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Automata Theory Meets Barrier Certificates:
Temporal Logic Verification of Nonlinear Systems

Tichakorn Wongpiromsarn? Ufuk Topcu† Andrew Lamperski‡

Abstract— We consider temporal logic verification of (pos-
sibly nonlinear) dynamical systems evolving over continuous
state spaces. Our approach combines automata-based verifica-
tion and the use of so-called barrier certificates. Automata-
based verification allows the decomposition the verification
task into a finite collection of simpler constraints over the
continuous state space. The satisfaction of these constraints in
turn can be (potentially conservatively) proved by appropriately
constructed barrier certificates. As a result, our approach,
together with optimization-based search for barrier certificates,
allows computational verification of dynamical systems against
temporal logic properties while avoiding explicit abstractions
of the dynamics as commonly done in literature.

I. INTRODUCTION

We propose a sound but incomplete method for the compu-
tational verification of specifications expressed in temporal
logic against the behavior of dynamical systems evolving
over (potentially partially) continuous state spaces. This new
method merges ideas from automata-based model checking
with those from control theory including so-called barrier
certificates and optimization-based search for such certifi-
cates. More specifically, we consider linear temporal logic
(excluding the “next” operator) formulas over atomic propo-
sitions that capture (sub)set memberships over the continuous
state space. Under mild assumptions, the properties of the
trajectories, which are salient for the verification, of the
system can be characterized by infinite sequences (we call
them traces) that track the atomic propositions satisfied
along the corresponding trajectories (i.e., the subsets visited
along the trajectory). Then, an automaton representation
of the negation of the temporal logic formula guides a
decomposition of the verification task into a finite collection
of simpler constraints over the continuous state space. The
satisfaction of these constraints in turn can be (potentially
conservatively) proved by appropriately constructed barrier
certificates.

Verification of dynamical systems against rich temporal
logic specification has attracted considerable attention. A
widely explored approach is based on proving (or disproving)
(e.g., by using model checking [1], [2]) the specification
using finite-state abstractions of the underlying dynamics [3],
[4]. The consistency of the satisfaction of the specifications
by the dynamical system and its finite-state abstractions is
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† , University of Pennsylvania, Philadelphia, PA (utopcu@seas.
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established through simulation and bi-simulation relations
[5] or approximately through approximate bi-simulation re-
lations [6]. In general, these existing approaches are not
complete, except for certain simple dynamics [7]. In addition,
the abstract finite state systems are often large, leading to the
state explosion problem.

The method we propose avoids explicit abstractions of the
dynamics. On the other hand, the automaton representation
of the specification may be interpreted as a “minimal”
finite-state abstraction required for verification. The details
due to the dynamics ignored in this abstraction are then
accounted for by the barrier certificates only to the level of
fidelity and locally over the regions of the continuous state
space dictated by the dynamics. However, similar to existing
approaches for verifying nonlinear systems against temporal
logic specifications, our approach is also not complete.

Not as rich as linear temporal logic but barrier certifi-
cates were originally considered to prove the satisfaction
of temporal constraints, e.g., safety, reachability, and even-
tuality, for dynamical systems [8], [9]. Reference [9] also
demonstrated the use of multiple and/or more sophisticated1

barrier certificates for verifying properties beyond the basic
ones mentioned above. Furthermore, one can imagine that
it may be possible to look for increasingly complicated
barrier certificates to verify arbitrary linear temporal logic
specifications. The main contribution of this paper is to partly
formalize such imagination by systematically constructing a
collection of barrier certificates which all together witness the
satisfaction of arbitrary linear temporal logic specifications.

The method developed in this paper is in principle ap-
plicable to a broad family of dynamical systems as long as
certain, relatively mild smoothness conditions hold. In the
presentation we consider continuous vector fields for simplic-
ity. The step, which practically determines the applicability,
of the proposed procedure is the computational search for
barrier certificates. In this step, we focus on polynomial
vector fields and resort to a combination of generalizations
of the S-procedure [10], [11] and sum-of-squares relaxations
for global polynomial optimization [10]. These techniques
are relatively standard now in controls and have been used
in other work on quantitative analysis of nonlinear and hybrid
systems [9], [12], [13], [14], [15].

The rest of the paper is organized as follows: We begin
with some notation and preliminaries needed in the rest
of the paper. The problem formulation in section III is

1Informally in terms of the conditions that need to be satisfied by the
corresponding barrier certificates.

ar
X

iv
:1

40
3.

35
24

v1
  [

cs
.F

L
] 

 1
4 

M
ar

 2
01

4

tichakorn@tcels.or.th
utopcu@seas.upenn.edu
utopcu@seas.upenn.edu
a.lamperski@eng.cam.ac.uk
a.lamperski@eng.cam.ac.uk


followed by the automata-theoretic notions in section IV
which characterize the verification as checking properties of
potentially infinitely many run fragments. Section V reduces
this checking to a finite set of representative run fragments.
Section VI discusses the role of the barrier certificates.
Section VII puts the pieces introduced in the earlier sections
together and gives a pseudo-algorithm as well as pointers
to some of the computational tools required to implement
the algorithm. The critique in section VIII is followed by an
application of the method to an example, which is also used
as a running example throughout the paper.

II. PRELIMINARIES

In this section, we define the formalism used in the paper
to describe systems and their desired properties. Given a set
X , we let 2X and |X| denote the powerset and the cardinality
of X , respectively, and let X∗, X+ and Xω denote the
set of finite, nonempty finite and infinite strings of X . For
finite strings σ1 and σ2, let σ1σ2 denote a string obtained
by concatenating σ1 and σ2, σ∗1 and σ+

1 denote a finite
string and a nonempty finite string, respectively, obtained
by concatenating σ1 finitely many times and σω1 denote an
infinite string obtained by concatenating σ1 infinitely many
times. Given a finite string σ = a0a1 . . . am where m ∈ N
or an infinite string σ = a0a1 . . ., a substring of σ is any
finite string aiai+1 . . . ai+k where i, k ≥ 0 and i+ k ≤ m if
σ is finite. Finally, for any Y ⊆ Rn where n ∈ N, we let Y
be the closure of Y in Rn.

Consider a dynamical system D whose state x ∈ X ⊆ Rn,
n ∈ N evolves according to the differential equation

ẋ(t) = f(x(t)). (1)

Let (by slight abuse of notation) x : R≥0 → X also represent
a trajectory of the system, i.e., a solution of (1). We assume
that the vector field f is continuous to ensure that its solution
x is piecewise continuously differentiable.

A. Barrier Certificates

We are interested in verifying the system in (1) against a
broad class of properties (whose definition and semantics will
be introduced later) that roughly speaking temporally and
logically constrain the evolution of the system. A building
block in the subsequent development is the use of the so-
called barrier certificates which, in recent literature [9],
were utilized to verify safety, reachability, and other simple
specifications that can essentially be interpreted as instances
of the specification language considered in this paper. We
now introduce a barrier certificate-type result as a prelude.
This result will later be invoked in section VI.

Lemma 1: Let Y,Y0,Y1 ⊆ X . Suppose there exists a
differentiable function B : X → R that satisfies the
following conditions:

B(x) ≤ 0 ∀x ∈ Y0, (2)
B(x) > 0 ∀x ∈ Y1, (3)
∂B

∂x
(x)f(x) ≤ 0 ∀x ∈ Y \ Y1. (4)

Then, any trajectory of D that starts in Y0 cannot reach Y1

without leaving Y .
Proof: Consider a trajectory x of D that starts in Y0.

Suppose x reaches Y1 without leaving Y . Then, there exists
T ∈ R such that x(T ) ∈ Y1 and x(t) ∈ Y \ Y1 for all t ∈
[0, T ). From conditions (2) and (3), we get that B(x(0)) ≤ 0
and B(x(T )) > 0. In addition, condition (4) implies that
B(x(t)) ≤ 0 for all t ∈ [0, T ). From the continuity of x
and B, we can conclude that B(x(T )) ≤ 0, leading to a
contradiction.

Lemma 1 (potentially conservatively) translates a verifica-
tion question (whether all solutions to (1) satisfy the specified
temporal ordering between “visiting” Y0, Y1, and Y) into
search for a map that satisfies the algebraic conditions in
(2)-(4).

Later, we develop a method for automatically deriving a
finite collection of such algebraic conditions for the ver-
ification of temporal logic specifications which has been
demonstrated to be an appropriate specification formalism
for reasoning about various kinds of systems [16].

B. Linear Temporal Logic

We employ linear temporal logic without the next operator
(LTL\#) to describe behaviors of continuous systems.2 An
LTL\# formula is built up from a set of atomic propositions
and two kinds of operators: logical connectives and temporal
modal operators. The logical connectives are those used in
propositional logic: negation (¬), disjunction (∨), conjunc-
tion (∧) and material implication (=⇒). The temporal modal
operators include always (�), eventually (3) and until (U).

Definition 1: An LTL\# formula over a set Π of atomic
propositions is inductively defined as follows:
(1) True is an LTL\# formula,
(2) any atomic proposition p ∈ Π is an LTL\# formula, and
(3) given LTL\# formulas ϕ1 and ϕ2, the formulas ¬ϕ1,

ϕ1 ∨ ϕ2, and ϕ1 U ϕ2 are also LTL\# formulas.
Additional operators can be derived from the logical con-
nectives ∨ and ¬ and the temporal modal operator U . For
example, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2), ϕ1 =⇒ ϕ2 =
¬ϕ1 ∨ ϕ2, 3ϕ = True U ϕ and �ϕ = ¬3¬ϕ.

LTL\# formulas are interpreted on infinite strings σ =
a0a1a2 . . . where ai ∈ 2Π for all i ≥ 0. Such infinite strings
are referred to as words. The satisfaction relation is denoted
by |=, i.e., for a word σ and an LTL\# formula ϕ, we write
σ |= ϕ if and only if σ satisfies ϕ and write σ 6|= ϕ otherwise.
The satisfaction relation is defined inductively as follows:
• σ |= True ,
• for an atomic proposition p ∈ Π, σ |= p if and only if
p ∈ a0,

• σ |= ¬ϕ if and only if σ 6|= ϕ,
• σ |= ϕ1 ∧ ϕ2 if and only if σ |= ϕ1 and σ |= ϕ2, and
• σ |= ϕ1 U ϕ2 if and only if there exists j ≥ 0 such

that ajaj+1 . . . |= ϕ2 and for all i such all 0 ≤ i < j,
aiai+1 . . . |= ϕ1.

2Similar to [17], our choice of LTL\# over the widely used linear
temporal logic that includes the next operator is motivated by our definition
of the satisfaction of a formula with discrete time semantics by a continuous
trajectory.



Given a proposition p, examples of widely used LTL\#
formulas include a safety formula of the form �p (read
as “always p”) and a reachability formula of the form 3p
(read as “eventually p”). A word satisfies �p if p remains
invariantly true at all positions of the word whereas it
satisfies 3p if p becomes true at least once in the word.
By combining the temporal operators, we can express more
complex properties. For example �3p states that p holds
infinitely often in the word.

Let ϕ be an LTL\# formula over Π. The linear-time
property induced by ϕ is defined as Words(ϕ) = {σ ∈
(2Π)ω | σ |= ϕ}.

C. Correctness of Dynamical Systems

As described in Section II-B, LTL\# formulas are in-
terpreted on infinite strings. In this section, we show that
the properties of trajectories of continuous systems can
be characterized by such infinite strings, allowing LTL\#
formulas to be interpreted over continuous trajectories.

The behavior of the system is formalized by a set Π of
atomic propositions where each atomic proposition p ∈ Π
corresponds to a region of interest JpK ⊆ X . Following [17],
[18], we define a trace of a trajectory to be the sequence of
sets of propositions satisfied along the trajectory. Specifically,
for each a ∈ 2Π, we define

JaK =

{ X \⋃p∈ΠJpK if a = ∅⋂
p∈aJpK \

⋃
p∈Π\aJpK otherwise. (5)

According to Equation (5), J∅K is the subset of X that
does not satisfy any atomic proposition in Π whereas for
any a ∈ 2Π such that a 6= ∅, JaK is the subset of X that
satisfy all and only propositions in a.

Definition 2: An infinite sequence σx = a0a1a2 . . . where
ai ∈ 2Π for all i ∈ N is a trace of a trajectory x : R≥0 → X
of D if there exists an associated sequence t0t1t2 . . . of time
instances such that t0 = 0, tk →∞ as k →∞ and for each
i ∈ N, ti ∈ R≥0 satisfies the following conditions:

(1) ti < ti+1,
(2) x(ti) ∈ JaiK, and
(3) if ai 6= ai+1, then for some t′i ∈ [ti, ti+1], x(t) ∈ JaiK

for all t ∈ (ti, t
′
i), x(t) ∈ Jai+1K for all t ∈ (t′i, ti+1)

and either x(t′i) ∈ JaiK or x(t′i) ∈ Jai+1K.
See Figure 1 for a hypothetical example which explains

the relation between a sample trajectory x and its trace σx.
In this case, we have x(t0), x(t2), x(t4) ∈ X \ ⋃p∈ΠJpK,
x(t1) ∈ JpAK, x(t3) ∈ JpBK and x(t5) ∈ JpCK. Hence,
σx is given by σx = ∅{pA}∅{pB}∅{pC} . . .. Note that
definition 2 is consistent with the definition of the word
produced by a continuous trajectory in [17], [18] with
slight differences. Specifically, the definition in [17] has an
additional requirement that if for any i ∈ N, ai = ai+1, then
JaiK has to be a “sink” for the trajectory, i.e., x(t) ∈ JaiK
for all t ≥ ti. Reference [18] requires the time sequence
t0t1t2 . . . in Defition 2 to be exactly the instances where the
sets of propositions satisfied by the trajectory changes, i.e.,
ti = inf{t | t > ti−1, x(t) 6∈ Jak−1K} for all i > 0. We

A

B

C

X

t0

t1

t2

t3

t4

t5
t�0

t�1
t�2

t�3

t�4

t�5

Fig. 1. A hypothetical example which explains the relation between
a sample trajectory and its trace. As shown, A,B,C ⊂ X . Let Π =
{pA, pB , pC} where for each S ∈ {A,B,C}, JpSK = S. The trajectory
x is represented by a solid curve starting at t0. A time sequence t0t1t2 . . .
associated with a trace of x as well as the intermediate time instances
t′0, t

′
1, t

′
2, . . . satisfying condition 3 of Definition 2 are as shown.

refer the reader to [18] for the discussion on the existence of
traces of realistic trajectories (i.e., those of finite variability).

An important feature of a trace is that it captures the
instances where the characteristics of the states along the tra-
jectory (as defined by a combination of atomic propositions
in Π) change. That is, a trace of x characterizes the behavior
of x according to the sequence of sets of propositions
satisfied, which correspond to regions visited, along the
trajectory. Finally, define Trace(D) = {σx ∈ (2Π)ω | there
exists a trajectory x of D such that σx is a trace of x} to be
the set of traces of trajectories of D.

Next, we provide the definition of the satisfaction of an
LTL\# formula by D.

Definition 3: Given a trajectory x of a dynamical system
D and an LTL\# formula ϕ over Π, we say that x satisfies
ϕ if for each infinite string σx ∈ (2Π)ω that is a trace of x,
σx |= ϕ, i.e., the behavior of x as captured by its trace is
correct with respect to ϕ.

Definition 4: A dynamical system D satisfies ϕ if all
trajectories of D satisfy ϕ, i.e., Trace(D) ⊆Words(ϕ).

D. Automata Representation of LTL\# Formulas

There is a tight relationship between LTL\# and finite
state automata that will be exploited in this paper.

Definition 5: A non-deterministic Buchi automaton
(NBA) is a tuple A = (Q,Σ, δ, Q0, F ) where
• Q is a finite set of states,
• Σ is a finite set, called an alphabet,
• δ ⊆ Q× Σ×Q is a transition relation,
• Q0 ⊆ Q is a set of initial states, and
• F ⊆ Q is a set of accepting (or final) states.

We use the relation notation, q a−→ q′, to denote (q, a, q′) ∈
δ.

Consider an NBA A = (Q,Σ, δ, Q0, F ). Let π be a
sequence of states of A, i.e., π = q0q1 . . . qm for some
m ∈ N, if it is finite, and π = q0q1 . . . where qi ∈ Q
for all i, if it is infinite. We say that π is a run fragment
of A if, for each i, there exists ai ∈ Σ such that qi

ai−→
qi+1. Hence, a finite run fragment π = q0q1 . . . qm of A
generates a set ST (π) = {a0a1 . . . am−1 ∈ Σ∗ | qi ai−→
qi+1 for all i ∈ {0, . . . ,m − 1}} of finite strings and an
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Fig. 2. Phase portrait of the dynamical system in (6), some representative
trajectories (blue curves), and the sets X , X0, . . . ,X3 defined in (7). Thick
(black) curves are the boundaries of X , X0, . . . ,X3 with the biggest circle
being the boundary of X .

infinite run fragment π = q0q1 . . . generates a set ST (π) =
{a0a1 . . . ∈ Σω | qi ai−→ qi+1 for all i} of infinite strings. A
run of A is an infinite run fragment π = q0q1 . . . such that
q0 ∈ Q0. Given an infinite string σ = a0a1 . . . ∈ Σω , a run
for σ in A is an infinite sequence of states π = q0q1 . . . such
that q0 ∈ Q0 and qi

ai−→ qi+1 for all i ≥ 0, i.e., σ ∈ ST (π).
A run is accepting if there exist infinitely many j ≥ 0 such
that qj ∈ F . A string σ ∈ Σω is accepted by A if there is
an accepting run for σ in A. The language accepted by A,
denoted by Lω(A), is the set of all accepted strings of A.

It can be shown that for any LTL\# formula ϕ over Π,
there exists an NBA Aϕ with alphabet Σ = 2Π that accepts
all words and only those words over Π that satisfy ϕ, i.e.,
Lω(Aϕ) = Words(ϕ) = {σ ∈ (2Π)ω | σ |= ϕ} [1],
[19], [20]. Such Aϕ can be automatically constructed using
existing tools, such as LTL2BA [21], SPIN [22] and LBT
[23], with the worst-case complexity that is exponential in
the length of ϕ.

III. PROBLEM FORMULATION

Consider a dynamical system D of the form (1) and a
set Π = {p0, p1, . . . , pN} of atomic propositions. For each
atomic proposition pi, we let Xi = JpiK ⊆ X denote the set
of states that satisfy pi.

Problem statement: Given a specification ϕ expressed as
an LTL\# formula over Π, determine if D satisfies ϕ.

Example 1: We use a simple problem to demonstrate the
main ideas throughout the paper. Consider a two-dimensional
system (which also appears in [24], [9]) governed by

ẋ1(t) = x2(t)
ẋ2(t) = −x1(t) + 1

3x1(t)3 − x2(t),
(6)

over the domain X = {(x1, x2) | x2
1 + x2

2 ≤ 49} and let the
regions of interest be given as

X0 =
{

(x1, x2) |(x1 + 2)2 + (x2 − 4.5)2 ≤ 0.0625
}
,

X1 =
{

(x1, x2) |(x1 −
√

3)2 + x2
2 ≤ 3

}
,

X2 =
{

(x1, x2) |(x1 − 4)2 + (x2 − 4)2 ≤ 1
}
, and

X3 =
{

(x1, x2) |x2
1 + (x2 + 3)2 ≤ 4

}
.

(7)

The phase portrait of (6) and the sets X , X0, . . . ,X3 are
shown in Figure 2. In this case, Π = {p0, p1, . . . , p3}, where
for each i ∈ {0, . . . , 3}, JpiK = Xi.

We want to ensure that any trajectory of (6) satisfies the
following conditions.
• Once it reaches X2, it cannot reach X3 forever.
• If it starts in X0, then it has to reach X1 before it reaches
X2.

The property described above can be expressed as the
LTL\# formula

ϕ = �(p2 =⇒ �¬p3) ∧
(
p0 =⇒ (3p2 =⇒ (¬p2 U p1))

)
.

(8)

IV. AUTOMATA-BASED VERIFICATION

Our approach to solve the LTL\# verification of dynamical
systems defined in Section III relies on constructing a set
Ω ⊆ (2Π)∗ of finite strings such that for any word σ ∈
(2Π)ω , if σ 6|= ϕ, then there exists a substring ω ∈ Ω of σ.
Hence, to provide a proof of correctness of D with respect
to ϕ, we “invalidate” each ω ∈ Ω by showing that ω cannot
be a substring of any word in Trace(D).

To compute the set Ω, we first generate an NBA A¬ϕ =
(Q, 2Π, δ, Q0, F ) that accepts all words and only those words
over Π that satisfy ¬ϕ. It is well known from automata theory
and model checking [1] that Trace(D) 6⊆Words(ϕ) if and
only if there exists a word in Trace(D) that is accepted by
A¬ϕ. Furthermore, there exists a word σ ∈ (2Π)ω that is
accepted by A¬ϕ if and only if there exists a run of A¬ϕ
of the form qp0q

p
1 . . . q

p
mp

(qc0q
c
1 . . . q

c
mc

)ω where mp,mc ∈ N
and qc0 ∈ F .

Let Rfin be the set of finite run fragments of A¬ϕ. In
addition, for each q, q′ ∈ Q, let R(q, q′) ⊆ Rfin be the
set of finite run fragments of A¬ϕ that starts in q and ends
in q′. Consider the set Racc ⊆ Rfin defined by Racc =
{πpπc | πp ∈ R(q0, q), π

c ∈ R(q′, q), q0 ∈ Q0, q ∈ F, q a−→
q′ for some a ∈ 2Π}. Note that any run fragment in Racc
consists of two parts, πp and πc, where πp corresponds to a
finite run fragment from an initial state to an accepting state
q of A¬ϕ and qπc corresponds to a finite run fragment from
and to q, i.e., an accepting cycle starting with q. Finally,
define Ω as the set of all finite strings generated by run
fragments in Racc, i.e., Ω =

⋃
π∈Racc ST (π).

Example 2: Figure 3 shows an NBA A¬ϕ that accepts
all and only words that satisfy ¬ϕ where ϕ is defined
in (8). Note that the transitions are simplified and only
valid transitions, i.e., transitions (q, a, q′) such that JaK 6= ∅
are shown. From Figure 3, we get that Q0 = {q0} and
F = {q4}. Hence, the set of run fragments from initial
states to accepting states of A¬ϕ is given by R(q0, q4) =
{q0q

+
1 q

+
4 , q0q

+
2 q

+
3 q

+
4 , q0q

+
3 q

+
4 } and the set of accepting

cycles of A¬ϕ is given by R(q4, q4) = {q+
4 }. By appending

run fragments in R(q4, q4) to those in R(q0, q4), we obtain
Racc = {q0q

+
1 q4q

+
4 , q0q

+
2 q

+
3 q4q

+
4 , q0q

+
3 q4q

+
4 }. Ω is then

defined as the union of the following sets of finite strings:
• {a0,1a

1
1,1 . . . a

k
1,1a1,4a

1
4,4 . . . a

l
4,4 | k ≥ 0, l > 0, p0 ∈

a0,1, p2 ∈ a1,4, p1 6∈ aj1,1 for all j ∈ {1, . . . k}}, which
is generated by q0q

+
1 q4q

+
4 ,



q0

q1 q2 q3

q4

p0
True

p2

¬p1

p2

True
p2

True

p3

True

Fig. 3. NBA A¬ϕ that accepts all and only words that satisfy ¬ϕ where
ϕ is defined in (8). Note that the transitions are simplified and only valid
transitions, i.e., transitions (q, a, q′) such that JaK 6= ∅ are shown. For
example, the transition (q0, p0 ∧ ¬p1, q1) is labeled with p0 because
X0 ∩ (X \X1) = X0. An arrow without a source points to an initial state.
An accepting state is drawn with a double circle.

• {a0,2a
1
2,2 . . . a

k1
2,2a2,3a

1
3,3 . . . a

k2
3,3a3,4a

1
4,4 . . . a

l
4,4 | k1, k2 ≥

0, l > 0, p2 ∈ a2,3, p3 ∈ a3,4}, which is generated by
q0q

+
2 q

+
3 q4q

+
4 , and

• {a0,3a
1
3,3 . . . a

k
3,3a3,4a

1
4,4 . . . a

l
4,4 | k ≥ 0, l > 0, p2 ∈

a0,3, p3 ∈ a3,4}, which is generated by q0q
+
3 q4q

+
4 .

Lemma 2: For any infinite string σ ∈ (2Π)ω , if σ 6|= ϕ,
then there exists a substring ω ∈ Ω of σ.

Proof: Consider an infinite string σ = a0a1 . . . ∈ (2Π)ω

such that σ 6|= ϕ. From automata theory [1], σ ∈ Lω(A¬ϕ);
hence, there exists an accepting run π = q0q1 . . . for σ
in A¬ϕ. Since π is an accepting run, by definition, there
exists q ∈ F such that qi = q for infinitely many i. Let
j ≥ 0 and k > j be indices such that qj = qk = q and
consider ω = a0a1 . . . ak−1. Clearly, ω is a substring of σ.
Furthermore, q0q1 . . . qj ∈ R(q0, q) and qj+1qj+2 . . . qk ∈
R(q′, q) where q

aj−→ q′. Thus, it is clear from the definition
of Racc that π′ = q0q1 . . . qk ∈ Racc. Since ω ∈ ST (π′),
we can conclude that ω ∈ Ω.

Example 3: Consider an infinite string σ = a0a1 . . . such
that p2 ∈ ai for some i ∈ N and p3 ∈ aj for some
j > i. It is obvious that σ 6|= �(p2 =⇒ �¬p3);
hence, σ 6|= ϕ where ϕ is defined in (8). Based on
Lemma 2, there must exist a substring ω ∈ Ω of σ.
Consider a substring ω = a0,3a

1
3,3 . . . a

j−i−1
3,3 a3,4a4,4 of

σ where a0,3 = ai, a1
3,3 = ai+1, . . . , a

j−i−1
3,3 = aj−1,

a3,4 = aj and a4,4 = aj+1. It is easy to check that
ω ∈ {a0,3a

1
3,3 . . . a

k
3,3a3,4a

1
4,4 . . . a

l
4,4 | k ≥ 0, l > 0, p2 ∈

a0,3, p3 ∈ a3,4}; hence from Example 2, ω ∈ Ω.
Lemma 3: Suppose for each ω ∈ Ω, there exists a sub-

string ω′ of ω such that ω′ cannot be a substring of any
word in Trace(D). Then, D satisfies ϕ.

Proof: Assume, in order to establish a contradiction,
that D does not satisfy ϕ. Then, there exists a trajectory x of
D and its trace σx such that σx 6|= ϕ. From Lemma 2, there
exists a substring ω ∈ Ω of σx. However, since ω ∈ Ω, there
exists a substring ω′ of ω that is not a substring of σx. Hence,
ω cannot be a substring of σx, leading to a contradiction.

Based on Lemma 3, we can verify that D satisfies ϕ by
checking that for each ω ∈ Ω, there exists a substring of
ω that cannot be a substring of any word in Trace(D).

However, since Racc is, in general, not finite, Ω is also, in
general, not finite (as illustrated in Example 2). As a result,
invalidating all ω ∈ Ω may not be straightforward. In the next
section, we propose a finite collection Π1,Π2, . . . ,ΠM of
representative sets of finite run fragments with the property
that for each ω ∈ Ω, there exists some i ∈ {1, . . . ,M},
such that each π ∈ Πi can be used to “derive” a substring
of ω that is in a certain form. (We will make it clear later
how such a substring can be derived.) Hence, invalidating all
strings derived from some π ∈ Πi for each i ∈ {1, . . . ,M}
provides a certificate of system correctness with respect to
ϕ. Then, in Section VI, we show that due to their particular
form, the strings derived from any π ∈ Πi, i ∈ {1, . . . ,M}
are amenable to verification based on the idea of barrier
certificates and to algorithmic solutions, for the cases where
the vector field in (1) and the sets X ,X0, . . . ,XN can be
described by polynomial or rational functions, through sum-
of-squares relaxations for polynomial optimization.

To recap, based on the definition of a trace, the behavior
of D is formalized by the sequences of subsets of X visited
along its trajectories. These subsets of X are constructed
from a collection of sets X1, . . . ,XN ; hence, each of them
captures certain characteristics of D over X as described
by a boolean combination of atomic propositions in Π. The
language Lω(A¬ϕ) accepted by A¬ϕ essentially describes
the sequences of subsets of X that violate ϕ. Hence, to prove
that D satisfies ϕ, we show that for each of its trajectories
and for each sequence in Lω(A¬ϕ), there exists a portion of
the sequence that the trajectory cannot follow.

V. REPRESENTATIVE SETS OF RUN FRAGMENTS

Let G = (V G , EG) denote the underlying directed graph
of A¬ϕ, i.e., V G = Q and EG ⊆ V G×V G such that (q, q′) ∈
EG if and only if there exists a ∈ 2Π such that q a−→ q′.
A path in G is a finite or infinite sequence π of states such
that for any two consecutive states q, q′ in π, (q, q′) ∈ EG .
From the construction of G, it is obvious that π is a path
in G if and only if it is a run fragment of A¬ϕ. Given a
finite path π = q0q1 . . . qm or an infinite path π = q0q1 . . .,
a subpath of π is any finite path of the form qiqi+1 . . . qi+k
where i, k ≥ 0 and i+ k ≤ m if π is finite.

A variant of depth-first search [25] provided in Algo-
rithm V can be used to find the set of all the paths from a
state q to a state q′ with no repeated edges and no consecutive
repetitions of states in G, including the case where q = q′.
Since EG is finite, the set of all the paths from q to q′ with
no repeated edges and no consecutive repetitions of states
is finite for any q, q′ ∈ Q (unlike the set of all the paths
from q to q′ which may not be finite as these paths may
contain cycles that can be repeated arbitrary times). As will
be discussed later, such a set of paths with no repeated edges
and no consecutive repetitions of states can be used to form a
finite set SP of subpaths from q to q′, each of which can be
“extended” to a subpath of any path from q to q′. Proposition
1, presented later, provides an exact definition of “extending”
a path.



Algorithm 1 DFS(G, q, q′)
1: PGq,q′ ← ∅
2: toVisit ← {q}
3: paths ← {q}
4: if q′ = q then
5: Append q to PGq,q′
6: end if
7: while toVisit 6= ∅ do
8: Remove the last element of toVisit and assign it to
v

9: Remove the last sequence in paths and assign it to
path2v

10: for all nb 6= v such that (v, nb) ∈ EG do
11: if nb = q′ then
12: Append the sequence obtained by concatenat-

ing path2v and nb to PGq,q′
13: else if v is not followed by nb in path2v then
14: Append nb to toVisit
15: Append the sequence obtained by concatenat-

ing path2v and nb to paths;
16: end if
17: end for
18: end while
19: return PGq,q′

Given q, q′ ∈ Q, let P(q, q′) be the set of paths from a
state q to a state q′ with no repeated edges and no consecutive
repetitions of states in G. In addition, for each q ∈ F , let
Ppath(q) = {π ∈ P(q0, q) | q0 ∈ Q0} be the set of paths
from an initial state of A¬ϕ to q with no repeated edges and
no consecutive repetitions of states and let Pcyc(q) = {π ∈
P(q, q) | Ppath(q) 6= ∅ and if π = q, then (q, q) ∈ EG} be
the set of reachable cycles that start from q and have no
repeated edges or consecutive repetitions of states. From the
definition of P(·, ·) and R(·, ·), it is obvious that for each
q ∈ F , Pcyc(q) and Ppath(q) are finite, Pcyc(q) ⊆ R(q, q)
and Ppath(q) ⊆ ⋃q0∈Q0

R(q0, q). In this section, we show
that a collection Π1,Π2, . . . ,ΠM of representative sets of
finite run fragments as described at the end of Section IV can
be constructed from Pcyc(q) and Ppath(q) for each q ∈ F .

For a finite path π in G, we define PF3(π) as the set of
all subpaths of π with length 3, i.e., PF3(q0q1 . . . qm) =
{qiqi+1qi+2 | 0 ≤ i ≤ m− 2}. Note that for a path π with
length less than 3, PF3(π) = ∅.

Example 4: Let A¬ϕ be the NBA shown in Figure 3.
Then, F = {q4}. Applying Algorithm V, we get

Pcyc(q4) = {q4},
Ppath(q4) = {q0q1q4, q0q2q3q4, q0q3q4},
PF3(q4) = ∅,

PF3(q0q1q4) = {q0q1q4},
PF3(q0q2q3q4) = {q0q2q3, q2q3q4},
PF3(q0q3q4) = {q0q3q4}.

Note that any ω ∈ Ω can be written as ω = ωpωc where

ωp and ωc are generated from πp and qπc, respectively, for
some πpπc ∈ Racc where πp corresponds to a finite run
fragment from an initial state to an accepting state q of A¬ϕ
and qπc corresponds to an accepting cycle of A¬ϕ. Hence,
to invalidate ω, we can invalidate either ωp or ωc. As will
be shown in Proposition 1, for any path π from q to q′, there
exists π′ ∈ P(q, q′) such that SP = PF3(π′) is a finite set
of paths, each of which can be extended to a subpath of π.
Hence, a way to invalidate ωc is to show that for each p ∈
Pcyc(q), there exists π̃ ∈ PF3(p) such that all finite strings
generated by each extension of π̃ cannot be a substring of
any word of D. Similarly, a way to invalidate ωp is to show
that for each p ∈ Ppath(q), there exists π̃ ∈ PF3(p) such
that all finite strings generated by each extension of π̃ cannot
be a substring of any word of D.

Proposition 1: Suppose for each q ∈ F , either of the
following conditions (1) and (2) holds:
(1) For each p ∈ Pcyc(q), there exists π = q0q1q2 ∈
PF3(p) such that
(a) all finite strings a0a1 ∈ ST (π) cannot be a substring

of any word in Trace(D), and
(b) if (q1, q1) ∈ EG , then all finite strings

a0ã0 . . . ãka1 ∈ ST (q0q1q
+
1 q2), k ∈ N cannot be

a substring of any word in Trace(D).
(2) For each p ∈ Ppath(q), there exists π = q0q1q2 ∈
PF3(p) such that
(a) all finite strings a0a1 ∈ ST (π) cannot be a substring

of any word in Trace(D), and
(b) if (q1, q1) ∈ EG , then all finite strings

a0ã0 . . . ãka1 ∈ ST (q0q1q
+
1 q2), k ∈ N cannot be

a substring of any word in Trace(D).
Then, D satisfies ϕ.

Proof: Consider an arbitrary finite string ω ∈ Ω. From
the definition of Ω, there exist an accepting state q ∈ F and
a finite run fragment of the form qp0q

p
1 . . . q

p
mp
qqc0q

c
1 . . . q

c
mc
q

where mp,mc ∈ N and qp0 ∈ Q0 from which ω is
generated. Let πp = qp0q

p
1 . . . q

p
mp
q and πc = qqc0q

c
1 . . . q

c
mc
q.

In addition, let ωp and ωc be the substrings of ω that are
generated from πp and πc, respectively. Note that both πp

and πc correspond to paths in G. To prove that satisfying
either condition (1) or (2) ensures the correctness of D with
respect to ϕ, we show that both of the following conditions
hold.

(i) There exists p ∈ Pcyc(q) such that for each π =
q0q1q2 ∈ PF3(p), if (q1, q1) 6∈ EG , then πc contains π;
otherwise πc contains some run fragment of the form
q0q

+
1 q2.

(ii) There exists p ∈ Ppath(q) such that for each π =
q0q1q2 ∈ PF3(p), if (q1, q1) 6∈ EG , then πp contains
π; otherwise πp contains some run fragment of the form
q0q

+
1 q2.

Thus, satisfying condition (1) ensures that there exists a
substring ωc

′
of ωc such that ωc

′
cannot be a substring of any

word in Trace(D). Since ωc is a substring of ω, ωc
′

is also
a substring of ω. We can then conclude from Lemma 3 that
D satisfies ϕ. Similarly, satisfying condition (2) ensures that



there exists a substring ωp
′

of ωp, which is also a substring
of ω, that cannot be a substring of any word in Trace(D).
Lemma 3 can then be applied to conclude that D satisfies ϕ.

First, consider condition (i) and the case where πp does
not contain any repeated edges or consecutive repetitions
of states in G. In this case, it directly follows from the
definition of Ppath that πp ∈ Ppath(q); hence, condition
(i) is trivially satisfied. Next, consider the case where πp

contains a repeated edge, i.e., there exist q̃1, q̃2 ∈ Q such
that q̃1 is followed by q̃2 more than once in πp. Then, πp

must contain a subsequence of the form q̃1q̃2 . . . q̃1q̃2. Let
πp

′
be a run fragment that is obtained from πp by replacing

this subsequence with q̃1q̃2; thus, removing a repeated edge
(q̃1, q̃2) from πp. It can be checked that for any π =
q0q1q2 ∈ PF3(πp

′
), if (q1, q1) 6∈ EG , then π ∈ PF3(πp);

otherwise, πp contains a subsequence of the form q0q
+
1 q2.

For the case where πp contains a consecutive repetition of
some state q̃ ∈ Q, i.e., πp = qp0q

p
1 . . . q̃q̃ . . . q̃ . . . q

p
mp
q, we

construct πp
′′

= qp0q
p
1 . . . q̃ . . . q

p
mp
q by removing such a

consecutive repetition of q̃. It can be easily checked that
for any π = q0q1q2 ∈ PF3(πp

′′
), if (q1, q1) 6∈ EG , then π ∈

PF3(πp); otherwise, πp contains a subsequence of the form
q0q

+
1 q2. We apply this process of removing repeated edges

and consecutive repetitions of states in πp until we obtain
a run fragment π̃p that does not contain any repeated edges
or consecutive repetitions of states. Then, π̃p ∈ Ppath(q)
and for any π = q0q1q2 ∈ PF3(π̃p), if (q1, q1) 6∈ EG , then
π ∈ PF3(πp); otherwise, πp contains a subsequence a of
the form q0q

+
1 q2. Condition (ii) can be treated in a similar

way.

To sum, Proposition 1 provides a sufficient (but
not necessary) condition for verifying that no word in
Trace(D) is accepted by A¬ϕ. Based on Proposition
1, we construct sets PFcyc,q1 ,PFcyc,q2 , . . . ,PFcyc,qMc

and
PFpath,q1 ,PFpath,q2 , . . . , PFpath,qMp

for each q ∈ F where
Mc is the cardinality of Pcyc(q), Mp is the cardinality of
Ppath(q), for each i ∈ {1, . . . ,Mc}, PFcyc,qi = PF3(p),
p is the ith path in Pcyc(q) and for each i ∈ {1, . . . ,Mp},
PFpath,qi = PF3(p), p is the ith path in Ppath(q). Then,
we show that for each q ∈ F , either (1) for each i ∈
{1, . . . ,Mc}, there exists π ∈ PFcyc,qi such that all finite
strings generated by each extension of π as described in
conditions (1)-(a) and (1)-(b) cannot be a substring of any
word in Trace(D), hence, invalidating all accepting cycles
starting with q, or (2) for each i ∈ {1, . . . ,Mp}, there exists
π ∈ PFpath,qi such that all finite strings generated by each
extension of π as described in conditions (2)-(a) and (2)-
(b) cannot be a substring of any word in Trace(D), hence,
invalidating all paths to the accepting state q.

In the next section, we discuss a set of conditions whose
satisfaction implies the satisfaction of the conditions in (1)
and (2) of Proposition 1. The satisfaction of these new condi-
tions can be verified algorithmically; hence, their verification
is amenable to automation.

VI. BARRIER CERTIFICATES FOR INVALIDATING
SUBSTRINGS

Conditions (1) and (2) of Proposition 1 require considering
finite strings of the form a0a1 and a0ã0 . . . ãka1 where
k ∈ N and a0, a1, ã0, . . . , ãk ∈ 2Π. Lemma 4 and Lemma 5
provide a necessary condition for a trajectory of D to have
a trace with a substring of the form a0a1 and a0ã0 . . . ãka1,
k ∈ N, respectively.

Lemma 4: Consider Σ0,Σ1 ⊆ 2Π and a set Ω̃ =
{a0a1 | a0 ∈ Σ0, a1 ∈ Σ1} of finite strings. Let Y0 =⋃
a∈Σ0

JaK and Y1 =
⋃
a∈Σ1

JaK. If there exists a trajectory
x of D such that some finite string in Ω̃ is a substring of
a trace of x, then there exist t1 > t0 ≥ 0 and t′0 ∈ [t0, t1]
such that x(t) ∈ Y0 for all t ∈ [t0, t

′
0), x(t) ∈ Y1 for all

t ∈ (t′0, t1] and x(t′0) ∈ Y0 ∪ Y1.
Proof: This follows directly from the definition of trace.

Lemma 5: Consider Σ0,Σ1, Σ̃ ⊆ 2Π and a set Ω̃ =
{a0ã0 . . . ãka1 | k ∈ N, a0 ∈ Σ0, ã0, . . . , ãk ∈ Σ̃, a1 ∈ Σ1}
of finite strings. Let Y0 =

⋃
a∈Σ0

JaK, Y1 =
⋃
a∈Σ1

JaK and
Ỹ =

⋃
a∈Σ̃JaK. If there exists a trajectory x of D such that

some finite string in Ω̃ is a substring of a trace of x, then
there exists t1 > t0 ≥ 0 such that x(t0) ∈ Y0, x(t1) ∈ Y1

and x(t) ∈ Y for all t ∈ [t0, t1] where Y = Y0 ∪ Y1 ∪ Ỹ .
Proof: Consider a trajectory x of D and a finite sub-

string σ = a0ã0 . . . ãka1 where k ∈ N and a0 ∈ Σ0, ã0, . . . ,
ãk ∈ Σ̃ and a1 ∈ Σ1. Suppose σ is a substring of a trace of
x. Then, from the definition of trace, we can conclude that
there exist t1 > t0 ≥ 0 such that x(t0) ∈ Ja0K, x(t1) ∈ Ja1K
and for all t ∈ [t0, t1], x(t) ∈ Ja0K∪ Jã0K∪ . . .∪ JãkK∪ Ja1K,
i.e., x(t0) ∈ Y0, x(t1) ∈ Y1 and x(t) ∈ Y for all t ∈ [t0, t1].

We now consider conditions (1)-(a) and (2)-(a) of Propo-
sition 1, which require considering a finite string of the form
a0a1 where a0, a1 ∈ 2Π. The following lemma provides a
sufficient condition, based on checking the emptiness of set
intersection, for validating that such a finite string cannot be
a substring of any word in Trace(D).

Lemma 6: Consider Σ0,Σ1 ⊆ 2Π and a set Ω̃ =
{a0a1 | a0 ∈ Σ0, a1 ∈ Σ1} of finite strings. Let Y0 =⋃
a∈Σ0

JaK and Y1 =
⋃
a∈Σ1

JaK. Suppose Y0 ∩ Y1 = ∅.
Then, no finite string in Ω̃ can be a substring of any word
in Trace(D).

Proof: Suppose, in order to establish a contradiction,
that there exists a trajectory x of D such that some ω =
a0a1 ∈ Ω̃ is a substring of a trace of x. From Lemma 4,
there must exist t1 > t0 ≥ 0 and t′0 ∈ [t0, t1] such that
x(t) ∈ Y0 for all t ∈ [t0, t

′
0) and x(t) ∈ Y1 for all t ∈

(t′0, t1]. Furthermore, from the continuity of the trajectories
of (1), x(t) ∈ Y0 for all t ∈ [t0, t

′
0) implies that x(t) ∈ Y0

for all t ∈ [t0, t
′
0]. Similarly, x(t) ∈ Y1 for all t ∈ (t′0, t1]

implies that x(t) ∈ Y1 for all t ∈ [t′0, t1]. As a result, it
must be the case that x(t′0) ∈ Y0 and x(t′0) ∈ Y1, and hence
x(t′0) ∈ Y0 ∩ Y1, leading to a contradiction.

Using the notion of barrier certificate [26], [27], [9], we
provide a sufficient condition for checking that conditions



(1) and (2) of Proposition 1 are satisfied. First, Corollary
1 combines Lemma 1 and Lemma 4 to provide a sufficient
condition for validating that a finite string of the form a0a1

where a0, a1 ∈ 2Π cannot be a substring of any word in
Trace(D).

Corollary 1: Consider Σ0,Σ1 ⊆ 2Π and a set Ω̃ =
{a0a1 | a0 ∈ Σ0, a1 ∈ Σ1} of finite strings. Let Y0 =⋃
a∈Σ0

JaK, Y1 =
⋃
a∈Σ1

JaK and Y = Y0 ∪ Y1. Suppose
there exists a differentiable function B | X → R satisfying
conditions (2)-(4). Then, no finite string in Ω̃ can be a
substring of any word in Trace(D).

Finally, the following corollary combines Lemma 1 and
Lemma 5 to provide a sufficient condition for validating that
a finite string of the form a0ã0 . . . ãka1 where k ∈ N and
a0, a1, ã0, . . . , ãk ∈ 2Π cannot be a substring of any word
in Trace(D).

Corollary 2: Consider Σ0,Σ1, Σ̃ ⊆ 2Π and a set Ω̃ =
{a0ã0 . . . ãka1 | k ∈ N, a0 ∈ Σ0, ã0, . . . , ãk ∈ Σ̃, a1 ∈ Σ1}
of finite strings. Let Y0 =

⋃
a∈Σ0

JaK Y1 =
⋃
a∈Σ1

JaK, Ỹ =⋃
a∈Σ̃JaK and Y = Y0 ∪ Y1 ∪ Ỹ . Suppose there exists a

differentiable function B : X → R satisfying conditions (2)-
(4). Then, no finite string in Ω̃ can be a substring of any
word in Trace(D).

VII. LTL\# VERIFICATION PROCEDURE

Based on the results presented in Section V and Section
VI, we propose the following procedure for LTL\# verifica-
tion of dynamical systems.

1) Compute A¬ϕ.
2) Compute Pcyc(q) and Ppath(q) for each q ∈ F using

Algorithm V.
3) For each q ∈ F , carry out the following steps.

a) Generate PF3(c) for each c ∈ Pcyc(q) and PF3(p)
for each p ∈ Ppath(q). (From its definition, PF3(π)
can be easily generated for any given finite path π in
G.)

b) Check whether condition (1) or condition (2) of
Proposition 1 is satisfied. Conditions (1)-(a) and (2)-
(a) can be checked using Lemma 6 or Corollary 1
whereas conditions (1)-(b) and (2)-(b) can be checked
using using Corollary 2.
• If either condition (1) or condition (2) holds,

continue to process next accepting state q ∈ F
or terminate and report that D satisfies ϕ if all
q ∈ F has been processed.

• Otherwise, terminate and report the failure for
determining whether D satisfies ϕ using this pro-
cedure.

Steps 1-3(a) above can be automated. For example, off-
the-shelf tools such as LTL2BA, SPIN and LBT can be used
to compute of A¬ϕ in step 1. Checking conditions (1)-(a) and
(2)-(a) of Proposition 1 can be automated based on Lemma
6 by employing generalizations of the so-called S-procedure
[11] or special cases of the Positivstellensatz [10], [28].
Furthermore, if the sets X ,X0, . . . ,XN can be described by
polynomial functions, then verification of the conditions in

Corollary 1 and Corollary 2 can be reformulated (potentialy
conservatively) as sum-of-squares feasibility problems [10],
[29]. Specifically, Lemma 7 provides a set of sufficient
conditions for the existence of a barrier certificate B as
required by Lemma 1 to determine whether condition (1)
or condition (2) of Proposition 1 is satisfied.

Lemma 7: Let Y,Y0,Y1 ⊆ X . Assume that Y0 and Y1

can be defined by the inequality g0(x) ≥ 0 and g1(x) ≥ 0,
respectively, i.e., Y0 = {x : Rn | g0(x) ≥ 0} and Y1 = {x :
Rn | g1(x) ≥ 0}. Additionally, assume that Y can be defined
by the inequality g(x) ≥ 0. Suppose there exist a polynomial
B, a constant ε > 0 and sum-of-squares polynomials s0, s1,
s2 and s3 such that the following expressions are sum-of-
squares polynomials

−B(x)− s0(x)g0(x), (9)
B(x)− ε− s1(x)g1(x), and (10)

−∂B
∂x

(x)f(x)− s2(x)g(x) + s3(x)g1(x). (11)

Then, B satisfies conditions (2)-(4).
Proof: Consider an arbitrary x ∈ Y0. Then, g0(x) ≥ 0.

Furthermore, since (9) and s0(x) are sum-of-squares polyno-
mials, we get that −B(x)− s0(x)g0(x) ≥ 0 and s0(x) ≥ 0.
Combining this with g0(x) ≥ 0, we obtain B(x) ≤ 0,
satisfying (2). Similarly, we can show that (11) being a sum-
of-squares polynomial ensures that (4) is satisfied. Finally,
consider (10) and an arbitrary x ∈ Y1. Using the same
argument as before, we get B(x) − ε ≥ 0. Since ε > 0,
we obtain B(x) > 0, satisfying (3).

Based on Lemma 7, a function B : X → R satisfying
conditions (2)-(4) can be automatically computed by solving
the sum-of-squares problem in Lemma 7, which is convex
and can be parsed, using SOSTOOLS [30] and SOSOPT
[31], into a semidefinite program, provided that the vector
field f is polynomial or rational. Note that in Lemma 7, we
assume that Y , Y0 and Y1 can be described by polynomial
functions g, g0 and g1, respectively, for the ease of the
presentation. The result, however, can be easily extended
to handle the case where each of these sets are described
by a set of polynomial functions. For example, suppose
Y0 = {x : Rn | g0,1(x) ≥ 0, . . . , g0,k(x) ≥ 0} where
k ∈ N and g0,1, . . . , g0,k are polynomial functions. Then,
we need to find sum-of-squares polynomials s0,1, . . . , s0,k,
rather than only s0. In addition, rather than requiring that (9)
is a sum-of-squares polynomial, we require that −B(x) −
s0,1(x)g0,1(x) − . . . − s0,k(x)g0,k(x) is a sum-of-squares
polynomial. The case where other sets are described by a
set of polynomial functions can be treated in a similar way.

VIII. DISCUSSION

A. Sources of Incompleteness

The LTL\# verification procedure developed in the pre-
vious sections is sound but not complete, i.e., if it reports
that D satisfies ϕ, then we can correctly conclude that D
actually satisfies ϕ. However, if it reports failure, then D may
or may not satisfy ϕ. The incompleteness is due to various



sources of conservatism included in the procedure for LTL\#
verification of dynamical systems proposed in Section VII.

First, Proposition 1 provides only a sufficient condition
for verifying that for each ω ∈ Ω, where Ω is as defined
in Section IV, there exists a substring ω′ of ω that cannot
be a substring of any word in Trace(D). However, such a
sufficient condition only considers substrings ω′ that are in
a particular form since it may not be possible to check all
the substrings of all ω ∈ Ω due to the possible infiniteness
of Ω. We provide further discussion on this issue in Section
VIII-D. Another source of conservatism comes from Lemma
6, Corollary 1 and Corollary 2, which only provide sufficient
conditions for verifying that no finite string in the particular
form considered in Proposition 1 can be a substring of any
word in Trace(D). Finally, Lemma 7 introduces another
source of conservatism as only a sufficient condition for the
existence of a function B : X → R satisfying conditions (2)-
(4) is provided. The conservatism due to this final cause may
be reduced by searching for polynomial barrier certificates
(B) and S-procedure multipliers (s0, s1, s2 and s3) of higher
degrees.

B. Computational Complexity

Let A¬ϕ = (Q, 2Π, δ, Q0, F ). It can be shown [1] that
the size |Q| is at most |¬ϕ|2|¬ϕ| where |¬ϕ| is the length
(in terms of the number of operations) of ¬ϕ. (In practice,
the size |Q| is typically much smaller than this upper limit
[32].) Let |EG | represent the number of edges of G. Note
that from the construction of G as explained in Section V,
|EG | ≤ |Q|2 and |EG | ≤ |δ| where |δ| is the number of
transitions in A¬ϕ. In the worst case, for each q ∈ F ,
the size of Pcyc(q) is (|Q| − 1)|E

G |−1 whereas the size of
Ppath(q) is |Q0|(|Q| − 1)|E

G |−1. (Roughly, this is because
the length of each path in Pcyc(q) and Ppath(q) is at most
|EG |+1 since edges cannot be repeated. In addition, at each
state except the last two states in the path, there are |Q| − 1
possibilities of the next state since consecutive repetitions of
states are not allowed.) As a result, for each q ∈ F , the total
of at most (|EG | − 1)(|Q| − 1)|E

G |−1(1 + |Q0|) subpaths of
length 3 need to be considered in Step (3)-(b) of the LTL\#
verification procedure described in Section VII. Note that
each of these subpaths corresponds to a numerical search for
a barrier certificate and S-procedure multipliers that satisfy
the conditions in Lemma 7. For the largest degree of the
polynomials in (9)-(11) and the number n of continuous
states, the complexity of this search is polynomial in each
when the other fixed.

C. Comparison to Approaches Based on Explicit Discretiza-
tion of Dynamics

A common approach for verifying dynamical systems (call
D) subject to LTL\# specifications (call ϕ) is to explicitly
construct a finite state abstraction T of D [3], [4]. We
now briefly compare our method to such approaches with
respect to their (in)completeness, computational cost, and
conservatism.

Except for certain special cases, T is typically not
equivalent (i.e., bisimilar [5]) to D, but rather an over-
approximation of D, i.e., it may contain behaviors that do
not exist in D. Once T is constructed, a typical model
checking procedure can be employed to check whether T
satisfies a given LTL\# specification [1], [2]. Since T is
an over-approximation of D, if T satisfies D, then we can
conclude that D also satisfies ϕ. However, unless T is
equivalent to D, no conclusion about the correctness of
D can be made otherwise. Hence, as our approach is not
complete, the approaches based on explicit discretization of
the dynamics are typically not complete, except for certain
simple dynamics that allows T to be constructed such that it
is equivalent to D [7].

Barrier certificates can also be utilized in these alter-
native approaches, particularly in the construction of T.
For example, we can construct T with |2Π| states where
each state in T captures the states in D that satisfy the
corresponding atomic propositions. Lemma 1 can be applied
to remove transitions between states of T that cannot exist
in D. The computational complexity of this procedure may
seem to be less than ours. However, even if computing
barrier certificates can be automated based on Lemma 7,
in practice, solving the sum-of-squares problem in Lemma 7
often requires some human guidance, particularly in selecting
proper degrees of polynomials. Since T contains |2Π| states,
|2Π|2 sum-of-squares problems need to be checked. In our
approach, |2Π|2 transitions also need to be checked in the
worst case. In practice though, the subpaths of length 3
considered in Step (3)-(b) of the LTL\# verification pro-
cedure often do not include all the |2Π|2 transitions. As
a result, our approach allows to solve only the sum-of-
squares problems that correspond to transitions that need to
be checked based on these length 3 subpaths. In the example
presented in Section IX, we consider the case where |Π| = 3;
hence, |2Π| = 8. Solving this problem using the alternative
approaches requires considering 64 transitions whereas we
show in Section IX that only 2 sum-of-squares problems
need to be solved using our approach.

The approaches based on explicit discretization described
above possibly lead to more conservative results than our
approach because they typically utilize only Corollary 1
whereas both Corollary 1 and Corollary 2 can be applied
in our approach. Consider, for example, a simple NBA
A¬ϕ shown in Figure 4. Suppose no barrier certificates
(see Lemma 1) can be found for the absence of trajecto-
ries starting from Ja0K and reaching Ja1K without leaving
Ja0K∪Ja1K, trajectories starting from Ja1K and reaching Ja2K
without leaving Ja1K∪Ja2K and trajectories starting from Ja2K
and reaching Ja3K without leaving Ja2K ∪ Ja3K. In this case,
a finite state abstraction of the dynamical system contains
the transitions from a0 to a1, from a1 to a2, from a2 to
a3 and from a3 to a3, leading to the conclusion that the
correctness of the system cannot be verified. Further suppose
that a barrier certificate can be found for the absence of
trajectories starting from Ja0K and reaching Ja2K without
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Fig. 4. A simple NBA A¬ϕ used in the discussion regarding the
conservatism of approaches based on explicit discretization of dynamics
compared to our approach. An arrow without a source points to an initial
state. An accepting state is drawn with a double circle.

leaving Ja0K ∪ Ja1K ∪ Ja2K.3 This information cannot be
utilized in the approaches based on explicit discretization
of dynamics. With our approach, Corollary 2 can be used to
conclude that the system is actually correct.

The conservatism of the approaches based on explicit
discretization is often reduced by refining the state space
partition based on the dynamics, resulting in larger abstract
finite state systems [33]. As a result, these approaches
face a combinatorial blow up in the size of the underlying
discrete abstractions, commonly known as the state explosion
problem.

D. Possible Extensions and Future Work

Throughout the paper, we consider a continuous vector
field to ensure that x is sufficiently smooth, as required by
Lemma 1 and Lemma 6, partly for ease of presentation. The
approach presented in this paper, however, can potentially
be extended to handle more general dynamics. For example,
barrier certificates for safety verification of hybrid systems
[9] can be utilized to extend Lemma 1 to handle hybrid sys-
tems. Such certificates, together with additional conditions
to handle discrete jumps in Lemma 6, allow an extension
of our approach to hybrid systems. Stochastic systems can
potentially be handled using a similar idea. Such an extension
is subject to future work.

Based on Proposition 1, we only consider subpaths of
length 3. This restriction is due to the property that for any
path π from q to q′, there exists a path in P(q, q′) whose all
subpaths of length 3 can be extended in a simple way (by in-
cluding possibly consecutive state repetitions) to be subpaths
of π. However, this property may not necessarily hold for
longer subpaths. For example, consider a graph G with V G =
{q0, q1, q2, q3, q4} and EG = {(q0, q1), (q1, q2), (q2, q3),
(q3, q1), (q2, q4)}. In this case, P(q0, q4) = {q0q1q2q4}. Con-
sider a path π = q0q1q2q3q1q2q4. There does not exist any
path in P(q0, q4) whose all subpaths of length greater than 3
can be extended only by including possibly consecutive state
repetitions to be subpaths of π. It is possible to consider
longer subpaths, provided that other ways of “extending”
a subpath or other finite representative set of paths than
those without any repeated edges or consecutive repetitions
of states are considered. Note also that it is not useful to
consider subpaths of length shorter than 3 since invalidating

3See, for example, Figure 2. In this case, we can enlarge X1 such that
there are trajectories starting from X3 and reaching X1 without leaving
X1∪X3 and there are trajectories starting from X1 and reaching X2 without
leaving X1 ∪ X2. However, there are no trajectories starting from X3 and
reaching X1 without leaving X1 ∪ X3.
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Fig. 5. The zero level sets of B (light solid blue curves) and ∂B
∂x

(x)f(x)
(dotted red curves) for π1 where Y0 = X0, Y1 = X2 and Y = X \ X1.

those subpaths requires proving that no trajectory can reach
a certain region, say X̃ , no matter where it starts. Such a
condition cannot be verified since a trajectory that starts in
X̃ always reaches X̃ .

Including longer subpaths helps reduce the conservatism
of our approach. As the length of subpaths approaches
infinity, we recover the set Ω, not only a set of its subpaths.
An example similar to that provided in Section VIII-C can be
constructed to show that considering longer subpaths could
help reduce the conservatism of our approach. However,
including longer subpaths results in increasing computational
complexity.

IX. EXAMPLE

Consider the problem defined in Example 1. As shown
in Example 4, Algorithm V yields Pcyc(q4) = {q4} and
Ppath(q4) = {π1, π2, π3} where

π1 = q0q1q4, π2 = q0q2q3q4, π3 = q0q3q4.

Since Pcyc(q4) only contains one path p = q4 and
PF3(p) = ∅, conditions (1) of Proposition 1 cannot be
satisfied. Hence, we consider condition (2), which requires
checking all paths in Ppath(q4).

First, consider π1 = q0q1q4. In this case, we get
PF3(π1) = {π1}. In addition, ST (π1) = {a0a1 | p0 ∈
a0, p2 ∈ a1}. Since X0 ∩ X2 = ∅, we can conclude,
using Lemma 6, that no finite string in ST (π1) can be a
substring of any word in Trace(D). Since (q1, q1) ∈ EG , we
also need to consider all finite strings in ST (q0q1q

+
1 q4) =

{a0ã0 . . . ãka1 | k ∈ N, p0 ∈ a0, p1 6∈ ã0, . . . , ãk, p2 ∈
a1}. Let Y0 = X0, Ỹ = X \ X1, Y1 = X2 and Y =
Y0 ∪ Y1 ∪ Ỹ = X \ X1. Using SOSOPT, a polynomial
B of degree 10, a constant ε > 0 and the corresponding
sum-of-squares polynomials s0(x), . . . , s3(x) that make (9)-
(11) sum-of-squares polynomials can be computed. Thus,
we can conclude, using Corollary 2, that no finite string in
ST (q0q1q

+
1 q4) can be a substring of any word in Trace(D).

The zero level sets of B and ∂B
∂x (x)f(x) are depicted in

Figure 5, showing that B(x) ≤ 0 for all x ∈ X0, B(x) > 0
for all x ∈ X2 and ∂B

∂x (x)f(x) ≤ 0 for all x ∈ (X \ X1)\X2.
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Fig. 6. The zero level set of B (light solid blue curves) for π′
2 where

Y0 = X2, Y1 = X3 and Y = X .

Next, consider π2 = q0q2q3q4. In this case, PF3(π2) =
{q0q2q3, q2q3q4}. Let π′2 = q2q3q4. As for the case of π1,
we can conclude that no finite string in ST (π′2) can be a
substring of any word in Trace(D) because X2 ∩ X3 = ∅.
Furthermore, for ST (q2q3q

+
3 q4) = {a0ã0 . . . ãka1 | k ∈

N, p2 ∈ a0, p3 ∈ a1}, we let Y0 = X2, Ỹ = X , Y1 = X3

and Y = Y0∪Y1∪Ỹ = X . SOSOPT generates a polynomial
B of degree 8, a constant ε > 0 and the corresponding sum-
of-squares polynomials s0, . . . , s3 that make (9)-(11) sum-
of-squares polynomials, ensuring that any trajectory of (6)
that starts in X2 cannot reach X3 without leaving X . Thus,
we can conclude, using Corollary 2, that no finite string in
ST (q2q3q

+
3 q4) can be a substring of any word in Trace(D).

The zero level set of B is depicted in Figure 6, showing
that B(x) ≤ 0 for all x ∈ X2, B(x) > 0 for all x ∈ X3.
Since ∂B

∂x (x)f(x) < 0 for all x ∈ X , the zero level set of
∂B
∂x (x)f(x) is not shown.

Finally, consider π3 = q0q3q4. In this case,
PF3(π3) = {π3}. Furthermore, ST (π3) = ST (π′2)
and ST (q0q3q

+
3 q4) = ST (q2q3q

+
3 q4). Thus, we can use

the results from π′2 to conclude that no finite string in
ST (π3)∪ST (q0q3q

+
3 q4) can be a substring of any word in

Trace(D).
At this point, we have checked all the paths in Ppath(q4)

to conclude that condition (2) of Proposition 1 is satisfied.
Thus, we can conclude that D satisfies ϕ.

X. CONCLUSIONS

An approach for computational verification of (possibly
nonlinear) dynamical systems evolving over continuous state
spaces subject to temporal logic specifications is presented.
Typically, such verification requires checking the emptiness
of the intersection of two sets, the set of all the possible be-
haviors of the system and the set of all the possible incorrect
behaviors, both of which are potentially infinite, making the
verification task challenging (if not impractical). In order to
deal with these infinite sets, we propose a set of strings that,
based on automata theory, can be used to represent the set
of all the possible incorrect behaviors. Our approach then
relies on constructing barrier certificates to ensure that each

string in this set cannot be generated by any trajectory of the
system. This integration of automata-based verification and
barrier certificates allows us to avoid computing an explicit
finite state abstraction of the continuous state space based
on the underlying dynamics as commonly done in literature.
Future work includes extending the presented approach to
handle more general dynamics and attacking various sources
of conservatism as discussed in the paper.
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formula to Büchi automaton,” Intelligent Computation Technology and
Automation, International Conference on, vol. 1, pp. 1215–1219, 2008.



[20] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,”
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