
Chapter 1

System Verification

Our reliance on the functioning of ICT systems (Information and Communication Tech-
nology) is growing rapidly. These systems are becoming more and more complex and are
massively encroaching on daily life via the Internet and all kinds of embedded systems
such as smart cards, hand-held computers, mobile phones, and high-end television sets.
In 1995 it was estimated that we are confronted with about 25 ICT devices on a daily
basis. Services like electronic banking and teleshopping have become reality. The daily
cash flow via the Internet is about 1012 million US dollars. Roughly 20% of the product
development costs of modern transportation devices such as cars, high-speed trains, and
airplanes is devoted to information processing systems. ICT systems are universal and om-
nipresent. They control the stock exchange market, form the heart of telephone switches,
are crucial to Internet technology, and are vital for several kinds of medical systems. Our
reliance on embedded systems makes their reliable operation of large social importance.
Besides offering a good performance in terms like response times and processing capacity,
the absence of annoying errors is one of the major quality indications.

It is all about money. We are annoyed when our mobile phone malfunctions, or when
our video recorder reacts unexpectedly and wrongly to our issued commands. These
software and hardware errors do not threaten our lives, but may have substantial financial
consequences for the manufacturer. Correct ICT systems are essential for the survival of
a company. Dramatic examples are known. The bug in Intel’s Pentium II floating-point
division unit in the early nineties caused a loss of about 475 million US dollars to replace
faulty processors, and severely damaged Intel’s reputation as a reliable chip manufacturer.
The software error in a baggage handling system postponed the opening of Denver’s airport
for 9 months, at a loss of 1.1 million US dollar per day. Twenty-four hours of failure of
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2 System Verification

Figure 1.1: The Ariane-5 launch on June 4, 1996; it crashed 36 seconds after the launch
due to a conversion of a 64-bit floating point into a 16-bit integer value.

the worldwide online ticket reservation system of a large airplane company will cause its
bankruptcy because of missed orders.

It is all about safety: errors can be catastrophic too. The fatal defects in the control
software of the Ariane-5 missile (Figure 1.1), the Mars Pathfinder, and the airplanes of
the Airbus family led to headlines in newspapers all over the world and are notorious by
now. Similar software is used for the process control of safety-critical systems such as
chemical plants, nuclear power plants, traffic control and alert systems, and storm surge
barriers. Clearly, bugs in such software can have disastrous consequences. For example, a
software flaw in the control part of the radiation therapy machine Therac-25 caused the
death of six cancer patients between 1985 and 1987 as they were exposed to an overdose
of radiation.

The increasing reliance of critical applications on information processing leads us to state:

The reliability of ICT systems is a key issue
in the system design process.

The magnitude of ICT systems, as well as their complexity, grows apace. ICT systems
are no longer standalone, but are typically embedded in a larger context, connecting
and interacting with several other components and systems. They thus become much
more vulnerable to errors – the number of defects grows exponentially with the number
of interacting system components. In particular, phenomena such as concurrency and
nondeterminism that are central to modeling interacting systems turn out to be very hard
to handle with standard techniques. Their growing complexity, together with the pressure
to drastically reduce system development time (“time-to-market”), makes the delivery of
low-defect ICT systems an enormously challenging and complex activity.
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System Verification 3

Hard- and Software Verification

System verification techniques are being applied to the design of ICT systems in a more
reliable way. Briefly, system verification is used to establish that the design or product
under consideration possesses certain properties. The properties to be validated can be
quite elementary, e.g., a system should never be able to reach a situation in which no
progress can be made (a deadlock scenario), and are mostly obtained from the system’s
specification. This specification prescribes what the system has to do and what not,
and thus constitutes the basis for any verification activity. A defect is found once the
system does not fulfill one of the specification’s properties. The system is considered
to be “correct” whenever it satisfies all properties obtained from its specification. So
correctness is always relative to a specification, and is not an absolute property of a
system. A schematic view of verification is depicted in Figure 1.2.

Design Process

bug(s) found

no bugs found

product or
prototype

properties

specification
system

Verification

Figure 1.2: Schematic view of an a posteriori system verification.

This book deals with a verification technique called model checking that starts from a
formal system specification. Before introducing this technique and discussing the role
of formal specifications, we briefly review alternative software and hardware verification
techniques.

Software Verification Peer reviewing and testing are the major software verification
techniques used in practice.

A peer review amounts to a software inspection carried out by a team of software engineers
that preferably has not been involved in the development of the software under review. The
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4 System Verification

uncompiled code is not executed, but analyzed completely statically. Empirical studies
indicate that peer review provides an effective technique that catches between 31 % and
93 % of the defects with a median around 60%. While mostly applied in a rather ad hoc
manner, more dedicated types of peer review procedures, e.g., those that are focused at
specific error-detection goals, are even more effective. Despite its almost complete manual
nature, peer review is thus a rather useful technique. It is therefore not surprising that
some form of peer review is used in almost 80% of all software engineering projects. Due
to its static nature, experience has shown that subtle errors such as concurrency and
algorithm defects are hard to catch using peer review.

Software testing constitutes a significant part of any software engineering project. Between
30% and 50% of the total software project costs are devoted to testing. As opposed to peer
review, which analyzes code statically without executing it, testing is a dynamic technique
that actually runs the software. Testing takes the piece of software under consideration
and provides its compiled code with inputs, called tests. Correctness is thus determined
by forcing the software to traverse a set of execution paths, sequences of code statements
representing a run of the software. Based on the observations during test execution, the
actual output of the software is compared to the output as documented in the system
specification. Although test generation and test execution can partly be automated, the
comparison is usually performed by human beings. The main advantage of testing is that
it can be applied to all sorts of software, ranging from application software (e.g., e-business
software) to compilers and operating systems. As exhaustive testing of all execution paths
is practically infeasible; in practice only a small subset of these paths is treated. Testing
can thus never be complete. That is to say, testing can only show the presence of errors,
not their absence. Another problem with testing is to determine when to stop. Practically,
it is hard, and mostly impossible, to indicate the intensity of testing to reach a certain
defect density – the fraction of defects per number of uncommented code lines.

Studies have provided evidence that peer review and testing catch different classes of de-
fects at different stages in the development cycle. They are therefore often used together.
To increase the reliability of software, these software verification approaches are comple-
mented with software process improvement techniques, structured design and specification
methods (such as the Unified Modeling Language), and the use of version and configura-
tion management control systems. Formal techniques are used, in one form or another, in
about 10 % to 15% of all software projects. These techniques are discussed later in this
chapter.

Catching software errors: the sooner the better. It is of great importance to locate soft-
ware bugs. The slogan is: the sooner the better. The costs of repairing a software flaw
during maintenance are roughly 500 times higher than a fix in an early design phase (see
Figure 1.3). System verification should thus take place early stage in the design process.
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System Verification 5
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Figure 1.3: Software lifecycle and error introduction, detection, and repair costs [275].

About 50% of all defects are introduced during programming, the phase in which actual
coding takes place. Whereas just 15% of all errors are detected in the initial design stages,
most errors are found during testing. At the start of unit testing, which is oriented to
discovering defects in the individual software modules that make up the system, a defect
density of about 20 defects per 1000 lines of (uncommented) code is typical. This has
been reduced to about 6 defects per 1000 code lines at the start of system testing, where
a collection of such modules that constitutes a real product is tested. On launching a new
software release, the typical accepted software defect density is about one defect per 1000
lines of code lines1.

Errors are typically concentrated in a few software modules – about half of the modules
are defect free, and about 80% of the defects arise in a small fraction (about 20%) of
the modules – and often occur when interfacing modules. The repair of errors that are
detected prior to testing can be done rather economically. The repair cost significantly
increases from about $ 1000 (per error repair) in unit testing to a maximum of about
$ 12,500 when the defect is demonstrated during system operation only. It is of vital
importance to seek techniques that find defects as early as possible in the software design
process: the costs to repair them are substantially lower, and their influence on the rest
of the design is less substantial.

Hardware Verification Preventing errors in hardware design is vital. Hardware is
subject to high fabrication costs; fixing defects after delivery to customers is difficult, and
quality expectations are high. Whereas software defects can be repaired by providing

1For some products this is much higher, though. Microsoft has acknowledged that Windows 95 contained
at least 5000 defects. Despite the fact that users were daily confronted with anomalous behavior, Windows
95 was very successful.
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6 System Verification

users with patches or updates – nowadays users even tend to anticipate and accept this –
hardware bug fixes after delivery to customers are very difficult and mostly require refab-
rication and redistribution. This has immense economic consequences. The replacement
of the faulty Pentium II processors caused Intel a loss of about $ 475 million. Moore’s
law – the number of logical gates in a circuit doubles every 18 months – has proven to
be true in practice and is a major obstacle to producing correct hardware. Empirical
studies have indicated that more than 50% of all ASICs (Application-Specific Integrated
Circuits) do not work properly after initial design and fabrication. It is not surprising
that chip manufacturers invest a lot in getting their designs right. Hardware verification
is a well-established part of the design process. The design effort in a typical hardware
design amounts to only 27% of the total time spent on the chip; the rest is devoted to
error detection and prevention.

Hardware verification techniques. Emulation, simulation, and structural analysis are the
major techniques used in hardware verification.

Structural analysis comprises several specific techniques such as synthesis, timing analysis,
and equivalence checking that are not described in further detail here.

Emulation is a kind of testing. A reconfigurable generic hardware system (the emulator) is
configured such that it behaves like the circuit under consideration and is then extensively
tested. As with software testing, emulation amounts to providing a set of stimuli to the
circuit and comparing the generated output with the expected output as laid down in
the chip specification. To fully test the circuit, all possible input combinations in every
possible system state should be examined. This is impractical and the number of tests
needs to be reduced significantly, yielding potential undiscovered errors.

With simulation, a model of the circuit at hand is constructed and simulated. Models are
typically provided using hardware description languages such as Verilog or VHDL that
are both standardized by IEEE. Based on stimuli, execution paths of the chip model are
examined using a simulator. These stimuli may be provided by a user, or by automated
means such as a random generator. A mismatch between the simulator’s output and the
output described in the specification determines the presence of errors. Simulation is like
testing, but is applied to models. It suffers from the same limitations, though: the number
of scenarios to be checked in a model to get full confidence goes beyond any reasonable
subset of scenarios that can be examined in practice.

Simulation is the most popular hardware verification technique and is used in various
design stages, e.g., at register-transfer level, gate and transistor level. Besides these error
detection techniques, hardware testing is needed to find fabrication faults resulting from
layout defects in the fabrication process.
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Model Checking 7

1.1 Model Checking

In software and hardware design of complex systems, more time and effort are spent on
verification than on construction. Techniques are sought to reduce and ease the verification
efforts while increasing their coverage. Formal methods offer a large potential to obtain an
early integration of verification in the design process, to provide more effective verification
techniques, and to reduce the verification time.

Let us first briefly discuss the role of formal methods. To put it in a nutshell, formal
methods can be considered as “the applied mathematics for modeling and analyzing ICT
systems”. Their aim is to establish system correctness with mathematical rigor. Their
great potential has led to an increasing use by engineers of formal methods for the ver-
ification of complex software and hardware systems. Besides, formal methods are one
of the “highly recommended” verification techniques for software development of safety-
critical systems according to, e.g., the best practices standard of the IEC (International
Electrotechnical Commission) and standards of the ESA (European Space Agency). The
resulting report of an investigation by the FAA (Federal Aviation Authority) and NASA
(National Aeronautics and Space Administration) about the use of formal methods con-
cludes that

Formal methods should be part of the education of every computer scientist
and software engineer, just as the appropriate branch of applied maths is a
necessary part of the education of all other engineers.

During the last two decades, research in formal methods has led to the development of
some very promising verification techniques that facilitate the early detection of defects.
These techniques are accompanied by powerful software tools that can be used to automate
various verification steps. Investigations have shown that formal verification procedures
would have revealed the exposed defects in, e.g., the Ariane-5 missile, Mars Pathfinder,
Intel’s Pentium II processor, and the Therac-25 therapy radiation machine.

Model-based verification techniques are based on models describing the possible system
behavior in a mathematically precise and unambiguous manner. It turns out that – prior
to any form of verification – the accurate modeling of systems often leads to the discov-
ery of incompleteness, ambiguities, and inconsistencies in informal system specifications.
Such problems are usually only discovered at a much later stage of the design. The system
models are accompanied by algorithms that systematically explore all states of the system
model. This provides the basis for a whole range of verification techniques ranging from an
exhaustive exploration (model checking) to experiments with a restrictive set of scenarios
in the model (simulation), or in reality (testing). Due to unremitting improvements of un-
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8 System Verification

derlying algorithms and data structures, together with the availability of faster computers
and larger computer memories, model-based techniques that a decade ago only worked for
very simple examples are nowadays applicable to realistic designs. As the startingpoint
of these techniques is a model of the system under consideration, we have as a given fact
that

Any verification using model-based techniques is only
as good as the model of the system.

Model checking is a verification technique that explores all possible system states in a
brute-force manner. Similar to a computer chess program that checks possible moves, a
model checker, the software tool that performs the model checking, examines all possible
system scenarios in a systematic manner. In this way, it can be shown that a given system
model truly satisfies a certain property. It is a real challenge to examine the largest possible
state spaces that can be treated with current means, i.e., processors and memories. State-
of-the-art model checkers can handle state spaces of about 108 to 109 states with explicit
state-space enumeration. Using clever algorithms and tailored data structures, larger state
spaces (1020 up to even 10476 states) can be handled for specific problems. Even the subtle
errors that remain undiscovered using emulation, testing and simulation can potentially
be revealed using model checking.

Model Checking

Modeling

satisfied
counterexample

requirements

Formalizing

specification
property

Simulation
location
error

system model

system

violated +

Figure 1.4: Schematic view of the model-checking approach.

Typical properties that can be checked using model checking are of a qualitative nature:
Is the generated result OK?, Can the system reach a deadlock situation, e.g., when two
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Model Checking 9

concurrent programs are waiting for each other and thus halting the entire system? But
also timing properties can be checked: Can a deadlock occur within 1 hour after a system
reset?, or, Is a response always received within 8 minutes? Model checking requires a
precise and unambiguous statement of the properties to be examined. As with making
an accurate system model, this step often leads to the discovery of several ambiguities
and inconsistencies in the informal documentation. For instance, the formalization of all
system properties for a subset of the ISDN user part protocol revealed that 55% (!) of the
original, informal system requirements were inconsistent.

The system model is usually automatically generated from a model description that is
specified in some appropriate dialect of programming languages like C or Java or hard-
ware description languages such as Verilog or VHDL. Note that the property specification
prescribes what the system should do, and what it should not do, whereas the model
description addresses how the system behaves. The model checker examines all relevant
system states to check whether they satisfy the desired property. If a state is encountered
that violates the property under consideration, the model checker provides a counterex-
ample that indicates how the model could reach the undesired state. The counterexample
describes an execution path that leads from the initial system state to a state that violates
the property being verified. With the help of a simulator, the user can replay the violating
scenario, in this way obtaining useful debugging information, and adapt the model (or the
property) accordingly (see Figure 1.4).

Model checking has been successfully applied to several ICT systems and their applications.
For instance, deadlocks have been detected in online airline reservation systems, modern e-
commerce protocols have been verified, and several studies of international IEEE standards
for in-house communication of domestic appliances have led to significant improvements
of the system specifications. Five previously undiscovered errors were identified in an
execution module of the Deep Space 1 spacecraft controller (see Figure 1.5), in one case
identifying a major design flaw. A bug identical to one discovered by model checking
escaped testing and caused a deadlock during a flight experiment 96 million km from
earth. In the Netherlands, model checking has revealed several serious design flaws in the
control software of a storm surge barrier that protects the main port of Rotterdam against
flooding.

Example 1.1. Concurrency and Atomicity

Most errors, such as the ones exposed in the Deep Space-1 spacecraft, are concerned
with classical concurrency errors. Unforeseen interleavings between processes may cause
undesired events to happen. This is exemplified by analysing the following concurrent
program, in which three processes, Inc, Dec, and Reset, cooperate. They operate on the
shared integer variable x with arbitrary initial value that can be accessed (i.e., read), and
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10 System Verification

Figure 1.5: Modules of NASA’s Deep Space-1 space-craft (launched in October 1998) have
been thoroughly examined using model checking.

modified (i.e., written) by each of the individual processes. The processes are

proc Inc = while true do if x < 200 then x := x+ 1 fi od

proc Dec = while true do if x > 0 then x := x− 1 fi od

proc Reset = while true do if x = 200 then x := 0 fi od

Process Inc increments x if its value is smaller than 200, Dec decrements x if its value is at
least 1, and Reset resets x once it has reached the value 200. They all do so repetitively.

Is the value of x always between (and including) 0 and 200? At first sight this seems to
be true. A more thorough inspection, though, reveals that this is not the case. Suppose
x equals 200. Process Dec tests the value of x, and passes the test, as x exceeds 0.
Then, control is taken over by process Reset. It tests the value of x, passes its test, and
immediately resets x to zero. Then, control is returned to process Dec and this process
decrements x by one, resulting in a negative value for x (viz. -1). Intuitively, we tend to
interpret the tests on x and the assignments to x as being executed atomically, i.e., as a
single step, whereas in reality this is (mostly) not the case.
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Characteristics of Model Checking 11

1.2 Characteristics of Model Checking

This book is devoted to the principles of model checking:

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,

systematically checks whether this property holds
for (a given state in) that model.

The next chapters treat the elementary technical details of model checking. This section
describes the process of model checking (how to use it), presents its main advantages and
drawbacks, and discusses its role in the system development cycle.

1.2.1 The Model-Checking Process

In applying model checking to a design the following different phases can be distinguished:

• Modeling phase:

– model the system under consideration using the model description language of
the model checker at hand;

– as a first sanity check and quick assessment of the model perform some simu-
lations;

– formalize the property to be checked using the property specification language.

• Running phase: run the model checker to check the validity of the property in the
system model.

• Analysis phase:

– property satisfied? → check next property (if any);

– property violated? →
1. analyze generated counterexample by simulation;
2. refine the model, design, or property;
3. repeat the entire procedure.

– out of memory? → try to reduce the model and try again.
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12 System Verification

In addition to these steps, the entire verification should be planned, administered, and
organized. This is called verification organization. We discuss these phases of model
checking in somewhat more detail below.

Modeling The prerequisite inputs to model checking are a model of the system under
consideration and a formal characterization of the property to be checked.

Models of systems describe the behavior of systems in an accurate and unambiguous
way. They are mostly expressed using finite-state automata, consisting of a finite set
of states and a set of transitions. States comprise information about the current values
of variables, the previously executed statement (e.g., a program counter), and the like.
Transitions describe how the system evolves from one state into another. For realistic
systems, finite-state automata are described using a model description language such as
an appropriate dialect/extension of C, Java, VHDL, or the like. Modeling systems, in
particular concurrent ones, at the right abstraction level is rather intricate and is really
an art; it is treated in more detail in Chapter 2.

In order to improve the quality of the model, a simulation prior to the model checking
can take place. Simulation can be used effectively to get rid of the simpler category of
modeling errors. Eliminating these simpler errors before any form of thorough checking
takes place may reduce the costly and time-consuming verification effort.

To make a rigorous verification possible, properties should be described in a precise and
unambiguous manner. This is typically done using a property specification language. We
focus in particular on the use of a temporal logic as a property specification language,
a form of modal logic that is appropriate to specify relevant properties of ICT systems.
In terms of mathematical logic, one checks that the system description is a model of
a temporal logic formula. This explains the term “model checking”. Temporal logic is
basically an extension of traditional propositional logic with operators that refer to the
behavior of systems over time. It allows for the specification of a broad range of relevant
system properties such as functional correctness (does the system do what it is supposed
to do?), reachability (is it possible to end up in a deadlock state?), safety (“something
bad never happens”), liveness (“something good will eventually happen”), fairness (does,
under certain conditions, an event occur repeatedly?), and real-time properties (is the
system acting in time?).

Although the aforementioned steps are often well understood, in practice it may be a
serious problem to judge whether the formalized problem statement (model + properties)
is an adequate description of the actual verification problem. This is also known as the
validation problem. The complexity of the involved system, as well as the lack of precision
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Characteristics of Model Checking 13

of the informal specification of the system’s functionality, may make it hard to answer this
question satisfactorily. Verification and validation should not be confused. Verification
amounts to check that the design satisfies the requirements that have been identified, i.e.,
verification is “check that we are building the thing right”. In validation, it is checked
whether the formal model is consistent with the informal conception of the design, i.e.,
validation is “check that we are verifying the right thing”.

Running the Model Checker The model checker first has to be initialized by ap-
propriately setting the various options and directives that may be used to carry out the
exhaustive verification. Subsequently, the actual model checking takes place. This is
basically a solely algorithmic approach in which the validity of the property under consid-
eration is checked in all states of the system model.

Analyzing the Results There are basically three possible outcomes: the specified
property is either valid in the given model or not, or the model turns out to be too large
to fit within the physical limits of the computer memory.

In case the property is valid, the following property can be checked, or, in case all properties
have been checked, the model is concluded to possess all desired properties.

Whenever a property is falsified, the negative result may have different causes. There may
be a modeling error, i.e., upon studying the error it is discovered that the model does not
reflect the design of the system. This implies a correction of the model, and verification
has to be restarted with the improved model. This reverification includes the verification
of those properties that were checked before on the erroneous model and whose verification
may be invalidated by the model correction! If the error analysis shows that there is no
undue discrepancy between the design and its model, then either a design error has been
exposed, or a property error has taken place. In case of a design error, the verification
is concluded with a negative result, and the design (together with its model) has to be
improved. It may be the case that upon studying the exposed error it is discovered that the
property does not reflect the informal requirement that had to be validated. This implies
a modification of the property, and a new verification of the model has to be carried out.
As the model is not changed, no reverification of properties that were checked before has
to take place. The design is verified if and only if all properties have been checked with
respect to a valid model.

Whenever the model is too large to be handled – state spaces of real-life systems may be
many orders of magnitude larger than what can be stored by currently available memories
– there are various ways to proceed. A possibility is to apply techniques that try to exploit
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14 System Verification

implicit regularities in the structure of the model. Examples of these techniques are the
representation of state spaces using symbolic techniques such as binary decision diagrams
or partial order reduction. Alternatively, rigorous abstractions of the complete system
model are used. These abstractions should preserve the (non-)validity of the properties
that need to be checked. Often, abstractions can be obtained that are sufficiently small
with respect to a single property. In that case, different abstractions need to be made for
the model at hand. Another way of dealing with state spaces that are too large is to give
up the precision of the verification result. The probabilistic verification approaches explore
only part of the state space while making a (often negligible) sacrifice in the verification
coverage. The most important state-space reduction strategies are discussed in Chapters
7 through 9 of this monograph.

Verification Organization The entire model-checking process should be well orga-
nized, well structured, and well planned. Industrial applications of model checking have
provided evidence that the use of version and configuration management is of particular
relevance. During the verification process, for instance, different model descriptions are
made describing different parts of the system, various versions of the verification mod-
els are available (e.g., due to abstraction), and plenty of verification parameters (e.g.,
model-checking options) and results (diagnostic traces, statistics) are available. This in-
formation needs to be documented and maintained very carefully in order to manage a
practical model-checking process and to allow the reproduction of the experiments that
were carried out.

1.2.2 Strengths and Weaknesses

The strengths of model checking:

• It is a general verification approach that is applicable to a wide range of applications
such as embedded systems, software engineering, and hardware design.

• It supports partial verification, i.e., properties can be checked individually, thus
allowing focus on the essential properties first. No complete requirement specification
is needed.

• It is not vulnerable to the likelihood that an error is exposed; this contrasts with
testing and simulation that are aimed at tracing the most probable defects.

• It provides diagnostic information in case a property is invalidated; this is very useful
for debugging purposes.
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Characteristics of Model Checking 15

• It is a potential “push-button” technology; the use of model checking requires neither
a high degree of user interaction nor a high degree of expertise.

• It enjoys a rapidly increasing interest by industry; several hardware companies have
started their in-house verification labs, job offers with required skills in model check-
ing frequently appear, and commercial model checkers have become available.

• It can be easily integrated in existing development cycles; its learning curve is not
very steep, and empirical studies indicate that it may lead to shorter development
times.

• It has a sound and mathematical underpinning; it is based on theory of graph algo-
rithms, data structures, and logic.

The weaknesses of model checking:

• It is mainly appropriate to control-intensive applications and less suited for data-
intensive applications as data typically ranges over infinite domains.

• Its applicability is subject to decidability issues; for infinite-state systems, or reason-
ing about abstract data types (which requires undecidable or semi-decidable logics),
model checking is in general not effectively computable.

• It verifies a system model, and not the actual system (product or prototype) itself;
any obtained result is thus as good as the system model. Complementary techniques,
such as testing, are needed to find fabrication faults (for hardware) or coding errors
(for software).

• It checks only stated requirements, i.e., there is no guarantee of completeness. The
validity of properties that are not checked cannot be judged.

• It suffers from the state-space explosion problem, i.e., the number of states needed
to model the system accurately may easily exceed the amount of available computer
memory. Despite the development of several very effective methods to combat this
problem (see Chapters 7 and 8), models of realistic systems may still be too large to
fit in memory.

• Its usage requires some expertise in finding appropriate abstractions to obtain smaller
system models and to state properties in the logical formalism used.

• It is not guaranteed to yield correct results: as with any tool, a model checker may
contain software defects.2

2Parts of the more advanced model-checking procedures have been formally proven correct using theo-
rem provers to circumvent this.
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16 System Verification

• It does not allow checking generalizations: in general, checking systems with an ar-
bitrary number of components, or parameterized systems, cannot be treated. Model
checking can, however, suggest results for arbitrary parameters that may be verified
using proof assistants.

We believe that one can never achieve absolute guaranteed correctness for systems of
realistic size. Despite the above limitations we conclude that

Model checking is an effective technique
to expose potential design errors.

Thus, model checking can provide a significant increase in the level of confidence of a
system design.

1.3 Bibliographic Notes

Model checking. Model checking originates from the independent work of two pairs in
the early eighties: Clarke and Emerson [86] and Queille and Sifakis [347]. The term
model checking was coined by Clarke and Emerson. The brute-force examination of the
entire state space in model checking can be considered as an extension of automated
protocol validation techniques by Hajek [182] and West [419, 420]. While these earlier
techniques were restricted to checking the absence of deadlocks or livelocks, model checking
allows for the examination of broader classes of properties. Introductory papers on model
checking can be found in [94, 95, 96, 293, 426]. The limitations of model checking were
discussed by Apt and Kozen [17]. More information on model checking is available in the
earlier books by Holzmann [205], McMillan [288], and Kurshan [250] and the more recent
works by Clarke, Grumberg, and Peled [92], Huth and Ryan [219], Schneider [365], and
Bérard et al. [44]. The model-checking trajectory has recently been described by Ruys
and Brinksma [360].

Software verification. Empirical data about software engineering is gathered by the Cen-
ter for Empirically Based Software Engineering (www.cebase.org); their collected data
about software defects has recently been summarized by Boehm and Basili [53]. The dif-
ferent characterizations of verification (“are we building the thing right?”) and validation
(“are we building the right thing?”) originate from Boehm [52]. An overview of software
testing is given by Whittaker [421]; books about software testing are by Myers [308] and
Beizer [36]. Testing based on formal specifications has been studied extensively in the area
of communication protocols. This has led to an international standard for conformance
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testing [222]. The use of software verification techniques by the German software industry
has been studied by Liggesmeyer et al. [275]. Books by Storey [381] and Leveson [269]
describe techniques for developing safety-critical software and discuss the role of formal
verification in this context. Rushby [359] addresses the role of formal methods for devel-
oping safety-critical software. The book of Peled [327] gives a detailed account of formal
techniques for software reliability that includes testing, model checking, and deductive
methods.

Model-checking software. Model-checking communication protocols has become popular
through the pioneering work of Holzmann [205, 206]. An interesting project at Bell Labs
in which a model-checking team and a traditional design team worked on the design of
part of the ISDN user part protocol has been reported by Holzmann [207]. In this large
case study, 112 serious design flaws were discovered while checking 145 formal properties in
about 10,000 verification runs. Errors found by Clarke et al. [89] in the IEEE Futurebus+
standard (checking a model of more than 1030 states) has led to a substantial revision of
the protocol by IEEE. Chan et al. [79] used model checking to verify the control software
of a traffic control and alert system for airplanes. Recently, Staunstrup et al. [377] have
reported the succesful model checking of a train model consisting of 1421 state machines
comprising a state space of 10476 states. Lowe [278], using model checking, discovered a
flaw in the well-known Needham-Schroeder authentication algorithm that remained un-
detected for over 17 years. The usage of formal methods (that includes model checking)
in the software development process of a safety-critical system within a Dutch software
house is presented by Tretmans, Wijbrans, and Chaudron [393]. The formal analysis of
NASA’s Mars Pathfinder and the Deep Space-1 spacecraft are addressed by Havelund,
Lowry, and Penix [194], and Holzmann, Najm, and Serhrouchini [210], respectively. The
automated generation of abstract models amenable to model checking from programs
written in programming languages such as C, C++, or Java has been pursued, for instance,
by Godefroid [170], Dwyer, Hatcliff, and coworkers [193], at Microsoft Research by Ball,
Podelski, and Rajamani [33] and at NASA Research by Havelund and Pressburger [195].

Model-checking hardware. Applying model checking to hardware originates from Browne
et al. [66] analyzing some moderate-size self-timed sequential circuits. Successful appli-
cations of (symbolic) model checking to large hardware systems have been first reported
by Burch et al. [75] in the early nineties. They analyzed a synchronous pipeline circuit
of approximately 1020 states. Overviews of formal hardware verification techniques can
be found in works by Gupta [179], and the books by Yoeli [428] and Kropf [246]. The
need for formal verification techniques for hardware verification has been advocated by,
among others, Sangiovanni-Vincentelli, McGeer, and Saldanha [362]. The integration of
model-checking techniques for error finding in the hardware development process at IBM
has been recently described by Schlipf et al. [364] and Abarbanel-Vinov et al. [2]. They
conclude that model checking is a powerful extension of the traditional verification pro-

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
         http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:26:07.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



18 System Verification

cess, and consider it as complementary to simulation/emulation. The design of a memory
bus adapter at IBM showed, e.g., that 24% of all defects were found with model checking,
while 40% of these errors would most likely not have been found by simulation.
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