and will return counterexample conditions.
Symbolic tools relying on quantifier elimination as imple-
mented by the Reduce command in Mathematica [37] are
also used to check validity of the queries, but these tools do
not provide counterexample conditions; these tools are
used in conjunction with interval constraint-propagation
tools to provide counterexamples.

A related approach [38] performs program analysis. In
that work, the authors use information from program exe-
cutions to construct linear constraints; then a constraint
solver is employed to determine valuations for each of a set
of parameters. The result is a ranking function or a pro-
gram invariant, which can be used to perform verification
for the program code.

Example: Lyapunov Analysis for
Automotive Fuel Control System
To better understand the simulation-guided Lyapunov
approach, consider the following simplified version of the
FCS example, which is taken from [33, ex. 5]. In this version
of the FCS example, the discrete-time controller is replaced
with a continuous-time approximation, and several other
simplifications are made to the dynamic equations, such
as removing the variable transport delay. Further, ini and
~ are assumed to be fixed at .15 0c and approximately
1909.9 r/min (200.0 rad/s), respectively, and the multipli-
cative error terms are fixed at 1.0 (0.0%). Also, the system
states are translated so that the equilibrium point coin-
cides with the origin. The resulting model MLyap is a
nonlinear ODE with four state variables and no input
(ULyap Q=). The specification is that m should remain
within 10% of a given refm , or

	 : () . ,t 0 1Lyap ^ 1 _} n= � (3)

if the system is initiated within a small region around the
equilibrium point, given by the set .{ . }x xP 0 022Lyap 1=
The verification task is to prove (,,)P U,MLyap Lyap Lyap Lyaptz }

which can be established by a barrier certificate. If a func-
tion v is identified that satisfies a) and b), and a sublevel set
St of v contains PLyap and excludes the set of states such
that | () | .t 0 1$n , then (3) holds.

The procedure illustrated in Figure 8 was able to identify
a barrier certificate that establishes (3) for this version of the
FCS. The candidate barrier was found in 1413.73 s using
simulations that explored a total of 258,078 system states.
Verification by the dReal tool took 1157.42 s.

Since this is a verification example, it assumes that the
controller is given, and the task is to verify that the closed-
loop system satisfies performance bounds. An alternative
way to approach the general engineering task of develop-
ing a correct control system would be to synthesize the con-
troller using a correct-by-design technique that provides
guarantees on the performance bounds. Lyapunov-related
control synthesis techniques compute control-invariant
sets, which are regions of the state space that the system
will remain within for some control output and that satisfy
performance bounds. The controller measures (or estimates)
the system state, and the control output is selected to main-
tain the system within the control invariant set (see [39], for
example). These techniques can be applied to nonlinear
dynamical systems, like the FCS example, but they are
computationally intensive and may not scale well with the
dimension of the system.

Yes

Halt

M |= ψ

Linear Constraints

Candidate Lyapunov
Function υ

Solver Query

Counterexample
Conditions Pc,Uc

No

M, p0, u0, v0, ψ

Simulation-Based
Falsification

Linear Program
Solver

Formulate
Solver Query

Run Solver

Satisfied?

Figure 8  Automatic Lyapunov analysis. This procedure can be
used to discover Lyapunov functions, forward invariant sets, or
barrier certificates for control-design models.

62  IEEE CONTROL SYSTEMS MAGAZINE »  DECEMBER 2016

Simulation-Guided Contraction Analysis
In contraction analysis or incremental stability analysis,
instead of asking whether system trajectories converge to a
known nominal behavior, the question is whether trajectories
converge to each other. This type of property could establish,
for example, that the system converges to a reference trajec-
tory. Such a property is established with the help of a contrac-
tion metric, which is analogous to a Lyapunov function, but
instead of showing stability to an equilibrium point, as does a
Lyapunov function, a contraction metric shows that pairs of
trajectories converge. Contraction analysis can be used to per-
form bounded-time estimation of reachable sets of behaviors
for the purpose of verification [40]–[42].

Related work uses auto-bisimulation functions to show that,
for a given finite-time simulation with initial condition ()x 0 ,
finite-time trajectories that start inside a ball of radius d cen-
tered at ()x 0 lie within a “tube” of radius d around ()x t [43],
[44]. This allows for performing a comprehensive verification
analysis by exploring only a few candidate simulations.

The ability to perform contraction analysis hinges on the
ability to identify a contraction metric for a given system,
which is a difficult task in general. The search for a contraction
metric can, in some cases, be formulated as a convex optimi-
zation problem, which can be solved using semidefinite pro-
gramming optimization tools [45]. Recent work [46] proposes
a simulation-guided approach to find contraction metrics, in
similar vein to the approach described in [33]. Here, the con-
traction metric is defined by a matrix, the entries of which are
polynomials of some fixed degree but with undetermined
coefficients. Using simulations, a set of necessary constraints
for the contraction metric are obtained, each constraint is a
linear matrix inequality. A semidefinite programming solver is
used to obtain a candidate contraction metric. As in [33], a
tandem of global optimization and nonlinear solving tech-
nology (to solve slightly more sophisticated contraction
constraints) is used to obtain counterexamples to refine the

contraction metric. If no counterexample is found, the algo-
rithm terminates.

Example: Contraction Analysis for Automotive
Fuel Control System
To illustrate the simulation-guided contraction analysis
technique, consider the model MLyap described above. In
[46], a contraction metric for this system is constructed
within the region .{ . }x xP 0 012Lyap 1= This contraction
metric could be used to conservatively estimate the
reachable set of states (behaviors). The conservative esti-
mate of behaviors could then be used to prove properties
for the system.

The C2E2 tool [16] uses a related approach to verify
properties of hybrid systems using discrepancy functions
instead of contraction metrics. Discrepancy functions are
based on system dynamics and are used to characterize the
rate at which pairs of behaviors diverge from each other.
The C2E2 tool uses as input a Simulink model of the system
annotated with a corresponding discrepancy function. The
annotations are used to estimate the set of reachable system
states to prove properties. In [47], C2E2 is used to prove
properties, such as worst-case air-fuel ratio error, for a sim-
plified version of system .MFCS

Conclusions
Industrial embedded control system designs are increasing
in scale and complexity, which presents industry with model-
ing and quality-checking challenges. The MBD paradigm can
be used to manage the complexity, and it provides the ability
to simulate the modeled system. The simulations obtained
from development models can be used to test control algo-
rithms, identify flaws, and increase the quality of the design.

Several traditional and emerging tools and techniques
use simulation-based approaches for embedded control
system design, test, and verification. Table 1 summarizes

Table 1 E merging simulation-guided techniques for PTC design analysis. Maturity scale (1–5): 1) academic implementation,
2) significant user effort required, 3) can handle some industrial models, 4) ready for industrial deployment, but not
commercialized, and 5) fully commercialized and supported.

Technique/Tool Type of Analysis Can Include Plant Scale of Model Maturity

Reactis Coverage System 5

TestWeaver Falsification ✓ System 5

SLDV (TVG) Coverage ✓ System 5

SLDV (verifier) Verification Module 5

S-TaLiRo Falsification ✓ System 4

Breach Falsification ✓ System 4

RRT-REX Falsification ✓ Feature 3

Multiple shooting Falsification ✓ Module 2

Lyapunov analysis Verification ✓ Module 1

Contraction analysis Verification ✓ Module 1

DECEMBER 2016 «  IEEE CONTROL SYSTEMS MAGAZINE  63

the techniques discussed in this article. For each technique
in the table, the second column indicates the type of analy-
sis that the technique performs (coverage, falsification, or
verification). The third column indicates whether the anal-
ysis can effectively include a representation of the plant
dynamics. The fourth column indicates the scale of the
model that can be addressed effectively. The model scale is
subjective and is described by three categories: module
(small), feature (medium), and system (large). Module-scale
models implement some focused functional behavior. For
controller models (without a plant), this could be a single
functional behavior, like computing the desired spark
timing for an automotive engine, and may consist of 100–
1000 lines of code. For closed-loop models (with a plant),
the functional behavior could be a single PID loop imple-
menting control over a plant with 1–4 state variables. Fea-
ture-scale models implement some functionality that
requires a composition of several modules. For example,
this could be a collection of modules that is used to imple-
ment a startup mode for a jet engine. System-scale models
represent some complete control design, such as a control-
ler for an electronic insulin pump. The relative maturity
level of the technology or tool is indicated in the last
column. Maturity levels are indicated as a number between
1 and 5, where 1 indicates that the technique has only been
implemented as an academic tool, and 5 indicates that the
technique is implemented in a fully commercialized and
supported tool.

Acknowledgment
The authors thank Aditya Zutshi for providing the experi-
mental results for the S3CAM example.

AUTHOR INFORMATION
James Kapinski (jim.kapinski@toyota.com) received the
Ph.D. degree in electrical and computer engineering from
Carnegie Mellon University (CMU) in 2005 and was a
postdoctoral researcher at CMU from 2007 to 2008. He
went on to found and lead Fixed-Point Consulting, serv-
ing clients in the defense, aerospace, and automotive in-
dustries. Since 2012, he has been with the Model-Based
Development Group at the Toyota Technical Center in
Los Angeles, serving as a principal engineer. His work
at Toyota focuses on advanced research into verification
techniques for embedded software for powertrain control
systems. His research interests include verification tech-
niques for embedded control system designs and analy-
sis of hybrid dynamical systems. He is a Senior Member
of the IEEE. He can be contacted at 1630 W. 186th St.,
Gardena, CA 90248 USA.

Jyotirmoy V. Deshmukh is a research engineer at Toyota
Technical Center in Los Angeles. His research interests are
in the broad area of formal verification of cyberphysical
systems, automatic synthesis and repair of systems, and
temporal logic. His current focus is in the area of automo-

tive control systems and nonlinear and hybrid dynamical
systems. He received the Ph.D. degree from the Univer-
sity of Texas at Austin in 2010 and worked a post-doctoral
researcher at the University of Pennsylvania from 2010
to 2012.

Xiaoqing Jin is a research engineer with the Model-
Based Development Group at the Toyota Technical Center
in Los Angeles. She received the B.Eng. and M.S. degrees
from the Wuhan University, China, in 2005 and 2007, re-
spectively, and the Ph.D. degree from the University of
California Riverside in 2013, all in computer science. Her
work at Toyota focuses on advanced research on verifica-
tion and validation techniques for automotive control sys-
tems modeled as nonlinear and hybrid dynamical systems.
Her research interests include techniques for modeling,
monitoring, analysis, and formal verification of large-scale
control systems.

Hisahiro Ito received the Ph.D. degree in computational
engineering and science (polymer physics) from Nagoya
University in 2003. He lead the development of the soft-
ware-in-the-loop simulator for Toyota’s engine and trans-
mission control software from 2009 to 2012. He is currently
responsible for the integration of verification and valida-
tion techniques into development processes for large-scale,
complex control system models.

Ken Butts is an executive engineer in the Powertrain
Control Department at the Toyota Technical Center, Ann
Arbor, Michigan, which he joined in 2003. His main re-
sponsibility is to investigate and apply model-based
methods to improve engine control design and calibration
productivity. He has worked in the field of automotive
electronics and control since 1982, almost exclusively in
research and advanced development of powertrain con-
trols. He has a B.E. degree in electrical engineering from
General Motors Institute (now Kettering University), an
M.S. degree in electrical engineering from the University
of Illinois, and a Ph.D. in electrical engineering systems
from the University of Michigan. He is a Senior Member
of the IEEE.

References
[1] R. N. Charette. (2009, Feb.). This car runs on code,” IEEE Spectr., [On-
line]. Available: http://spectrum.ieee.org/transportation/systems/
this-car-runs-on-code
[2] United States Environmental Protection Agency, “EPA and NHTSA set
standards to reduce greenhouse gases and improve fuel economy for mod-
el years 2017-2025 cars and light trucks,” U.S. EPA, Office of Transportation
and Air Quality, Tech. Rep. No. EPA-420-F-12-051, Aug. 2012.
[3] C. Ptolemaeus, Ed. System Design, Modeling, and Simulation Using Ptolemy
II. Mountain View, CA : Ptolemy, 2014.
[4] E. J. Bissett, “Mathematical model of the thermal regeneration of a wall-
flow monolith diesel particulate filter,” Chem. Eng. Sci., vol. 34, no. 7/8, pp.
1233–1244, Jan. 1984.
[5] J. J. Chilenski and S. P. Miller, “Applicability of modified condition/
decision coverage to software testing,” Software Eng. J., vol. 9, no. 5, pp.
193–200, 1994.
[6] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis
and Design. New York: Wiley, 2005.

64  IEEE CONTROL SYSTEMS MAGAZINE »  DECEMBER 2016

[7] Reactive Systems, Inc,(2003). Model-based testing and validation of
control software with REACTIS. [Online]. Available: http://www.reactive-
systems.com/papers/bcsf.pdf
[8] F. Leitner and S. Leue. (2008). Simulink design verifier vs. SPIN a com-
parative case study. Proc. 13th Int. Workshop on Formal Methods for Industrial
Critical Systems [Online]. Available: http://www.inf.uni-konstanz.de/soft/
research/publications/pdf/FMICS2008_FINAL.pdf
[9] A. A. Gadkari, A. Yeolekar, J. Suresh, S. Ramesh, S. Mohalik, and K. C.
Shashidhar, “Automotgen: Automatic model oriented test generator for em-
bedded control systems,” in Computer Aided Verification (Lecture Notes in
Computer Science, vol. 5123), G. Aarti and S. Malik, Eds. Berlin, Germany:
Springer, 2008, pp. 204–208.
[10] J. Mauss and M. Tatar. “Systematic test and validation of complex em-
bedded systems,” in Proc. Embedded Real Time Software and Systems, Tou-
louse, France, 2014, pp. 1–10.
[11] M. Oded and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in Proc. FORMATS-FTRTFT, LNCS, 2004, vol. 3253, pp.
152–166.
[12] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decid-
able about hybrid automata?” J. Comp. Syst. Sci., vol. 57, no. 1, pp. 373–382,
Aug. 1995.
[13] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R.
Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable verification of
hybrid systems,” in Computer Aided Verification, G. Gopalakrishnan and S.
Qadeer, Eds. New York: Springer, 2011, pp. 379–395.
[14] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W.
Yi, and M. Hendriks, “Uppaal 4.0,” in Proc. IEEE 3rd Int. Conf. Quantitative
Evaluation of Systems, 2006, pp. 125–126.
[15] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Computer Aided Verification, N. Sharygina
and H. Veith, Eds. New York: Springer, 2013, pp. 258–263.
[16] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: A
verification tool for stateflow models,” in Proc. 21st Int. Conf. Tools and Algo-
rithms for the Construction and Analysis of Systems, 2015, pp. 68–82.
[17] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts, “Powertrain
control verification benchmark,” in Proc. ACM 17th Int. Conf. Hybrid Sys-
tems: Computation and Control, 2014, pp. 253–262.
[18] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts. (2014). Bench-
marks for model transformations and conformance checking [Online].
Proc. Int. Workshop Applied Verification for Continuous and Hybrid Systems.
Cyber-Physical Systems Virtual Organization. Available: http://cps-vo.org/
node/16854
[19] Y Annpureddy, C Liu, G E. Fainekos, and S Sankaranarayanan,
“S-TaLiRo: A tool for temporal logic falsification for hybrid systems,” in
Proc. Tools and Algorithms for the Construction and Analysis of Systems, 2011,
pp. 254–257.
[20] S-taliro toolbox [Online]. Available: https://www.assembla.com/
spaces/s-taliro_public/subversion/source
[21] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic, A. Gupta,
and G. J. Pappas, “Monte-Carlo techniques for falsification of temporal
properties of non-linear hybrid systems,” in Proc. Hybrid Systems: Computa-
tion and Control, 2010, pp. 211–220.
[22] Y. Singh, R. Annapureddy, and G. E. Fainekos, “Ant colonies for tem-
poral logic falsification of hybrid systems,” in Proc. 36th Annu. Conf. IEEE
Industrial Electronics, 2010, pp. 91–96.
[23] S. Sankaranarayanan and G. E. Fainekos, “Falsification of temporal
properties of hybrid systems using the cross-entropy method,” in Proc.
ACM Int. Conf. Hybrid Systems: Computation and Control, 2012, pp. 125–134.
[24] D. Alexandre. “Breach, a toolbox for verification and parameter synthe-
sis of hybrid systems,” in Proc. Int. Conf. Computer Aided Verification, 2010,
pp. 167–170.
[25] Breach toolbox [Online]. Available: http://www.eecs.berkeley.
edu/~donze/breach_page.html
[26] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Computer J., vol. 7, no. 4, pp. 308–313, 1965.
[27] A. Donzé, T. Ferrère, and O. Maler, “Efficient robust monitoring for
STL,” in Computer Aided Verification, N. Sharygina and H. Veith, Eds. . New
York: Springer, 2013, pp. 264–279.
[28] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining require-
ments from closed-loop control models,” in Proc. 16th Int. Conf. Hybrid
Systems: Computation and Control, 2013, pp. 43–52.
[29] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, J. Deshmukh, and X. Jin, “Ef-
ficient guiding strategies for testing of temporal properties of hybrid sys-

tems,” in NASA Formal Methods, K. Havelund, G. Holzmann, and R. Joshi,
Eds. New York: Springer, 2015.
[30] D. Thao and T. Nahhal, “Coverage-guided test generation for continu-
ous and hybrid systems,” Formal Methods. Syst. Design, vol. 34, no. 2, pp.
183–213, 2009.
[31] A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, and J. Kapinski, “A
trajectory splicing approach to concretizing counterexamples for hybrid
systems,” in Proc. IEEE 52nd Annu. Conf. Decision and Control, 2013, pp.
3918–3925.
[32] J. V. Deshmukh, A. Zutshi, S. Sankaranarayanan, and J. Kapinski, “Mul-
tiple-shooting, CEGAR-based falsification for hybrid systems,” in Proc. 14th
Int. Conf. Embedded Software, 2014, pp. 5.
[33] J. Kapinski, J. V. Deshmukh, S. Sankaranarayanan, and N. Aréchiga,
“Simulation-guided Lyapunov analysis for hybrid dynamical systems,” in
Proc. Hybrid Systems: Computation and Control Conf., 2014, pp. 133–142.
[34] U. Topcu, P. Seiler, and A. Packard, “Local stability analysis using sim-
ulations and sum-of-squares programming,” Automatica, vol. 44, no. 10, pp.
2669–2675, 2008.
[35] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Introduc-
tion and applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77, 2011.
[36] G. Sicun, J. Avigad, and E. M. Clarke. “d-complete decision procedures
for satisfiability over the reals,” in Automated Reasoning, B. Gramlich, D.
Miller, and U. Sattler, Eds. New York: Springer, 2012, pp. 286–300.
[37] W. Stephen, The Mathematica Book, Version 4. Cambridge, U.K.: Cam-
bridge Univ. Press, 1999.
[38] A. Gupta, R. Majumdar, and A. Rybalchenko, “From tests to proofs,”
in Proc. Tools and Algorithms for Construction and Analysis of Systems, 2009,
pp. 262–276.
[39] I. M. Mitchell, S. Kaynama, M. Chen, and M. Oishi, “Safety preserving
control synthesis for sampled data systems,” Nonlinear Anal.: Hybrid Syst,
vol. 10, pp. 63–82, Nov. 2013.
[40] A. Agung Julius, G. E. Fainekos, M. Anand, I. Lee, and G. J. Pappas,
“Robust test generation and coverage for hybrid systems,” in Proc. Hybrid
Systems: Computation and Control, 2007, pp. 329–342.
[41] P. S. Duggirala, S. Mitra, and M. Viswanathan, “Verification of annotat-
ed models from executions,” in Proc. Int. Conf. Embedded Software, Montreal,
QC, 2013, pp. 1–10.
[42] H. Zhenqi and S, Mitra, “Computing bounded reach sets from sampled
simulation traces,” in Proc. Hybrid Systems: Computation and Control (part of
CPS Week 2012), Beijing, China, 2012, pp. 291–294.
[43] G. Antoine and G. J. Pappas, “Approximate bisimulation: A bridge be-
tween computer science and control theory,” Eur. J. Control, vol. 17, no. 5-6,
pp. 568–578, 2011.
[44] G. E. Fainekos, A. Girard, and G. J. Pappas, “Temporal logic verification
using simulation,” in A. Eugene and P. Bouyer, Eds. Formal Modeling and
Analysis of Timed Systems, volume 4202 of Lecture Notes in Computer Science.
Berlin, Germany: Springer, 2006, pp. 171–186.
[45] E. M. Aylward, P. A. Parrilo, and J.-J. E. Slotine, “Stability and robust-
ness analysis of nonlinear systems via contraction metrics and SOS pro-
gramming,” Automatica, vol. 44, no. 8, pp. 2163–2170, 2008.
[46] A. Balkan, J. V. Deshmukh, J. Kapinski, and P. Tabuada, “Simulation-
guided contraction analysis,” in Proc. Indian Control Con., 2015, pp. 71–78.
[47] P. S. Duggirala, C. Fan, S. Mitra, and M. Viswanathan, “Meeting a pow-
ertrain verification challenge,” in Proc. Int. Conf. Computer Aided Verification,
2015, pp. 536–543.
[48] A. Pnueli, “The temporal logic of programs,” in Proc. Symp. Foundations
of Computer Science, 1977, pp. 46–57.
[49] A. Rajeev and T. A. Henzinger, “A really temporal logic,” in Proc. Symp.
Foundations of Computer Science, 1989, pp. 164–169.
[50] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Syst., vol. 2, no. 4, pp. 255–299, 1990.
[51] M. Oded and D. Nickovic, “Monitoring temporal properties of continu-
ous signals,” in Proc. Formal Modeling and Analysis of Timed Systems, 2004,
pp. 152–166.
[52] G. E. Fainekos and G. J. Pappas. “Robustness of temporal logic specifi-
cations for continuous-time signals,” Theoretical Comp. Sci., vol. 410, no. 42,
pp. 4262–4291, 2009.
[53] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Proc. Formal Modeling and Analysis of Timed Systems, 2010,
pp. 92–106.

�

