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Coordinated Control of Multi-Robot Systems: A Survey

Jorge CORTÉS ∗ and Magnus EGERSTEDT ∗∗

Abstract : Recently, significant gains have been made in our understanding of multi-robot systems, and such systems
have been deployed in domains as diverse as precision agriculture, flexible manufacturing, environmental monitoring,
search-and-rescue operations, and even swarming robotic toys. What has enabled these developments is a combination
of technological advances in performance, price, and scale of the platforms themselves, and a new understanding of how
the robots should be organized algorithmically. In this paper, we focus on the latter of these advances, with particular
emphasis on decentralized control and coordination strategies as they pertain to multi-robot systems. The paper dis-
cusses a class of problems related to the assembly of preferable geometric shapes in a decentralized manner through the
formulation of descent-based algorithms defined with respect to team-level performance costs.
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1. Introduction

During the last decade, multi-robot systems have gone from
isolated and anecdotal laboratory systems to robustly deployed
across a number of domains, such as warehousing [1]–[3], pre-
cision agriculture [4],[5], search-and-rescue [6],[7], and envi-
ronmental monitoring and exploration [8]–[10]. The funda-
mental reason why more robots are preferable in these types
of domains is that there is strength in numbers. By using a
large number of robots, redundancy is automatically built into
the system – if one robot fails, there are still a number of op-
erational robots left to continue the mission. A wider spa-
tial area can also be covered more efficiently if more robots
are deployed, and heterogeneous capabilities can be distributed
across the team without having to dramatically change the pay-
load (and thus price) of individual robots, e.g., [11].

In response to these technology and application drivers, a
number of different control and coordination strategies have
been proposed for organizing the robots in order to enable them
to come together and solve team-level, global tasks using local
interaction rules. This paper discusses some of these develop-
ments and identifies some of the salient features common to a
number of proposed coordination strategies. Broadly speaking,
a distributed multi-robot coordination algorithm has to satisfy
four different constraints for it to be useful, namely it must be
(i) local in the sense that individual robots can only act on infor-
mation it has available to it, i.e., through sensing or active com-
munications – this is sometimes referred to as “distributed”;
(ii) scalable in that the algorithms executed by the individual
robots cannot depend on the size of the entire team – some-
times referred to as “decentralized”; (iii) safe – as robots are
physical agents deployed in the real world, they must be safe
both relative to collisions with each other and relative to the en-
vironment; and (iv) emergent in the sense that global properties
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should emerge from the local interaction rules – preferably in a
provable manner [12]–[14].

A number of algorithms that satisfy these four constraints
have been proposed and they have been used successfully
for achieving and maintaining formations [15]–[18], for cov-
ering areas [19]–[21], for securing and tracking boundary
curves [22]–[24], or for mimicking biological social behaviors
such as flocking and swarming [25]–[28]. In this overview, we
illustrate some of the common features and unifying assump-
tions behind this body of work.

To make matters more concrete, consider a collection of N
robots, with positions xi ∈ Rp, i = 1, . . . ,N, with p = 2 in the
case of planar robots and p = 3 for aerial robots. These robots
could for instance be equipped with omni-directional range-
sensors, which enable them to measure the positions of near-by
robots relative to their own positions, i.e., Robot i can measure
the value x j − xi if Robot j is within range of Robot i’s sensors.
The flow of information through sensor measurements or over
communication channels can be encoded abstractly as an ad-
jacency relation between robots, which allows us to define the
graph structure induced by the multi-robot team as G = (V, E),
where V = {1, . . . ,N} is the vertex set associated with the in-
dividual robots, and E ⊂ V × V is the edge-set that encodes
the adjacency relationships, i.e., ( j, i) ∈ E if Robot j is within
range of Robot i’s sensors. For the purpose of this paper, we
assume that the team is homogeneous, i.e., they have the same
kind of sensors and/or communication modalities, which means
that (i, j) ∈ E if and only if ( j, i) ∈ E, and we say that the re-
sulting graph is undirected. Note, however, that as the robots
move around, adjacency relationships will come and go, i.e.,
we cannot assume that the edge set E is static over time.

In this paper, we describe a number of control and coordina-
tion strategies that adheres to this basic interaction model and
that have a common starting point in that the algorithms can be
viewed as descent algorithms defined relative to performance
costs. The overarching tasks are encoded through these costs
– may they be locational costs for describing how well a team
of mobile robots are covering an area of interest or energy-like
functions describing the pairwise mismatch between robots as
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compared to their desired geometric configuration. In particu-
lar, Section 2 addresses the problem of making teams of robots
assemble desired geometric formations, Section 3 discusses the
coverage control problem, while Section 4 describes how to go
from abstract algorithms defined over simplified robot models
and interaction modalities to deployment on real robotic sys-
tems on the ground as well as in the air. Section 5 concludes
the paper with a general description of the optimization-based
approach employed in our discussion for the design of coordi-
nation control laws.

2. Formation Control

2.1 Reaching Decentralized Agreement

To ensure that the algorithms are indeed local, we insist on
the robots acting solely based on the measurable information,
e.g., the relative displacements, in such a way that appropriate
global objectives are achieved. One such objective could be for
the robots to meet at a common location – the robots do not
necessarily know where they are so no a priori agreed upon
meeting location can be used. This is known as the rendezvous
problem [29]–[31], and one way of evaluating how well the
robots are doing towards this aim is to evaluate the total error

E(x) =
1
2

N∑
i=1

∑
( j,i)∈E

‖xi − x j‖2.

We note that the gradient of the total error with respect to the
individual robot positions is given by

∂E(x)
∂xi

=
∑

( j,i)∈E
(xi − x j), i = 1, . . . ,N.

One direct way to minimize such an error function is to use a
gradient descent flow, i.e., we could simply let the robots move
in the direction of the negative gradient of the total error,

ẋi = −
∑

( j,i)∈E
(xi − x j).

The resulting equation is referred to as the node-level dy-
namics of the system since it describes the movements of the
individual robots. However, in order to analyze the behavior of
the global system, we need the ensemble-level dynamics. To
this end, we first note that the node-level dynamics is linear.
Moreover, it only involves the relative position differences be-
tween adjacent robots, i.e., it encodes the graph structure itself.
To make this explicit, let x = (xT

1 , . . . , xT
N)T ∈ RpN . If the robots

are scalars, i.e., p = 1, then the previous node-level dynamics
can be written in ensemble form as

ẋ = −Lx,

where L is the (possibly time-varying) N×N-dimensional graph
Laplacian [32] associated with the multi-robot network, given
by

L = [�i j]
N
i, j=1, �i j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
deg(i) if i = j,
−1 if (i, j) ∈ E,
0 otherwise,

where the degree, deg(i), is the number of vertices that are ad-
jacent to vertex i. Moreover, if p > 1, the resulting ensemble-
level dynamics becomes

ẋ = −(L ⊗ Ip)x,

where Ip is the p × p identity matrix and ⊗ denotes the Kro-
necker product.

The reason for starting the discussion with the rendezvous
problem is three-fold. First, it hints at a systematic way of ob-
taining decentralized multi-robot control laws by starting with
an error function and then producing robot motions that ex-
plicitly reduce this error. This will be generalized in subse-
quent sections together with an introduction of some of the key
tools needed to analyze such systems. Second, it calls out the
sometimes intricate coupling between robot motions and the
evolution of the underlying network structure. In other words,
what makes distributed multi-robot control tricky is that it is not
enough to consider the individual motions. Instead the motions
must be understood in conjunction with their effects on the un-
derlying network structure. In fact, this is a pervasive feature
in the literature, see e.g. [12],[14],[33],[34]. Third, the equation
ẋ = −Lx is, by itself, one of the most important equations in the
multi-agent literature. In fact, it plays such a prominent role that
it even has its own name – the consensus equation [35]–[38].
The reason for this is that by moving around, the robots are
agreeing (or reaching consensus) on where to meet, as shown
in Fig. 1 (a).

Numerous variations to the consensus equation have been
proposed, and we here discuss two such direct extensions. For
example, let p = 2, i.e., the robots are planar, and assume that
they are arranged in a directed cycle topology. Then, one can,
instead of letting the robots “aim” towards their neighbors, they
can instead move with a slight offset, as

ẋi = R(−ψ)(xi+1 − xi), i = 1, . . . ,N − 1,
ẋN = R(−ψ)(x1 − xN),

where R(−ψ) is the rotation matrix of angle −ψ. Now, if the
offset angle is ψ = π/N, a perfect circular motion is asymptot-
ically achieved – so-called cyclic pursuit – while if ψ < π/N
the robots will spiral inwards towards a consensus point, and if
ψ > π/N, they will spiral outwards, away from each other [39].
This is illustrated in Fig. 1 (b).

Finally, if instead of reaching agreements over the positions,
the robots agree on what direction they should move in, i.e., the
consensus equation operates on the robot headings instead of
their positions, φ̇ = −Lφ, where φi is the heading of Robot i,
then the so-called flocking behavior emerges [17],[40],[41], as
seen in Fig. 1 (c).

In the context of the four constraints imposed on multi-robot
coordination algorithms, the consensus equation is both local
(only involves the measurably information xi − x j) and scalable
(only involves the neighborhood sets Ni as opposed to the full
set of robots). It is moreover emergent, as it has been shown that
it will indeed drive all robots to a common position as long as
the underlying information exchange network is “rich enough”.
In the static and undirected case, the necessary and sufficient
condition is that the graph is connected, i.e., that there exists
a path through the graph from every pair of vertices. In the
static and directed case, consensus is achieved if and only if
the graph contains, as a subgraph, a spanning (all vertices are
present) out-branching tree (a tree graph where the edges all
point in the same direction – away from the root node). In the
dynamic case, the conditions are slightly more involved but a
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Fig. 1 Variations on the consensus equation: (a) rendezvous, (b) cyclic
pursuit, (c) flocking, and (d) formation control. In these figures,
the robots start randomly in the environment and asymptotically
achieve the corresponding tasks.

sufficient condition is that the necessary and sufficient condi-
tions for the static case holds at each point in time, regardless
of whether the graph is undirected or directed. (The purpose
of this survey is not to cover all of the intricacies of the sta-
bility analysis of the consensus equation – for derivations and
full characterizations of these results, see for example [14] and
the references therein.) But, the consensus equation is not safe!
In fact, rendezvous is by design achieving a massive collision
among all the robots. To remedy this and turn the consensus
equation into a truly useful multi-robot coordination law, we
need to augment it to ensure that the robots do not get too close
to each other.

2.2 Weighted Protocols

The construction in Section 2.1 can be generalized by defin-
ing a symmetric, pairwise performance cost between robots i
and j as Ei j(‖xi − x j‖) = E ji(‖x j − xi‖), with the global perfor-
mance cost being defined by

E(x) =
N∑

i=1

∑
( j,i)∈E

Ei j(‖xi − x j‖).

The Chain Rule tells us that

∂Ei j(‖xi − x j‖)
∂xi

=
∂Ei j(‖xi − x j‖)
∂‖xi − x j‖

(xi − x j)

‖xi − x j‖
= wi j(‖xi − x j‖)(xi − x j),

i.e., the partial derivative is a scalar function of the inter-robot
distance times the relative displacement. As such, the gradient
descent rule is given by a weighted consensus protocol,

ẋi = − ∂E
∂xi
= −

∑
( j,i)∈E

wi j(‖xi − x j‖)(xi − x j).

The reason why this construction is systematic and theoret-
ically justified is that if we restrict E to positive semi-definite
functions that are 0 only at the desired, global configuration, we
note that

dE
dt
=
∂E
∂x

ẋ =
N∑

i=1

∂E
∂xi

ẋi = −
∥∥∥∥∥∂E∂x

∥∥∥∥∥
2

.

In other words, E is a Lyapunov function and, with bounded
trajectories, one can resort to the LaSalle Invariance Princi-
ple [42] to ensure that the desired configuration is at least a
locally asymptotically stable equilibrium point as long as the
edge set E does not change. If E does change, i.e., edges come
and go, then E will experience discontinuities, and either a hy-
brid version of the LaSalle Invariance Principle must be used,
or arguments must be employed that establish that sooner or
later, the edge set becomes static, see e.g., [43]–[45].

A number of examples of this construction have been dis-
cussed in the literature. First, the standard consensus equation
covered above can be derived from

Ei j(‖xi − x j‖) = 1
2
‖xi − x j‖2 ⇒ wi j = 1.

If the error is just the norm, as opposed to the square of the
norm, then

Ei j(‖xi − x j‖) = ‖xi − x j‖ ⇒ wi j =
1

‖xi − x j‖ ,

which is a form that has been used in [25] to describe coordi-
nated behaviors among schooling fish. The interpretation here
is that, as fish pay more attention to near-by fish, the square
norm counter-acts this by penalizing far-away fish in an overly
aggressive manner.

If the robots are supposed to arrange themselves at a pre-
scribed inter-robot distance δ, we obtain a formation control
protocol, [16],[24],[46]–[49], as opposed to a rendezvous pro-
tocol. An example of this found in [14] is given by

Ei j(‖xi − x j‖) = 1
2

(‖xi − x j‖ − δ)2 ⇒ wi j =
‖xi − x j‖ − δ
‖xi − x j‖ .

The interpretation here is that the weight is negative if the
robots are closer than δ apart, thereby repelling away from each
other, while agents that are further than δ apart are attracted
through the corresponding positive weight.

An additional complication associated with multi-robot net-
works is that, throughout the maneuvers, the robot network
should stay connected, [15],[50]–[52]. One way of ensuring
this connectivity maintenance property is to ensure that the
weights become sufficiently large as the inter-robot distance
approaches Δ, which is the distance where the robots are no
longer able to sense each other. In [15], the following choices
were shown to guarantee connectivity maintenance

Ei j(‖xi − x j‖) = ‖xi − x j‖2
Δ − ‖xi − x j‖ ⇒ wi j =

2Δ − ‖xi − x j‖
(Δ − ‖xi − x j‖)2

.

A combined formation control and connectivity maintenance
protocol could thus become

Ei j(‖xi − x j‖) = 1
2(Δ − δ)

( ‖xi − x j‖ − δ
Δ − ‖xi − x j‖

)2

⇒ wi j =
1 − δ

‖xi−x j‖
(Δ − ‖xi − x j‖)3

,

as seen in Fig. 1 (d).
What all of these constructions show is that it is possible to

achieve rich and diverse multi-robot responses through a sys-
tematic selection of scalar weights in the consensus equation.
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But, if the objective is not to assemble a particular shape, but
rather to spread the robots out to cover an area, modifications
to this construction are needed.

3. Coverage Control
Another example of the theme of formulating an error func-

tion and then flowing in a negative gradient direction involves
the problem of having the robots cover a planar area in an
optimal way [12],[20]. To this end, let the agents be tasked
with covering an area D, and let each robot be in charge of
all the points in D that are closest to it. This corresponds to
partitioning D into N Voronoi cells, with the robot locations
xi, i = 1, . . . ,N as seeds,

Vi(x) = {p ∈ D | ‖xi − p‖ ≤ ‖x j − p‖, ∀ j � i}.
Note that here we use the Euclidean distance to define what
it means to be “closest”. The concept of Voronoi partition
is flexible enough to allow for other notions of distance that
can be used to capture robot capabilities such as limited en-
ergy [53], different sensing ranges or footprints [54], or motion
constraints [55],[56].

3.1 Lloyd’s Algorithm and Locational Costs

If we moreover assume that points closer to Robot i are cov-
ered more effectively than point further away, we can write
down a so-called locational cost associated with the robot posi-
tions as

E(x) =
N∑

i=1

∫
Vi(x)
‖xi − p‖2ϕ(p)dp.

Here, the function ϕ : D→ R measures the relative importance
of points in the environment, i.e., if ϕ(p) > ϕ(q), then the point
p is more important than the point q for the robot ensemble. As
before, taking the partial derivative of this locational cost gives

∂E
∂xi
= 2

∫
Vi(x)

(xi − p)ϕ(p)dp.

The reason why the application of Leibniz rule at the area
over which the integral is evaluated does not seem to matter
is because whatever area is moved into Vi by the infinitesimal
movement of xi, exactly the same area is lost in some other cell,
i.e., the effects cancel out.

Following the program laid out in the previous paragraphs
of using a gradient descent flow as a way of enabling LaSalle
Invariance Principle to be applicable, gives us

ẋi = 2
∫
Vi(x)

(p − xi)ϕ(p)dp = 2mi(x)(xi − ρi(x)),

where mi(x) =
∫
Vi(x)

ϕ(p)dp and ρi(x) are, respectively, the
mass and center of mass of the i:th Voronoi cell.

One can also scale the control action by a positive gain, and,
as such, consider a scaled descent flow. Using a particular
choice of gain, the new flow is given by

1
2mi(x)

∂E
∂xi
= xi − ρi(x).

The resulting control law is a continuous-time version of
Lloyd’s Algorithm for coverage control,

ẋi = ρi(x) − xi.

This law reaches [20] asymptotically the set of so-called Cen-
troidal Voronoi Tessellations, whereby xi = ρi(x), i = 1, . . . ,N.
An example of this algorithm in action is shown in Fig. 2.

Fig. 2 Gradient-based coverage control: (a) initial configuration, (b) evo-
lution of the ensemble, and (c) final configuration. The intensity
of the gray scale of the points in the environment corresponds to
their importance.

The simplicity of this coordination law makes it especially
appealing and, in fact, numerous extensions have been inves-
tigated. We discuss below two of these extensions to time-
varying scenarios and problems that involve specifications in
terms of equitable partitions of the overall load among the
robots. The common denominator of these extensions is that
their synthesis follows the optimization-based approach to de-
sign of coordination laws that we advocate in this survey.

3.2 Time-Varying Locational Optimization and General-
ized Voronoi Partitions

Consider the scenario where the function ϕ measuring the
relative importance of points in the environment changes with
time [20],[57], e.g., according to the preferences specified by a
human operator. Formally, we have ϕ : D × R → R, (p, t) �→
ϕ(p, t). Based on the discussion above, robots should seek to
achieve a centroidal Voronoi configuration. One can formalize
this by writing the error function

E(x, t) =
1
2

N∑
i=1

‖xi − ρi(x, t)‖2.

Note that the evolution of this function along the robot trajec-
tories can be written as

d
dt

(E(x, t)) =

N∑
i=1

(xi − ρi(x, t))(ẋi − ∂ρi

∂t
(x, t) −

N∑
j=1

∂ρi

∂x j
(x, t)ẋ j) =

(x − ρ(x, t))
((

IN − ∂ρ
∂x

(x, t)
)
ẋ − ∂ρ

∂t
(x, t)

)
,

where, for simplicity, we use the short-hand notation ρ(x, t) =
(ρ1(x, t), . . . , ρN(x, t)). This computation reveals how the design
of the coordination strategy above should be modified to deal
with time-varying functions ϕ. Specifically, if one sets

((
IN − ∂ρ

∂x
(x, t)

)
ẋ − ∂ρ

∂t
(x, t)

)
= k(ρ(x) − x),

then the evolution of the error function E takes the form

d
dt

(E(x(t), t)) = −(x − ρ(x, t))k(x − ρ(x, t)) = −2kE(x(t), t),

and hence E(x(t), t) = E(x(0), 0) exp(−2kt), guaranteeing expo-
nential convergence. The implementation of this design, how-
ever, is challenging from a distributed viewpoint, because it re-
quires the inversion of the matrix

(
IN − ∂ρ

∂x (x, t)
)

to compute the
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robots’ motion. The matrix is sparse, but its inversion is not.
One can tackle this, for instance, by approximating the inverse
matrix with the Taylor series expansion which, as the matrix
sparse, is amenable to distributed implementation [57]. An ex-
ample of this approach is shown in Fig. 3 (bottom row), where a
team of robots execute the dynamic coverage control algorithm.

A different take on the locational problem discussed in Sec-
tion 3.1 is to consider the optimization by the robots of the lo-
cational cost subject to fair partitioning of the areas of the envi-
ronment tasked to each of them [58]–[60]. For instance, in case
of heterogeneous robots, some with more mobility than others,
the fast robots may be tasked with larger regions than the slow
ones. For the case of homogeneous teams, it makes sense to
prescribe an equitable partition among the robots, where the
mass of each region is the same for all. Interestingly enough,
this is not guaranteed by the centroidal Voronoi configurations
achieved by the Lloyd’s algorithm. To illustrate how to deal
with this, we consider the latter case. Formally, the robots seek
to solve a constrained optimization problem with objective

E(x) =
N∑

i=1

∫
Vi(x)
‖xi − p‖2ϕ(p)dp,

and constraints

mi(x) = mj(x), ∀i, j ∈ {1, . . . ,N}.
Remarkably, one can show that the optimal way of partition-
ing the environment to solve this problem also corresponds to
a Voronoi partition, albeit the metric employed to construct is
different from the Euclidean one. Specifically, consider parti-
tioningD into N cells, with the robot locations xi, i = 1, . . . ,N
and some weights wi, i = 1, . . . ,N as seeds according to

Vi(x,w) = {p ∈ D | ‖xi − p‖2 − wi ≤ ‖x j − p‖2 − wj, ∀ j � i}.
The interpretation of the role of the weights is clear. The larger
the weight wi is with respect to the other weights, the bigger that
the region of Robot i gets. This Voronoi partition is called the
power diagram. More exotic examples of generalized Voronoi
partitions exist, e.g., [61], and these notions play an important
role when considering more general versions of the locational
cost defined above. The key observation here is that, given
arbitrary robot positions, one can always select the weights
wi, i = 1, . . . ,N so that the equitable constraints mi(x) = mj(x),
for all i, j ∈ {1, . . . ,N} are satisfied. Therefore, the design of the
coordination law to solve the constrained locational optimiza-
tion problem described above with equitable partitioning con-
sists of two interconnected algorithms: one strategy prescribing
the physical motion of the robots by having them chase the cen-
troid of their (power diagram) Voronoi cell and another strategy
prescribing how the weights are selected to partition the envi-
ronment equitably given the robot positions.

4. Deployment on Real Robots
A crucial assumption underlying the discussion in the previ-

ous sections was the assumption that we could directly control
the velocities of the robots, i.e., that

ẋi = ui, i = 1, . . . ,N,

regardless of the dimension of the state of the system. This is
obviously not true for real robots, and, to this end, we need to be

able to go from integrators to full-blown robot kinematics in or-
der to actually deploy these control laws. The standard manner
in which this is done is to use the velocities resulting from the
coordinated control algorithms as “plans” and then wrap non-
linear controllers around these plans in order to deploy them on
real robotic systems. Rather than characterizing all the different
ways in which this has been done on a large number of differ-
ent types of platforms, we illustrate here this on two standard
classes of robots, namely wheeled, differential drive robots and
aerial quadcopters. The common denominator for both robots
is the use of the concept of differential flatness [62],[63] to carry
out the control design.

Before we start discussing the different platforms, a few
words must be made about the notation used. First, as we will
focus exclusively on the kinematics of an individual robot in
this section, we will suppress the subscript i for the sake of no-
tational convenience. Second, if we let the position of the robot
be in Rp, with p = 2 in the case of ground robots and p = 3
in the case of aerial robots, we will let u ∈ Rp denote the de-
sired velocity obtained from the single integrator model, based
(perhaps) on one of the previously discussed coordinated con-
trollers. We will subsequently use (x, y) or (x, y, z) to denote the
position of the robot, and let φ be the heading (or yaw in the
aerial case) of the robot, θ be the pitch and ψ be the roll in the
aerial case.

4.1 Ground Robots

One of the most commonly used robotic platforms is the
wheeled, differential-drive ground robot. It is equipped with
two independently controlled wheels of radius R, where the
control inputs are the angular velocities of the right ωr and left
ωl wheels. If the wheel axis has length L, then the kinematics
of the differential drive robot is

ẋ = R
2 (ωr + ωl) cos φ,

ẏ = R
2 (ωr + ωl) sin φ,

φ̇ = R
L (ωr − ωl).

Now, as it is not particularly natural to define motions in
terms of wheel velocities, a standard transformation is to map
this to a unicycle model, where the control inputs are instead
given by the translational v and angular ω velocities of the
robot. As the unicycle dynamics is given by

ẋ = v cos φ,
ẏ = v sin φ,
φ̇ = ω,

we somehow have to map (v, ω) onto (ωr, ωl). By equating
(ẋ, ẏ, φ̇) in the two expressions above, we get

v = R
2 (ωr + ωl),

ω = R
L (ωr − ωl),

which inverts to

ωr =
2v+ωL

2R ,

ωl =
2v−ωL

2R .

As a result, we can design controllers for the unicycle model
and then simply generate (ωr, ωl) from the velocities (v, ω). But
we still have to go from u ∈ R2 to (v, ω). And, if we are willing
to ignore the orientation of the vehicle, this can be achieved by
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considering a point off the wheel axis of the robot by a distance
0 � � ∈ R,

x̃ = x + � cos φ,
ỹ = y + � sin φ.

In fact, these variables work as flat outputs. Their derivative is
given by

˙̃x = v cos φ − �ω sin φ,
˙̃y = v sin φ + �ω cos φ.

If we now postulate that ( ˙̃x, ˙̃y)T = u we can invert this expres-
sion to get (v, ω) in terms of u as

[
v
ω

]
=

[
1 0
0 1

�

]
R(−φ)u,

where R is the rotation matrix.
A series of different examples of employing this method for

going from u ∈ R2 via (v, ω) to (ωr, ωl) are shown in Fig. 3 for
a number of the coordinated controllers discussed in this paper.

Fig. 3 Top: Five robots are solving the rendezvous problem. Middle: 15
robots are forming a “G” by executing an energy-based formation
control strategy resulting in a weighted consensus equation. Bot-
tom: the robots move to cover a time-varying density function by
minimizing the locational cost.

4.2 Aerial Robots

For quadcopters, the situation gets slightly more involved due
to the complexity of the dynamics. In fact, under the stan-
dard assumption that the body rotational rates of the quad-
copter are directly controllable through the fast response of
an onboard controller, the state of the system becomes q =
[x, y, z, ẋ, ẏ, ż, φ, θ, ψ]T . Moreover, by controlling the angular
velocities of the four rotors (analogous to the wheel velocities
in the differential-drive robot case), these input velocities can be
mapped bijectively to the body rotational rateω = [ωx, ωy, ωz]T

and the thrust τ, resulting in the four-dimensional input signal
w = [ωT , τ]T . Finally, the dynamics of the quadcopters, as dis-
cussed for example in [64],[65], takes on the form

q̇ = F(q,w),

which is a highly nonlinear dynamical system.
Luckily, this system is differentially flat too, meaning that the

state and input can be algebraically recovered from a subset of
states and their derivatives. In fact, as shown in [66]–[68], the
flat output of the system is η = [x, y, z, φ]T , i.e., the position and

the yaw of the quadcopter together describe the system in the
sense that[

q
w

]
= G(η, η̇, η̈,

...
η )

for certain mapping G. This construction is in part why quad-
copters are reasonably easy to control – one can almost think of
them as unicycles with an added, freely controlled z-dimension.

The way we now can connect the output from the coordina-
tion protocols u ∈ R3 is as follows: when the quadcopter is in
location (x, y, z), we simply generate a waypoint a short while
into the future through [x, y, z]T +δtu for some look-ahead hori-
zon δt. Setting the new yaw equal to the old yaw, and producing
a thrice continuously differentiable interpolating curve ηd, with

ηd(t)= [x, y, z, φ]T , ηd(t + δt) = [x + δtux, y + δtuy, z + δtuz, φ]T

can thus be used to generate the feedforward part of the quad-
copter motion. (A feedback law is typically added as well to
ensure increased robustness to modeling errors.)

An example of combining the described flatness-based con-
troller with a coordinated control signal for a team of quad-
copters is shown in Fig. 4.

Fig. 4 Five quadcopters execute a distributed formation control strategy
based on planned trajectories for the flat outputs.

5. Conclusions and Optimization-Based Coordinated
Control

What all the previous discussion have in common is the re-
liance on the formulation of the desired robot behavior through
a cost to be minimized. If we again let xi be the state of Robot
i and use xNi to denote the states of all robots adjacent to Robot
i (however the adjacency relationship happens to be defined),
then one can realize that all the costs already discussed were of
the following form:

E(x) =
N∑

i=1

Fi(xi, xNi ).

For example, in the weighted formation control costs, we had

Fi(xi, xNi ) =
∑

(i, j)∈E
Ei j(‖xi − x j‖),

while the locational cost for coverage control was

Fi(xi, xNi ) =
∫
Vi(xi,xNi )

‖xi − p‖2ϕ(p)dp.

The reason why a gradient descent algorithm is particularly ap-
propriate for coordinated control is that the adjacency relation-
ship implied in the cost is made explicit by the descent algo-
rithm in that

∂E(x)
∂xi

=
∂Fi(xi, xNi )

∂xi
+

∑
(i, j)∈E

∂F j(x j, xN j )

∂xi
,
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i.e., Robot i can evaluate this expression solely by having access
to the states of adjacent agents. This preservation of adjacency
is in general lost if higher-order derivatives are taken. Directed
topologies also complicate the design of provably correct co-
ordination laws through this path. This is because the evalua-
tion of the gradient of the cost function requires an undirected
flow of information and is therefore not implementable over di-
rected graphs. Some works [37],[69],[70], however, are able to
still draw inspiration from the undirected case to design imple-
mentable coordination strategies, but the directed information
flow makes in general the convergence analysis described next
harder.

The second reason why the gradient descent flow is useful is
that even through the introduction of a strictly positive (possibly
state-dependent) gain

ẋi = −γi(xi, xNi )
∂E(x)
∂xi

leads to

dE(x(t))
dt

= −∂E(x(t))
∂x

T

Γ(x)
∂E(x(t))
∂x

= −
∥∥∥∥∥∂E(x(t))

∂x

∥∥∥∥∥
2

Γ(x)
≤ 0,

where Γ(x)  0 is a positive definite, diagonal matrix with the
individual gains on the diagonal.

As a consequence, through LaSalle Invariance Principle, we
can (subject to sufficient regularity assumptions on the cost)
draw the conclusion that the state converges to the set of sta-
tionary points, i.e., points where the gradient of the cost is zero.
In this paper, we have illustrated this fact through a number
of different examples – from rendezvous and formation con-
trol to coverage control. This distributed optimization-based
paradigm in fact transcends multi-robot systems and has found
its way into numerous domains involving network systems.

Acknowledgments

This work of the first author was partially supported by NSF
Award ECCS-1307176 and AFOSR Award FA9550-15-1-0108
and the work of the second author was partially supported by
NSF Awards 1531195 and 1544332.

References

[1] R. D’Andrea: A revolution in the warehouse: A retrospective
on kiva systems and the grand challenges ahead, IEEE Trans-
actions on Automation Science and Engineering, Vol. 9, No. 4,
pp. 638–639, Oct. 2012.

[2] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi: Towards
decentralized coordination of multi robot systems in industrial
environments: A hierarchical traffic control strategy, IEEE In-
ternational Conference on Intelligent Computer Communica-
tion and Processing, pp. 209–215, 2013.

[3] L.E. Parker: Distributed algorithms for multi-robot observation
of multiple moving targets, Autonomous Robots, Vol. 12, No. 3,
pp. 231–255, May 2002.

[4] A. Barrientos, J. Colorado, J. Cerro, A. Martinez, C. Rossi,
D. Sanz, and J. Valente: Aerial remote sensing in agriculture:
A practical approach to area coverage and path planning for
fleets of mini aerial robots, Journal of Field Robotics, Vol. 28,
pp. 667–689, 2011.

[5] W. Kazmi, M. Bisgaard, F. Garcia-Ruiz, K.D. Hansen, and
A. la Cour-Harbo: Adaptive surveying and early treatment of
crops with a team of autonomous vehicles, European Confer-
ence on Mobile Robots, pp. 253–258, Jan. 2011.

[6] J.L. Baxter, E.K. Burke, J.M. Garibaldi, and M. Norman:
Multi-robot search and rescue: A potential field based ap-
proach, S.C. Mukhopadhay and G.S. Gupta, Eds., Autonomous
Robots and Agents (Studies in Computational Intelligence book
series), Vol. 76, pp. 9–16, Springer, 2007.

[7] G. Kantor, S. Singh, R. Peterson, D. Rus, A. Das, V. Kumar,
G. Pereira, and J. Spletzer: Distributed search and rescue with
robot and sensor teams, Field and Service Robotics, Vol. 24,
pp. 529–538, 2003.

[8] A. Dhariwal, G.S. Sukhatme, and A.A.G. Requicha:
Bacterium-inspired robots for environmental monitoring,
IEEE International Conference on Robotics and Automation,
pp. 1436–1443, May 2004.

[9] M. Dunbabin and L. Marques: Robots for environmental
monitoring: Significant advancements and applications, IEEE
Robotics and Automation Magazine, Vol. 19, No. 1, pp. 24–39,
March 2012.

[10] M. Ouimet and J. Cortés: Collective estimation of ocean non-
linear internal waves using robotic underwater drifters, IEEE
Access, Vol. 1, pp. 418–427, 2013.

[11] C. Kitts and M. Egerstedt (Guest Editors): Design, control, and
applications of real-world multi-robot systems, IEEE Robotics
and Automation Magazine, Vol. 15, No. 1, p. 8, March 2008.

[12] F. Bullo, J. Cortés, and S. Martı́nez: Distributed Control of
Robotic Networks, Princeton University Press, 2009.

[13] N. Lynch: Distributed Algorithms, Elsevier, 1996.
[14] M. Mesbahi and M. Egerstedt: Graph Theoretic Methods for

Multi-agent Networks, Princeton University Press, 2010.
[15] M. Ji and M. Egerstedt: Distributed coordination control of

multi-agent systems while preserving connectedness, IEEE
Transactions on Robotics, Vol. 23, No. 4, pp. 693–703, 2007.
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