
Software Model Checking
Scirbe

Xin. Qin1 Mingyang. Zhang1

1Department of Computer Science
University of Southern California

CSCI 699, 2018

Instructor: Jyotirmoy Deshmukh

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 1

/ 45



Outline I

1 Section 1
Precondition and Postcondition
Hoare Logic
Sound and Complete
Undecidability

2 Section 2
Quotient Graph

3 Section 3
Loop and Symbolic
Lattice
Knaster-Tarski Theorem
Simulation Relations/ Bisimulation Relations
Predicate Abstraction

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 2

/ 45



Outline II

4 Section 6
Procedural Abstraction
Push Down Automata

5 Section 7
Heap Data Structures

6 Section 8
Ranking Function

7 Section 10
Discussion

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 3

/ 45



Outline

1 Section 1
Precondition and Postcondition
Hoare Logic
Sound and Complete
Undecidability

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 4

/ 45



Precondition and Postcondition

x := x + 5;

x > 10
(1)

Weakest Precondition:wp(x := E ,R) = R[x←E ].
largest set that will hold: {x > 5}, requires loop to terminate.

Strongest Postcondition: smallest set that will hold: {x > 15}
Weakest Liberal Precondition: No loop terminate requirement.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 5

/ 45



Outline

1 Section 1
Precondition and Postcondition
Hoare Logic
Sound and Complete
Undecidability

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 6

/ 45



Hoare logic: Program is nothing but a prove

{A}P{B} (2)

A,B is assertions; A precondition, B postcondition.

Partial correctness: a pass reach B.

Termination needs to prove separately.

〈A〉P〈B〉 (3)

Use 〈〉: indicates program terminates.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 7

/ 45



Outline

1 Section 1
Precondition and Postcondition
Hoare Logic
Sound and Complete
Undecidability

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 8

/ 45



Sound and Complete

Sound

Verification
If the tool said the program is safe, then the program is safe.

Bug finding
If the tool said there is a bug, then the program really has a bug.
Testing tool: Sound with respect to bug finding.

Complete

If program safe, the tool also say safe

If program has bug, you will find it (no testing tool is complete;
function calls screw things up)

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 9

/ 45



Trade off between soundness and completeness

Example

Binary variable language: easy to achieve soundness but not
expressive enough

Complex language: hard to achieve soundness

Abstraction related

Abstract too much: always unsafe (throw all)

Throw away some of the program to see the answer: safe/unsafe;

Abstract too small: too many detail.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 10

/ 45



Outline

1 Section 1
Precondition and Postcondition
Hoare Logic
Sound and Complete
Undecidability

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 11

/ 45



Undecidable problem

Example

”Checking program termination is undecidable”.

To verify if problem halt, should let program halt.
Reduce halting problem of Turing machine(NP-hard) to this problem.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 12

/ 45



Outline

2 Section 2
Quotient Graph

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 13

/ 45



Quotient graph

For reduction-based method mentioned the term: quotient graph.

Related content in paper:
”Behavioral equivalences such as similarity and bisimilarity construct
a quotient graph that preserves reachability (i.e., there is a path from
an initial state to ε in the original graph iff there is a path to ε in the
quotient), and then performs reachability analysis on the quotient.”

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 14

/ 45



Outline

3 Section 3
Loop and Symbolic
Lattice
Knaster-Tarski Theorem
Simulation Relations/ Bisimulation Relations
Predicate Abstraction

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 15

/ 45



Discussed based on section 3.3

Loop can not be reasoned/verified symbolically

Unrolling forever, coming closer and closer to fix point, but never able
to find it.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 16

/ 45



Outline

3 Section 3
Loop and Symbolic
Lattice
Knaster-Tarski Theorem
Simulation Relations/ Bisimulation Relations
Predicate Abstraction

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 17

/ 45



Lattice

Introduction: Lattice theory is the study of sets of objects known as
lattices. It is an outgrowth of the study of Boolean algebras, and provides a
framework for unifying the study of classes or ordered sets in mathematics.
Partially ordered set (poset): A partially ordered set (poset) is a
reflexive, antisymmetric and transitive binary relation.

antisymmetric: a 6= b : a ≤ b =⇒ not(b ≤ a)

reflexive: for all elements: ≤ a

transitive: a ≤ b, b ≤ c =⇒ a ≤ c

Note: The binary relation of a partially ordered set is written as ≤.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 18

/ 45



Examples of Posets

Scheduling problems: PERT charts, flow charts

Dependency graphs: software installers, compilers, variable
dependencies

C++ class hierarchy (a hierarchy where every node can have multiple
parents)

Part-whole relationships (e.g. food and ingredients)

Reference: http://www.upriss.org.uk/maths/mlec7.pdf

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 19

/ 45



Lattice

Lattice A lattice is a poset where each two nodes have a greatest
common child node and a least common parent node.

lattice is meet, join closed

lub: least upper bound, glb: greatest lower bound

complete lattice: unique top, bottom element; (finite lattice mostly
complete)

Reference: http://www.upriss.org.uk/maths/mlec7.pdf

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 20

/ 45



Chain & Antichain

chain: A sequence of ordered element.

Antichain: non of them are ordered — {a, b}{b, c} truly concurrent.

Example

Event in a distributed program: dimension, decomposition of antichain

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 21

/ 45



Outline

3 Section 3
Loop and Symbolic
Lattice
Knaster-Tarski Theorem
Simulation Relations/ Bisimulation Relations
Predicate Abstraction

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 22

/ 45



Fixed point on lattice

The theorem professor mentioned worth look at:

Theorem (Knaster-Tarski theorem)

Let L be a complete lattice and let f : L → L be an order-preserving
function. Then the set of fixed points of f in L is also a complete lattice.

Reference: https://en.wikipedia.org/wiki/KnasterTarski theorem

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 23

/ 45



Usage

Example (1)

show program has a lattice structure,
states are lattice,
then can find fixed point.

Example (2)

Determine the bad state,
Then get all state that can reach the bad state,
If initial state in it, in trouble.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 24

/ 45



Outline

3 Section 3
Loop and Symbolic
Lattice
Knaster-Tarski Theorem
Simulation Relations/ Bisimulation Relations
Predicate Abstraction

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 25

/ 45



Simulation Relations/ Bisimulation Relations

Reference: https://pdfs.semanticscholar.org/presentation/c718/62e
aaa72ee88baf35a66f39bf6375c47b29b.pdf

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 26

/ 45



Simulation Relations/ Bisimulation Relations

OR:

M1 ≺ M2

M1 = (S1,R1, L)

M2 = (S2,R2, L)

(q, r) ⊆ H, q ∈ S1, r ∈ S2

if (1) L(q) = L(r)

(2)∀q′ (q, q′) ⊆ R1

∃r ′s.t.
(1) (q′, r ′) ⊆ R2

(2) (r , r ′) ⊆ H

(4)

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 27

/ 45



Discussion

Bisimulation can prove more

Quationt: compute equivalence class

Simulation relations example:

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 28

/ 45



Outline

3 Section 3
Loop and Symbolic
Lattice
Knaster-Tarski Theorem
Simulation Relations/ Bisimulation Relations
Predicate Abstraction

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 29

/ 45



Predicate Abstraction

Transform program to operation on predicates

Rule

x := choose(m,n)
if (m is true) then x is true
if (n is true) then x is false
else *

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 30

/ 45



Predicate Abstraction Example 1

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 31

/ 45



Predicate Abstraction Example 2

Assume (¬b1 ∧ ¬b2 ∧ ¬b3)

〈b1, b2, b3〉 := 〈choose(false, b3), choose(false, b3), choose(b3,¬b3)〉
(5)

Thus from rule above, b1, b2 is undetermined.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 32

/ 45



Predicate Abstraction Example 3

Assume (b1 ∧ b2 ∧ ¬b3)

〈b1, b2, b3〉 := 〈choose(b3,¬b3), choose(false, true), choose(b3,¬b3)〉
(6)

Note that here implies b2 statement cannot return true.

Assume(b1), ERROR is not reachable. As assume(b1) means the
situation when b1 is true.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 33

/ 45



Outline

4 Section 6
Procedural Abstraction
Push Down Automata

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 34

/ 45



procedural abstraction

Behaviors reconstituted from the input-output behaviors common in
static analysis.

1 take all function call
2 replace function call with doing an assignment

Call graph

summary for leaf node can used for higher

Recursive call graph has a loop

Store VS Compute only when been called (lazy way)

Summary

Replace function call with effect of function.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 35

/ 45



Outline

4 Section 6
Procedural Abstraction
Push Down Automata

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 36

/ 45



Push Down Automata(PDA)

Two push down machine can simulate a truing machine. Therefore
checking concurrent program is like checking turing machine

Reachability very difficult to check in concurrent program.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 37

/ 45



Outline

5 Section 7
Heap Data Structures

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 38

/ 45



Predicate abstraction

Points:
– Alias Analysis + data structure of it
– Alias Analysis: care if two pointer can point to same location
– Linked list
– Shape invariant: care not number of elements, but for example, list
is acyclic.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 39

/ 45



Outline

6 Section 8
Ranking Function

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 40

/ 45



Ranking function

Example

while(x > 0){
x := x − 1; }

(7)

1 Decrease in every program loop

2 In the end the statement x > 0 is false

No general determine if there exist a ranking function.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 41

/ 45



Outline

7 Section 10
Discussion

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 42

/ 45



Discussion

SMT solvers evolved a lot.

Type system becomes super popular. Type based programming. Type
checking instead of verification.

State of art has evolved, but many of the question are still open.

Black box verification is open.

Question of environment: e.g. on the phone.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 43

/ 45



Other discussion

Well typed program

Recurrent set: ∀s ∈ R, (s, s ′) ∈ T , s ′ ∈ R

Why use math to describe: for corner case

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 44

/ 45



References

Ranjit Jhala and Rupak Majumdar. 2009.

Software model checking

ACM Comput. Surv. Surv. 41, 4, Article 21 (October 2009), 54 pages.
DOI=http://dx.doi.org/10.1145/1592434.1592438.

Xin. Qin, Mingyang. Zhang (University of Southern California)Software Model Checking
CSCI 699, 2018 Instructor: Jyotirmoy Deshmukh 45

/ 45


	Section 1
	Precondition and Postcondition
	Hoare Logic
	Sound and Complete
	Undecidability

	Section 2
	Quotient Graph

	Section 3
	Loop and Symbolic
	Lattice
	Knaster-Tarski Theorem
	Simulation Relations/ Bisimulation Relations
	Predicate Abstraction

	Section 6
	Procedural Abstraction
	Push Down Automata

	Section 7
	Heap Data Structures

	 Section 8
	Ranking Function

	Section 10
	Discussion




