
Chapter 3

Linear-Time Properties

For verification purposes, the transition system model of the system under consideration
needs to be accompanied with a specification of the property of interest that is to be
verified. This chapter introduces some important, though relatively simple, classes of
properties. These properties are formally defined and basic model-checking algorithms
are presented to check such properties in an automated manner. This chapter focuses on
linear-time behavior and establishes relations between the different classes of properties
and trace behavior. Elementary forms of fairness are introduced and compared.

3.1 Deadlock

Sequential programs that are not subject to divergence (i.e., endless loops) have a terminal
state, a state without any outgoing transitions. For parallel systems, however, computa-
tions typically do not terminate—consider, for instance, the mutual exclusion programs
treated so far. In such systems, terminal states are undesirable and mostly represent a
design error. Apart from “trivial” design errors where it has been forgotten to indicate
certain activities, in most cases such terminal states indicate a deadlock. A deadlock oc-
curs if the complete system is in a terminal state, although at least one component is in a
(local) nonterminal state. The entire system has thus come to a halt, whereas at least one
component has the possibility to continue to operate. A typical deadlock scenario occurs
when components mutually wait for each other to progress.

89
Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

90 Linear-Time Properties

red

green

red

green

α β

βα

TrLight1

TrLight2

TrLight1 ||TrLight2

〈red , red〉

Figure 3.1: An example of a deadlock situation.

Example 3.1. Deadlock for Fault Designed Traffic Lights

Consider the parallel composition of two transition systems

TrLight1 ‖ TrLight2

modeling the traffic lights of two intersecting roads. Both traffic lights synchronize by
means of the actions α and β that indicate the change of light (see Figure 3.1). The
apparently trivial error to let both traffic lights start with a red light results in a deadlock.
While the first traffic light is waiting to be synchronized on action α, the second traffic
light is blocked, since it is waiting to be synchronized with action β.

Example 3.2. Dining Philosophers

This example, originated by Dijkstra, is one of the most prominent examples in the field
of concurrent systems.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Deadlock 91

P0

P1 P2

P3

P4

Stick0

Stick1

Stick2

Stick3Stick4

Five philosophers are sitting at a round table with a bowl of rice in the middle. For the
philosophers (being a little unworldly) life consists of thinking and eating (and waiting,
as we will see). To take some rice out of the bowl, a philosopher needs two chopsticks.
In between two neighboring philosophers, however, there is only a single chopstick. Thus,
at any time only one of two neighboring philosophers can eat. Of course, the use of the
chopsticks is exclusive and eating with hands is forbidden.

Note that a deadlock scenario occurs when all philosophers possess a single chopstick.
The problem is to design a protocol for the philosophers, such that the complete system is
deadlock-free, i.e., at least one philosopher can eat and think infinitely often. Additionally,
a fair solution may be required with each philosopher being able to think and eat infinitely
often. The latter characteristic is called freedom of individual starvation.

The following obvious design cannot ensure deadlock freedom. Assume the philosophers
and the chopsticks are numbered from 0 to 4. Furthermore, assume all following calcula-
tions be “modulo 5”, e.g., chopstick i−1 for i=0 denotes chopstick 4, and so on.

Philosopher i has stick i on his left and stick i−1 on his right side. The action request i,i

express that stick i is picked up by philosopher i. Accordingly, request i−1,i denotes the
action by means of which philosopher i picks up the (i−1)th stick. The actions release i,i

and release i−1,i have a corresponding meaning.

The behavior of philosopher i (called process Phil i) is specified by the transition system
depicted in the left part of Figure 3.2. Solid arrows depict the synchronizations with the
i-th stick, dashed arrows refer to communications with the i−1th stick. The sticks are
modeled as independent processes (called Stick i) with which the philosophers synchronize
via actions request and release; see the right part of Figure 3.2 that represents the process
of stick i. A stick process prevents philosopher i from picking up the ith stick when
philosopher i+1 is using it.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

92 Linear-Time Properties

wait for
left stick

left stick right stick

wait for
right stick

return the return the

think

eat

requesti i

releasei i

requesti 1 i

requesti 1 irequesti i

releasei 1 i

releasei 1 ireleasei i

available

occupied occupied

reqi i reqi i 1

reli i reli i 1

Figure 3.2: Transition systems for the ith philosopher and the ith stick.

The complete system is of the form:

Phil4 ‖Stick 3 ‖Phil3 ‖Stick2 ‖Phil2 ‖Stick1 ‖Phil 1 ‖Stick0 ‖Phil0 ‖Stick4

This (initially obvious) design leads to a deadlock situation, e.g., if all philosophers pick
up their left stick at the same time. A corresponding execution leads from the initial state

〈think4, avail3, think3, avail 2, think 2, avail 1, think 1, avail 0, think 0, avail 4〉

by means of the action sequence request4, request3, request2, request1, request0 (or any
other permutation of these 5 request actions) to the terminal state

〈wait4,0, occ4,4,wait3,4, occ3,3,wait2,3, occ2,2,wait1,2, occ1,1,wait0,1, occ0,0〉.

This terminal state represents a deadlock with each philosopher waiting for the needed
stick to be released.

A possible solution to this problem is to make the sticks available for only one philosopher
at a time. The corresponding chopstick process is depicted in the right part of Figure 3.3.
In state available i,j only philosopher j is allowed to pick up the ith stick. The above-
mentioned deadlock situation can be avoided by the fact that some sticks (e.g., the first,
the third, and the fifth stick) start in state available i,i, while the remaining sticks start in
state available i,i+1. It can be verified that this solution is deadlock- and starvation-free.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Deadlock 93

wait for
left stick

left stick right stick

wait for
right stick

return the return the

think

eat

reqi i

reli i

reqi 1 i

reqi 1 ireqi i

reli 1 i

reli 1 ireli i

availablei

occupied occupied

reqi i

reqi i 1

reli i 1

availablei 1

reli i

Figure 3.3: Improved variant of the ith philosopher and the ith stick.

A further characteristic often required for concurrent systems is robustness against failure
of their components. In the case of the dining philosophers, robustness can be formulated
in a way that ensures deadlock and starvation freedom even if one of the philosophers is
“defective” (i.e., does not leave the think phase anymore).1 The above-sketched deadlock-
and starvation-free solution can be modified to a fault-tolerant solution by changing the
transition systems of philosophers and sticks such that philosopher i+1 can pick up the ith
stick even if philosopher i is thinking (i.e., does not need stick i) independent of whether
stick i is in state available i,i or available i,i+1. The corresponding is also true when the roles
of philosopher i and i+1 are reversed. This can be established by adding a single Boolean
variable xi to philosopher i (see Figure 3.4). The variable xi informs the neighboring
philosophers about the current location of philosopher i. In the indicated sketch, xi is a
Boolean variable which is true if and only if the ith philosopher is thinking. Stick i is
made available to philosopher i if stick i is in location available i (as before), or if stick i
is in location available i+1 while philosopher i+1 is thinking.

Note that the above description is at the level of program graphs. The complete system is
a channel system with request and release actions standing for handshaking over a channel
of capacity 0.

1Formally, we add a loop to the transition system of a defective philosopher at state think i.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

94 Linear-Time Properties

think

wait wait

reqi i reqi 1 i

......

xi : false

xi : true xi : true
availablei

occupied occupied

reqi i

reqi i 1

availablei 1

falls xi

reqi i 1
xi 1

Figure 3.4: Fault-tolerant variant of the dining philosophers.

3.2 Linear-Time Behavior

To analyze a computer system represented by a transition system, either an action-based or
a state-based approach can be followed. The state-based approach abstracts from actions;
instead, only labels in the state sequences are taken into consideration. In contrast,
the action-based view abstracts from states and refers only to the action labels of the
transitions. (A combined action- and state-based view is possible, but leads to more
involved definitions and concepts. For this reason it is common practice to abstract from
either action or state labels.) Most of the existing specification formalisms and associated
verification methods can be formulated in a corresponding way for both perspectives.

In this chapter, we mainly focus on the state-based approach. Action labels of transitions
are only necessary for modeling communication; thus, they are of no relevance in the
following chapters. Instead, we use the atomic propositions of the states to formulate
system properties. Therefore, the verification algorithms operate on the state graph of a
transition system, the digraph originating from a transition system by abstracting from
action labels.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Linear-Time Behavior 95

3.2.1 Paths and State Graph

Let TS = (S,Act,→, I,AP, L) be a transition system.

Definition 3.3. State Graph

The state graph of TS, notation G(TS), is the digraph (V,E) with vertices V = S and
edges E = {(s, s′) ∈ S × S | s′ ∈ Post(s)}.

The state graph of transition system TS has a vertex for each state in TS and an edge
between vertices s and s′ whenever s′ is a direct successor of s in TS for some action α. It
is thus simply obtained from TS by omitting all state labels (i.e., the atomic propositions),
all transition labels (i.e., the actions), and by ignoring the fact whether a state is initial
or not. Moreover, multiple transitions (that have different action labels) between states
are represented by a single edge. This seems to suggest that the state labels are no longer
of any use; later on, we will see how these state labels will be used to check the validity of
properties.

Let Post∗(s) denote the states that are reachable in state graph G(TS) from s. This notion
is generalized toward sets of states in the usual way (i.e., pointwise extension): for C ⊆ S
let

Post∗(C) =
⋃
s∈C

Post∗(s).

The notations Pre∗(s) and Pre∗(C) have analogous meaning. The set of states that are
reachable from some initial state, notation Reach(TS), equals Post∗(I).

As explained in Chapter 2, the possible behavior of a transition system is defined by an
execution fragment. Recall that an execution fragment is an alternating sequence of states
and actions. As we consider a state-based approach, the actions are not of importance and
are omitted. The resulting “runs” of a transition system are called paths. The following
definitions define path fragments, initial and maximal path fragments, and so on. These
notions are easily obtained from the same notions for executions by omitting the actions.

Definition 3.4. Path Fragment

A finite path fragment π̂ of TS is a finite state sequence s0 s1 . . . sn such that si ∈ Post(si−1)
for all 0 < i � n, where n � 0. An infinite path fragment π is an infinite state sequence
s0 s1 s2 . . . such that si ∈ Post(si−1) for all i > 0.

We adopt the following notational conventions for infinite path fragment π = s0 s1 The
initial state of π is denoted by first(π) = s0. For j � 0, let π[j] = sj denote the jth state of

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

96 Linear-Time Properties

π and π[..j] denote the jth prefix of π, i.e., π[..j] = s0 s1 . . . sj. Similarly, the jth suffix of
π, notation π[j..], is defined as π[j..] = sj sj+1 These notions are defined analogously
for finite paths. Besides, for finite path π̂ = s0 s1 . . . sn, let last(π̂) = sn denote the last
state of π̂, and len(π̂) = n denote the length of π̂. For infinite path π these notions are
defined by len(π) =∞ and last(π) = ⊥, where ⊥ denotes “undefined”.

Definition 3.5. Maximal and Initial Path Fragment

A maximal path fragment is either a finite path fragment that ends in a terminal state, or
an infinite path fragment. A path fragment is called initial if it starts in an initial state,
i.e., if s0 ∈ I.

A maximal path fragment is a path fragment that cannot be prolonged: either it is infinite
or it is finite but ends in a state from which no transition can be taken. Let Paths(s) denote
the set of maximal path fragments π with first(π) = s, and Pathsfin(s) denote the set of
all finite path fragments π̂ with first(π̂) = s.

Definition 3.6. Path

A path of transition system TS is an initial, maximal path fragment.2

Let Paths(TS) denote the set of all paths in TS, and Pathsfin(TS) the set of all initial,
finite path fragments of TS.

Example 3.7. Beverage Vending Machine

Consider the beverage vending machine of Example 2.2 on page 21. For convenience, its
transition system is repeated in Figure 3.5. As the state labeling is simply L(s) = { s }
for each state s, the names of states may be used in paths (as in this example), as well as
atomic propositions (as used later on). Example path fragments of this transition system
are

π1 = pay select soda pay select soda . . .
π2 = select soda pay select beer . . .
π̂ = pay select soda pay select soda .

These path fragments result from the execution fragments indicated in Example 2.8 on
page 25. Only π1 is a path. The infinite path fragment π2 is maximal but not initial.
π̂ is initial but not maximal since it is finite while ending in a state that has outgoing

2It is important to realize the difference between the notion of a path in a transition system and the
notion of a path in a digraph. A path in a transition system is maximal, whereas a path in a digraph in
the graph-theoretical sense is not always maximal. Besides, paths in a digraph are usually required to be
finite whereas paths in transition systems may be infinite.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Linear-Time Behavior 97

pay

selectsoda beer

insert coin

τ
τ

get soda get beer

Figure 3.5: A transition system of a simple beverage vending machine.

transitions. We have that last(π̂) = soda , first(π2) = select , π1[0] = pay , π1[3] = pay ,
π1[..5] = π̂, π̂[..2] = π̂[3..], len(π̂) = 5, and len(π1) =∞.

3.2.2 Traces

Executions (as introduced in Chapter 2) are alternating sequences consisting of states
and actions. Actions are mainly used to model the (possibility of) interaction, be it
synchronous or asynchronous communication. In the sequel, interaction is not our prime
interest, but instead we focus on the states that are visited during executions. In fact, the
states themselves are not “observable”, but just their atomic propositions. Thus, rather
than having an execution of the form s0

α0−−→ s1 α1−−→ s2 . . . we consider sequences of the
form L(s0)L(s1)L(s2) . . . that register the (set of) atomic propositions that are valid along
the execution. Such sequences are called traces.

The traces of a transition system are thus words over the alphabet 2AP. In the following
it is assumed that a transition system has no terminal states. In this case, all traces are
infinite words. (Recall that the traces of a transition system have been defined as traces
induced by its initial maximal path fragments. See also Appendix A.2, page 912). This
assumption is made for simplicity and does not impose any serious restriction. First of all,
prior to checking any (linear-time) property, a reachability analysis could be carried out to
determine the set of terminal states. If indeed some terminal state is encountered, the sys-
tem contains a deadlock and has to be repaired before any further analysis. Alternatively,
each transition system TS (that probably has a terminal state) can be extended such that
for each terminal state s in TS there is a new state sstop, transition s−→ sstop , and sstop is
equipped with a self-loop, i.e., sstop −→ sstop . The resulting “equivalent” transition system
obviously has no terminal states.3

3A further alternative is to adapt the linear-time framework for transition systems with terminal states.
The main concepts of this chapter are still applicable, but require some adaptions to distinguish nonmax-

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

98 Linear-Time Properties

Definition 3.8. Trace and Trace Fragment

Let TS = (S,Act,→, I,AP, L) be a transition system without terminal states. The trace
of the infinite path fragment π = s0 s1 . . . is defined as trace(π) = L(s0)L(s1) The trace
of the finite path fragment π̂ = s0 s1 . . . sn is defined as trace(π̂) = L(s0)L(s1) . . . L(sn).

The trace of a path fragment is thus the induced finite or infinite word over the alphabet
2AP, i.e., the sequence of sets of atomic propositions that are valid in the states of the
path. The set of traces of a set Π of paths is defined in the usual way:

trace(Π) = { trace(π) | π ∈ Π }.

A trace of state s is the trace of an infinite path fragment π with first(π) = s. Accordingly,
a finite trace of s is the trace of a finite path fragment that starts in s. Let Traces(s) denote
the set of traces of s, and Traces(TS) the set of traces of the initial states of transition
system TS:

Traces(s) = trace(Paths(s)) and Traces(TS) =
⋃
s∈I

Traces(s).

In a similar way, the finite traces of a state and of a transition system are defined:

Tracesfin(s) = trace(Pathsfin(s)) and Tracesfin(TS) =
⋃
s∈I

Tracesfin(s).

Example 3.9. Semaphore-Based Mutual Exclusion

Consider the transition system TSSem as depicted in Figure 3.6. This two-process mutual
exclusion example has been described before in Example 2.24 (page 43).

Assume the available atomic propositions are crit1 and crit2, i.e.,

AP = { crit1, crit2 }.

The proposition crit1 holds in any state of the transition system TSSem where the first
process (called P1) is in its critical section. Proposition crit2 has the same meaning for
the second process (i.e., P2).

Consider the execution in which the processes P1 and P2 enter their critical sections in
an alternating fashion. Besides, they only request to enter the critical section when the

imal and maximal finite paths.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Linear-Time Behavior 99

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

Figure 3.6: Transition system of semaphore-based mutual exclusion algorithm.

other process is no longer in its critical section. Situations in which one process is in its
critical section whereas the other is moving from the noncritical state to the waiting state
are impossible.

The path π in the state graph of TSSem where process P1 is the first to enter its critical
section is of the form

π = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉 →
〈n1, n2, y = 1〉 → 〈n1, w2, y = 1〉 → 〈n1, c2, y = 0〉 → . . .

The trace of this path is the infinite word:

trace(π) = ∅ ∅ { crit1 }∅ ∅ { crit2 }∅ ∅ { crit1 }∅ ∅ { crit2 }

The trace of the finite path fragment

π̂ = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈w1, w2, y = 1〉 →
〈w1, c2, y = 0〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉

is trace(π̂) = ∅ ∅ ∅ { crit2 }∅ { crit1 }.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

100 Linear-Time Properties

3.2.3 Linear-Time Properties

Linear-time properties specify the traces that a transition system should exhibit. Infor-
mally speaking, one could say that a linear-time property specifies the admissible (or
desired) behavior of the system under consideration. In the following we provide a formal
definition of such properties. This definition is rather elementary, and gives a good basic
understanding of what a linear-time property is. In Chapter 5, a logical formalism will be
introduced that allows for the specification of linear-time properties.

In the following, we assume a fixed set of propositions AP. A linear-time (LT) property is
a requirement on the traces of a transition system. Such property can be understood as a
requirement over all words over AP, and is defined as the set of words (over AP) that are
admissible:

Definition 3.10. LT Property

A linear-time property (LT property) over the set of atomic propositions AP is a subset
of (2AP)ω.

Here, (2AP)ω denotes the set of words that arise from the infinite concatenation of words
in 2AP. An LT property is thus a language (set) of infinite words over the alphabet 2AP.
Note that it suffices to consider infinite words only (and not finite words), as transition
systems without terminal states are considered. The fulfillment of an LT property by a
transition system is defined as follows.

Definition 3.11. Satisfaction Relation for LT Properties

Let P be an LT property over AP and TS = (S,Act,→, I,AP, L) a transition system
without terminal states. Then, TS = (S,Act,→, I,AP, L) satisfies P , denoted TS |= P ,
iff Traces(TS) ⊆ P . State s ∈ S satisfies P , notation s |= P , whenever Traces(s) ⊆ P .

Thus, a transition system satisfies the LT property P if all its traces respect P , i.e., if all
its behaviors are admissible. A state satisfies P whenever all traces starting in this state
fulfill P .

Example 3.12. Traffic Lights

Consider two simplified traffic lights that only have two possible settings: red and green.
Let the propositions of interest be

AP = { red1, green1, red2, green2 }

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Linear-Time Behavior 101

red1

green1

αα

green2

red2

αα

〈red1, green2〉

〈green1, red2〉

αα

Figure 3.7: Two fully synchronized traffic lights (left and middle) and their parallel com-
position (right).

We consider two LT properties of these traffic lights and give some example words that
are contained by such properties. First, consider the property P that states:

“The first traffic light is infinitely often green”.

This LT property corresponds to the set of infinite words of the form A0A1A2 . . . over
2AP, such that green1 ∈ Ai holds for infinitely many i. For example, P contains the
infinite words

{ red1, green2 } { green1, red2 } { red1, green2 } { green1, red2 } . . . ,
∅ { green1 }∅ { green1 }∅ { green1 }∅ { green1 } ∅ . . .

{ red1, green1 } { red1, green1 } { red1, green1 } { red1, green1 } . . . and

{ green1, green2 } { green1, green2 } { green1, green2 } { green1, green2 } . . .
The infinite word { red1, green1 } { red1, green1 }∅ ∅ ∅ ∅ . . . is not in P as it contains only
finitely many occurrences of green1.

As a second LT property, consider P ′:

“The traffic lights are never both green simultaneously”.

This property is formalized by the set of infinite words of the form A0A1A2 . . . such that
either green1 /∈ Ai or green2 /∈ Ai, for all i � 0. For example, the following infinite words
are in P ′:

{ red1, green2 } { green1, red2 } { red1, green2 } { green1, red2 } . . . ,
∅ { green1 }∅ { green1 }∅ { green1 }∅ { green1 }∅ . . . and

{ red1, green1 } { red1, green1 } { red1, green1 } { red1, green1 } . . . ,
whereas the infinite word { red1 green2 } { green1, green2 }, . . . is not in P ′.

The traffic lights depicted in Figure 3.7 are at intersecting roads and their switching is
synchronized, i.e., if one light switches from red to green, the other switches from green to

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

102 Linear-Time Properties

red. In this way, the lights always have complementary colors. Clearly, these traffic lights
satisfy both P and P ′. Traffic lights that switch completely autonomously will neither
satisfy P—there is no guarantee that the first traffic light is green infinitely often—nor
P ′.

Often, an LT property does not refer to all atomic propositions occurring in a transition
system, but just to a relatively small subset thereof. For a property P over a set of
propositions AP′ ⊆ AP, only the labels in AP′ are relevant. Let π̂ be a finite path
fragment of TS. We write traceAP′(π̂) to denote the finite trace of π̂ where only the
atomic propositions in AP′ are considered. Accordingly, traceAP′(π) denotes the trace of
an infinite path fragment π by focusing on propositions in AP′ Thus, for π = s0 s1 s2 . . .,
we have

traceAP′(π) = L′(s0)L′(s1) . . . = (L(s0) ∩ AP′) (L(s1) ∩ AP′) . . .

Let TracesAP′(TS) denote the set of traces traceAP′(Paths(TS)). Whenever the set AP′ of
atomic propositions is clear from the context, the subscript AP′ is omitted. In the rest of
this chapter, the restriction to a relevant subset of atomic propositions is often implicitly
made.

Example 3.13. The Mutual Exclusion Property

In Chapter 2, several mutual exclusion algorithms have been considered. For specifying the
mutual exclusion property—always at most one process is in its critical section—it suffices
to only consider the atomic propositions crit1 and crit2. Other atomic propositions are
not of any relevance for this property. The formalization of the mutual exclusion property
is given by the LT property

Pmutex = set of infinite words A0A1A2 . . . with { crit1, crit2 } �⊆ Ai for all 0 � i.

For example, the infinite words

{ crit1 } { crit2 } { crit1 } { crit2 } { crit1 } { crit2 } . . . , and

{ crit1 } { crit1 } { crit1 } { crit1 } { crit1 } { crit1 } . . . , and

∅ ∅ ∅ ∅ ∅ ∅ ∅ . . .

are all contained in Pmutex . However, this does not apply to words of the form

{ crit1 }∅ { crit1, crit2 } . . .

The transition system TSArb = (TS1 |||TS2) ‖ Arbiter described in Example 2.28 (page 50)
fulfills the mutex property, i.e.,

TSArb |= Pmutex .

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Linear-Time Behavior 103

It is left to the reader to check that the mutex property is also fulfilled by the semaphore-
based mutual exclusion algorithm (see Figure 3.6 on page 99) and Peterson’s algorithm
(see Example 2.25 on page 45).

Example 3.14. Starvation Freedom

Guaranteeing mutual exclusion is a significant property of mutual exclusion algorithms,
but is not the only relevant property. An algorithm that never allows a process to enter
its critical section will do, but is certainly not intended. Besides, a property is imposed
that requires a process that wants to enter the critical section to be able to eventually do
so. This property prevents a process from waiting ad infinitum and is formally specified
as the LT property Pfinwait = set of infinite words A0A1A2 . . . such that

∀j.lwaiti ∈ Aj ⇒ ∃k � j.waiti ∈ Ak for each i ∈ { 1, 2 }.
Here, we assumed the set of propositions to be:

AP = {wait1, crit1,wait2, crit2 }.
Property Pfinwait expresses that each of the two processes enters its critical section eventu-
ally if they are waiting. That is, a process has to wait some finite amount before entering
the critical section. It does not express that a process that waits often, is often entering
the critical section.

Consider the following variant. The LT property Pnostarve = set of infinite wordsA0A1A2 . . .
such that:

(∀k � 0.∃j � k. waiti ∈ Aj) ⇒ (∀k � 0.∃j � k. criti ∈ Aj) for each i ∈ { 1, 2 }.
In abbreviated form we write:(∞

∃ j. waiti ∈ Aj

)
⇒

(∞
∃ j. criti ∈ Aj

)
for each i ∈ { 1, 2 }

where
∞
∃ stands for “there are infinitely many”.

Property Pnostarve expresses that each of the two processes enters its critical section in-
finitely often if they are waiting infinitely often. This natural requirement is, however, not
satisfied for the semaphore-based solution, since

∅ ({wait2 } {wait1,wait2 } { crit1,wait2 })ω

is a possible trace of the transition system but does not belong to Pnostarve . This trace
represents an execution in which only the first process enters its critical section infinitely
often. In fact, the second process waits infinitely long to enter its critical section.

It is left to the reader to check that the transition system modeling Peterson’s algorithm
(see Example 2.25, page 45) does indeed satisfy Pnostarve .

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

104 Linear-Time Properties

3.2.4 Trace Equivalence and Linear-Time Properties

LT properties specify the (infinite) traces that a transition system should exhibit. If
transition systems TS and TS′ have the same traces, one would expect that they satisfy
the same LT properties. Clearly, if TS |= P , then all traces of TS are contained in P , and
when Traces(TS) = Traces(TS′), the traces of TS′ are also contained in P . Otherwise,
whenever TS �|= P , there is a trace in Traces(TS) that is prohibited by P , i.e., not included
in the set P of traces. As Traces(TS) = Traces(TS′), also TS′ exhibits this prohibited trace,
and thus TS′ �|= P . The precise relationship between trace equivalence, trace inclusion,
and the satisfaction of LT properties is the subject of this section.

We start by considering trace inclusion and its importance in concurrent system design.
Trace inclusion between transition systems TS and TS′ requires that all traces exhibited
by TS can also be exhibited by TS′, i.e., Traces(TS) ⊆ Traces(TS′). Note that transition
system TS′ may exhibit more traces, i.e., may have some (linear-time) behavior that TS
does not have. In stepwise system design, where designs are successively refined, trace
inclusion is often viewed as an implementation relation in the sense that

Traces(TS) ⊆ Traces(TS′) means TS “is a correct implementation of” TS′.

For example, let TS′ be a (more abstract) design where parallel composition is modeled by
interleaving, and TS its realization where (some of) the interleaving is resolved by means
of some scheduling mechanism. TS may thus be viewed as an “implementation” of TS′,
and clearly, Traces(TS) ⊆ Traces(TS′).

What does trace inclusion have to do with LT properties? The following theorem shows
that trace inclusion is compatible with requirement specifications represented as LT prop-
erties.

Theorem 3.15. Trace Inclusion and LT Properties

Let TS and TS′ be transition systems without terminal states and with the same set of
propositions AP. Then the following statements are equivalent:

(a) Traces(TS) ⊆ Traces(TS′)

(b) For any LT property P : TS′ |= P implies TS |= P .

Proof: (a) =⇒ (b): Assume Traces(TS) ⊆ Traces(TS′), and let P be an LT property such
that TS′ |= P . From Definition 3.11 it follows that Traces(TS′) ⊆ P . Given Traces(TS) ⊆

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Linear-Time Behavior 105

Traces(TS′), it now follows that Traces(TS) ⊆ P . By Definition 3.11 it follows that
TS |= P .

(b) =⇒ (a): Assume that for all LT properties it holds that: TS′ |= P implies TS |= P .
Let P = Traces(TS′). Obviously, TS′ |= P , as Traces(TS′) ⊆ Traces(TS′). By assumption,
TS |= P . Hence, Traces(TS) ⊆ Traces(TS′).

This simple observation plays a decisive role for the design by means of successive re-
finement. If TS′ is the transition system representing a preliminary design and TS
is a transition system originating from a refinement of TS′ (i.e., a more detailed de-
sign), then it can immediately—without explicit proof—be concluded from the relation
Traces(TS) ⊆ Traces(TS′) that any LT property that holds in TS′ also holds for TS.

Example 3.16. Refining the Semaphore-Based Mutual Exclusion Algorithm

Let TS′ = TSSem , the transition system representing the semaphore-based mutual exclu-
sion algorithm (see Figure 3.6 on page 99) and let TS be the transition system obtained
from TS′ by removing the transition

〈wait1,wait2, y = 1〉 −→ 〈wait1, crit2, y = 0〉.

Stated in words, from the situation in which both processes are waiting, it is no longer
possible that the second process (P2) acquires access to the critical section. This thus yields
a model that assigns higher priority to process P1 than to process P2 when both processes
are competing to access the critical section. As a transition is removed, it immediately
follows that Traces(TS) ⊆ Traces(TS′). Consequently, by the fact that TS′ ensures mutual
exclusion, i.e., TS′ |= Pmutex , it follows by Theorem 3.15 that TS |= Pmutex .

Transition systems are said to be trace-equivalent if they have the same set of traces:

Definition 3.17. Trace Equivalence

Transition systems TS and TS′ are trace-equivalent with respect to the set of propositions
AP if TracesAP(TS) = TracesAP(TS′). 4

Theorem 3.15 implies equivalence of two trace-equivalent transition systems with respect
to requirements formulated as LT properties.

4Here, we assume two transition systems with sets of propositions that include AP.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

106 Linear-Time Properties

Corollary 3.18. Trace Equivalence and LT Properties

Let TS and TS′ be transition systems without terminal states and with the same set of
atomic propositions. Then:

Traces(TS) = Traces(TS′) ⇐⇒ TS and TS′ satisfy the same LT properties.

There thus does not exist an LT property that can distinguish between trace-equivalent
transition systems. Stated differently, in order to establish that the transition systems TS
and TS′ are not trace-equivalent it suffices to find one LT property that holds for one but
not for the other.

Example 3.19. Two Beverage Vending Machines

Consider the two transition systems in Figure 3.8 that both model a beverage vending

pay

selectsoda beerτ
τ

pay

select1 select2soda beer

τ
τ

Figure 3.8: Two beverage vending machines.

machine. For simplicity, the observable action labels of transitions have been omitted.
Both machines are able to offer soda and beer. The left transition system models a
beverage machine that after insertion of a coin nondeterministically chooses to either
provide soda or beer. The right one, however, has two selection buttons (one for each
beverage), and after insertion of a coin, nondeterministically blocks one of the buttons. In
either case, the user has no control over the beverage obtained—the choice of beverage is
under full control of the vending machine.

Let AP = { pay , soda , beer }. Although the two vending machines behave differently, it
is not difficult to see that they exhibit the same traces when considering AP, as for both
machines traces are alternating sequences of pay and either soda or beer. The vending
machines are thus trace-equivalent. By Corollary 3.18 both vending machines satisfy
exactly the same LT properties. Stated differently, it means that there does not exist an
LT property that distinguishes between the two vending machines.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Safety Properties and Invariants 107

3.3 Safety Properties and Invariants

Safety properties are often characterized as “nothing bad should happen”. The mutual
exclusion property—always at most one process is in its critical section—is a typical safety
property. It states that the bad thing (having two or more processes in their critical section
simultaneously) never occurs. Another typical safety property is deadlock freedom. For
the dining philosophers (see Example 3.2, page 90), for example, such deadlock could be
characterized as the situation in which all philosophers are waiting to pick up the second
chopstick. This bad (i.e., unwanted) situation should never occur.

3.3.1 Invariants

In fact, the above safety properties are of a particular kind: they are invariants. Invariants
are LT properties that are given by a condition Φ for the states and require that Φ holds
for all reachable states.

Definition 3.20. Invariant

An LT property Pinv over AP is an invariant if there is a propositional logic formula5 Φ
over AP such that

Pinv =
{

A0A1A2 . . . ∈ (2AP)ω | ∀j � 0. Aj |= Φ
}
.

Φ is called an invariant condition (or state condition) of Pinv .

Note that

TS |= Pinv iff trace(π) ∈ Pinv for all paths π in TS
iff L(s) |= Φ for all states s that belong to a path of TS
iff L(s) |= Φ for all states s ∈ Reach(TS).

Thus, the notion ”invariant” can be explained as follows: the condition Φ has to be fulfilled
by all initial states and satisfaction of Φ is invariant under all transitions in the reachable
fragment of the given transition system. The latter means that if Φ holds for the source
state s of a transition s a−→ s′, then Φ holds for the target state s′ too.

Let us return to the examples of mutual exclusion and deadlock freedom for the dining
philosophers. The mutual exclusion property can be described by an invariant using the

5The basic principles of propositional logic are treated in Appendix A.3.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

108 Linear-Time Properties

propositional logic formula
Φ = ¬crit1 ∨ ¬crit2.

For deadlock freedom of the dining philosophers, the invariant ensures that at least one
of the philosophers is not waiting to pick up the chopstick. This can be established using
the propositional formula:

Φ = ¬wait0 ∨ ¬wait1 ∨ ¬wait2 ∨ ¬wait3 ∨ ¬wait4.

Here, the proposition waiti characterizes the state(s) of philosopher i in which he is waiting
for a chopstick.

How do we check whether a transition system satisfies an invariant? As checking an
invariant for the propositional formula Φ amounts to checking the validity of Φ in every
state that is reachable from some initial state, a slight modification of standard graph
traversal algorithms like depth-first search (DFS) or breadth-first search (BFS) will do,
provided the given transition system TS is finite.

Algorithm 3 on page 109 summarizes the main steps for checking the invariant condition
Φ by means of a forward depth-first search in the state graph G(TS). The notion for-
ward search means that we start from the initial states and investigate all states that are
reachable from them. If at least one state s is visited where Φ does not hold, then the
invariance induced by Φ is violated. In Algorithm 3, R stores all visited states, i.e., if
Algorithm 3 terminates, then R = Reach(TS) contains all reachable states. Furthermore,
U is a stack that organizes all states that still have to be visited, provided they are not
yet contained in R. The operations push, pop, and top are the standard operations on
stacks. The symbol ε is used to denote the empty stack. Alternatively, a backward search
could have been applied that starts with all states where Φ does not hold and calculates
(by a DFS or BFS) the set

⋃
s∈S,s �|=Φ Pre∗(s).

Algorithm 3 could be slightly improved by aborting the computation once a state s is
encountered that does not fulfill Φ. This state is a “bad” state as it makes the transition
system refute the invariant and could be returned as an error indication. Such error
indication, however, is not very helpful.

Instead, an initial path fragment s0 s1 s2 . . . sn in which all states (except the last one)
satisfy Φ and sn �|= Φ would be more useful. Such a path fragment indicates a possible
behavior of the transition system that violates the invariant. Algorithm 3 can be easily
adapted such that a counterexample is provided on encountering a state that violates
Φ. To that end we exploit the (depth-first search) stack U . When encountering sn that
violates Φ, the stack content, read from bottom to top, contains the required initial path
fragment. Algorithm 4 on page 110 thus results.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Safety Properties and Invariants 109

Algorithm 3 Näıve invariant checking by forward depth-first search

Input: finite transition system TS and propositional formula Φ
Output: true if TS satisfies the invariant ”always Φ”, otherwise false

set of state R := ∅; (* the set of visited states *)
stack of state U := ε; (* the empty stack *)
bool b := true; (* all states in R satisfy Φ *)
for all s ∈ I do

if s /∈ R then
visit(s) (* perform a dfs for each unvisited initial state *)

fi
od
return b

procedure visit (state s)
push(s, U); (* push s on the stack *)
R := R ∪ { s }; (* mark s as reachable *)
repeat
s′ := top(U);
if Post(s′) ⊆ R then

pop(U);
b := b ∧ (s′ |= Φ); (* check validity of Φ in s′ *)

else
let s′′ ∈ Post(s′) \R
push(s′′, U);
R := R ∪ { s′′ }; (* state s′′ is a new reachable state *)

fi
until (U = ε)

endproc

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

110 Linear-Time Properties

Algorithm 4 Invariant checking by forward depth-first search

Input: finite transition system TS and propositional formula Φ
Output: ”yes” if TS |= ”always Φ”, otherwise ”no” plus a counterexample

set of states R := ∅; (* the set of reachable states *)
stack of states U := ε; (* the empty stack *)
bool b := true; (* all states in R satisfy Φ *)
while (I \R �= ∅ ∧ b) do

let s ∈ I \R; (* choose an arbitrary initial state not in R *)
visit(s); (* perform a DFS for each unvisited initial state *)

od
if b then

return(”yes”) (* TS |= ”always Φ” *)
else

return(”no”, reverse(U)) (* counterexample arises from the stack content *)
fi

procedure visit (state s)
push(s, U); (* push s on the stack *)
R := R ∪ { s }; (* mark s as reachable *)
repeat
s′ := top(U);
if Post(s′) ⊆ R then

pop(U);
b := b ∧ (s′ |= Φ); (* check validity of Φ in s′ *)

else
let s′′ ∈ Post(s′) \R
push(s′′, U);
R := R ∪ { s′′ }; (* state s′′ is a new reachable state *)

fi
until ((U = ε) ∨ ¬ b)

endproc

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Safety Properties and Invariants 111

The worst-case time complexity of the proposed invariance checking algorithm is domi-
nated by the cost for the DFS that visits all reachable states. The latter is linear in the
number of states (nodes of the state graph) and transitions (edges in the state graph),
provided we are given a representation of the state graph where the direct successors
s′ ∈ Post(s) for any state s can be encountered in time Θ(|Post(s)|). This holds for a
representation of the sets Post(s) by adjacency lists. An explicit representation of adja-
cency lists is not adequate in our context where the state graph of a complex system has
to be analyzed. Instead, the adjacency lists are typically given in an implicit way, e.g.,
by a syntactic description of the concurrent processes, such as program graphs or higher-
level description languages with a program graph semantics such as nanoPromela, see
Section 2.2.5, page 63). The direct successors of a state s are then obtained by the axioms
and rules for the transition relation for the composite system. Besides the space for the
syntactic descriptions of the processes, the space required by Algorithm 4 is dominated by
the representation of the set R of visited states (this is typically done by appropriate hash
techniques) and stack U . Hence, the additional space complexity of invariant checking is
linear in the number of reachable states.

Theorem 3.21. Time Complexity of Invariant Checking

The time complexity of Algorithm 4 is O(N ∗ (1+ |Φ|)+M) where N denotes the number
of reachable states, and M =

∑
s∈S |Post(s)| the number of transitions in the reachable

fragment of TS.

Proof: The time complexity of the forward reachability on the state graph G(TS) is
O(N +M). The time needed to check s |= Φ for some state s is linear in the length
of Φ.6 As for each state s it is checked whether Φ holds, this amounts to a total of
N +M +N ∗ (1 + |Φ|) operations.

3.3.2 Safety Properties

As we have seen in the previous section, invariants can be viewed as state properties and
can be checked by considering the reachable states. Some safety properties, however, may
impose requirements on finite path fragments, and cannot be verified by considering the
reachable states only. To see this, consider the example of a cash dispenser, also known
as an automated teller machine (ATM). A natural requirement is that money can only be
withdrawn from the dispenser once a correct personal identifier (PIN) has been provided.
This property is not an invariant, since it is not a state property. It is, however, considered

6To cover the special case where Φ is an atomic proposition, in which case |Φ| = 0, we deal with 1+ |Φ|
for the cost to check whether Φ holds for a given state s.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

112 Linear-Time Properties

to be a safety property, as any infinite run violating the requirement has a finite prefix
that is “bad”, i.e., in which money is withdrawn without issuing a PIN before.

Formally, safety property P is defined as an LT property over AP such that any infinite
word σ where P does not hold contains a bad prefix. The latter means a finite prefix σ̂
where the bad thing has happened, and thus no infinite word that starts with this prefix
σ̂ fulfills P .

Definition 3.22. Safety Properties, Bad Prefixes

An LT property Psafe over AP is called a safety property if for all words σ ∈ (2AP)ω \Psafe

there exists a finite prefix σ̂ of σ such that

Psafe ∩
{
σ′ ∈ (2AP)ω | σ̂ is a finite prefix of σ′

}
= ∅.

Any such finite word σ̂ is called a bad prefix for Psafe . A minimal bad prefix for Psafe

denotes a bad prefix σ̂ for Psafe for which no proper prefix of σ̂ is a bad prefix for Psafe .
In other words, minimal bad prefixes are bad prefixes of minimal length. The set of all
bad prefixes for Psafe is denoted by BadPref(Psafe), the set of all minimal bad prefixes by
MinBadPref(Psafe).

Let us first observe that any invariant is a safety property. For propositional formula Φ
over AP and its invariant Pinv , all finite words of the form

A0 A1 . . .An ∈ (2AP)+

with A0 |= Φ, . . . ,An−1 |= Φ and An �|= Φ constitute the minimal bad prefixes for
Pinv . The following two examples illustrate that there are safety properties that are not
invariants.

Example 3.23. A Safety Property for a Traffic Light

We consider a specification of a traffic light with the usual three phases “red”, “green”,
and “yellow”. The requirement that each red phase should be immediately preceded by a
yellow phase is a safety property but not an invariant. This is shown in the following.

Let red, yellow, and green be atomic propositions. Intuitively, they serve to mark the
states describing a red (yellow or green) phase. The property “always at least one of the
lights is on” is specified by:

{σ = A0 A1 . . . | Aj ⊆ AP ∧ Aj �= ∅ }.
The bad prefixes are finite words that contain ∅. A minimal bad prefix ends with ∅. The
property “it is never the case that two lights are switched on at the same time” is specified

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Safety Properties and Invariants 113

by
{σ = A0 A1 . . . | Aj ⊆ AP ∧ |Aj| � 1 }.

Bad prefixes for this property are words containing sets such as { red, green }, { red, yellow },
and so on. Minimal bad prefixes end with such sets.

Now let AP′ = { red, yellow }. The property “a red phase must be preceded immediately
by a yellow phase” is specified by the set of infinite words σ = A0 A1 . . . with Ai ⊆
{ red, yellow } such that for all i � 0 we have that

red ∈ Ai implies i > 0 and yellow ∈ Ai−1.

The bad prefixes are finite words that violate this condition. An example of bad prefixes
that are minimal is:

∅ ∅ { red } and ∅ { red }.
The following bad prefix is not minimal:

{ yellow } { yellow } { red } { red }∅ { red }
since it has a proper prefix { yellow } { yellow } { red } { red } which is also a bad prefix.

The minimal bad prefixes of this safety property are regular in the sense that they consti-
tute a regular language. The finite automaton in Figure 3.9 accepts precisely the minimal
bad prefixes for the above safety property.7 Here, ¬yellow should be read as either ∅ or
{ red }. Note the other properties given in this example are also regular.

s1 s0 s2
red

yellow

¬yellow

yellow ∅

Figure 3.9: A finite automaton for the minimal bad prefixes of a regular safety property.

Example 3.24. A Safety Property for a Beverage Vending Machine

For a beverage vending machine, a natural requirement is that

“The number of inserted coins is always at least the number of dispensed drinks.”
7The main concepts of a finite automaton as acceptors for languages over finite words are summarized

in Section 4.1.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

114 Linear-Time Properties

Using the set of propositions {pay,drink } and the obvious labeling function, this property
could be formalized by the set of infinite words A0 A1 A2 . . . such that for all i � 0 we have

| { 0 � j � i | pay ∈ Aj } | � |{ 0 � j � i | drink ∈ Aj } |

Bad prefixes for this safety property are, for example

∅ {pay } {drink } {drink } and

∅ {pay } {drink }∅ {pay } {drink } {drink }
It is left to the interested reader to check that both beverage vending machines from
Figure 3.8 satisfy the above safety property.

Safety properties are requirements for the finite traces which is formally stated in the
following lemma:

Lemma 3.25. Satisfaction Relation for Safety Properties

For transition system TS without terminal states and safety property Psafe :

TS |= Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅.

Proof: ”if”: By contradiction. Let Tracesfin(TS) ∩ BadPref(Psafe) = ∅ and assume that
TS �|= Psafe . Then, trace(π) /∈ Psafe for some path π in TS. Thus, trace(π) starts with a
bad prefix σ̂ for Psafe . But then, σ̂ ∈ Tracesfin(TS) ∩ BadPref(Psafe). Contradiction.

”only if”: By contradiction. Let TS |= Psafe and assume that σ̂ ∈ Tracesfin(TS) ∩
BadPref(Psafe). The finite trace σ̂ = A1 . . .An ∈ Tracesfin(TS) can be extended to an
infinite trace σ = A1 . . .An An+1 An+2 . . . ∈ Traces(TS). Then, σ /∈ Psafe and thus,
TS �|= Psafe .

We conclude this section with an alternative characterization of safety properties by means
of their closure.

Definition 3.26. Prefix and Closure

For trace σ ∈ (2AP)ω, let pref(σ) denote the set of finite prefixes of σ, i.e.,

pref(σ) = { σ̂ ∈ (2AP)∗ | σ̂ is a finite prefix of σ }.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Safety Properties and Invariants 115

that is, if σ = A0 A1 . . . then pref(σ) = {ε,A0,A0A1,A0A1A2, . . . } is an infinite set of
finite words. This notion is lifted to sets of traces in the usual way. For property P over
AP:

pref(P) =
⋃
σ∈P

pref(σ).

The closure of LT property P is defined by

closure(P) = {σ ∈ (2AP)ω | pref(σ) ⊆ pref(P)}.

For instance, for infinite trace σ = ABABAB . . . (where A,B ⊆ AP) we have pref(σ) =
{ ε,A,AB,ABA,ABAB, . . . } which equals the regular language given by the regular ex-
pression (AB)∗(A + ε).

The closure of an LT property P is the set of infinite traces whose finite prefixes are also
prefixes of P . Stated differently, infinite traces in the closure of P do not have a prefix
that is not a prefix of P itself. As we will see below, the closure is a key concept in the
characterization of safety and liveness properties.

Lemma 3.27. Alternative Characterization of Safety Properties

Let P be an LT property over AP. Then, P is a safety property iff closure(P) = P .

Proof: “if”: Let us assume that closure(P) = P . To show that P is a safety property,
we take an element σ ∈ (2AP)ω \ P and show that σ starts with a bad prefix for P . Since
σ /∈ P = closure(P) there exists a finite prefix σ̂ of σ with σ̂ /∈ pref(P). By definition of
pref(P), none of the words σ′ ∈ (2AP)ω where σ̂ ∈ pref(σ′) belongs to P . Hence, σ̂ is a
bad prefix for P , and by definition, P is a safety property.

“only if”: Let us assume that P is a safety property. We have to show that P =
closure(P). The inclusion P ⊆ closure(P) holds for all LT properties. It remains to
show that closure(P) ⊆ P . We do so by contradiction. Let us assume that there is some
σ = A1 A2 . . . ∈ closure(P) \ P . Since P is a safety property and σ �∈ P , σ has a finite
prefix

σ̂ = A1 . . . An ∈ BadPref(P).

As σ ∈ closure(P) we have σ̂ ∈ pref(σ) ⊆ pref(P). Hence, there exists a word σ′ ∈ P of
the form

σ′ = A1 . . . An︸ ︷︷ ︸
bad prefix

Bn+1 Bn+2 . . .

This contradicts the fact that P is a safety property.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

116 Linear-Time Properties

3.3.3 Trace Equivalence and Safety Properties

We have seen before that there is a strong relationship between trace inclusion of transition
systems and the satisfaction of LT properties (see Theorem 3.15, page 104):

Traces(TS) ⊆ Traces(TS′) if and only if for all LT properties P :
TS′ |= P implies TS |= P

for transition systems TS and TS′ without terminal states. Note that this result considers
all infinite traces. The above thus states a relationship between infinite traces of transition
systems and the validity of LT properties. When considering only finite traces instead of
infinite ones, a similar connection with the validity of safety properties can be established,
as stated by the following theorem.

Theorem 3.28. Finite Trace Inclusion and Safety Properties

Let TS and TS′ be transition systems without terminal states and with the same set of
propositions AP. Then the following statements are equivalent:

(a) Tracesfin(TS) ⊆ Tracesfin(TS′),

(b) For any safety property Psafe : TS′ |= Psafe implies TS |= Psafe .

Proof:

(a) =⇒ (b): Let us assume that Tracesfin(TS) ⊆ Tracesfin(TS′) and let Psafe be a safety
property with TS′ |= Psafe . By Lemma 3.25, we have Tracesfin(TS′)∩BadPref(Psafe) = ∅,
and hence, Tracesfin(TS)∩BadPref(Psafe) = ∅. Again by Lemma 3.25, we get TS |= Psafe .

(b) =⇒ (a): Assume that (b) holds. Let Psafe = closure(Traces(TS′)). Then, Psafe is a
safety property and we have TS′ |= Psafe (see Exercise 3.9, page 147). Hence, (b) yields
TS |= Psafe , i.e.,

Traces(TS) ⊆ closure(Traces(TS′)).

From this, we may derive

Tracesfin(TS) = pref(Traces(TS))
⊆ pref(closure(Traces(TS′))
= pref(Traces(TS′))
= Tracesfin(TS′).

Here we use the property that for any P it holds that pref(closure(P)) = pref(P) (see
Exercise 3.10, page 147).

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Safety Properties and Invariants 117

Theorem 3.28 is of relevance for the gradual design of concurrent systems. If a preliminary
design (i.e., a transition system) TS′ is refined to a design TS such that

Traces(TS) �⊆ Traces(TS′),

then the LT properties of TS′ cannot be carried over to TS. However, if the finite traces
of TS are finite traces of TS′ (which is a weaker requirement than full trace inclusion of
TS and TS′), i.e.,

Tracesfin(TS) ⊆ Tracesfin(TS′),

then all safety properties that have been established for TS′ also hold for TS. Other
requirements for TS, i.e., LT properties that fall outside the scope of safety properties,
need to be checked using different techniques.

Corollary 3.29. Finite Trace Equivalence and Safety Properties

Let TS and TS′ be transition systems without terminal states and with the same set AP
of atomic propositions. Then, the following statements are equivalent:

(a) Tracesfin(TS) = Tracesfin(TS′),

(b) For any safety property Psafe over AP: TS |= Psafe ⇐⇒ TS′ |= Psafe .

A few remarks on the difference between finite trace inclusion and trace inclusion are in
order. Since we assume transition systems without terminal states, there is only a slight
difference between trace inclusion and finite trace inclusion. For finite transition systems
TS and TS′ without terminal states, trace inclusion and finite trace inclusion coincide.
This can be derived from the following theorem.

Theorem 3.30. Relating Finite Trace and Trace Inclusion

Let TS and TS′ be transition systems with the same set AP of atomic propositions such
that TS has no terminal states and TS′ is finite. Then:

Traces(TS) ⊆ Traces(TS′) ⇐⇒ Tracesfin(TS) ⊆ Tracesfin(TS′).

Proof: The implication from left to right follows from the monotonicity of pref(·) and the
fact that Tracesfin(TS) = pref(Traces(TS)) for any transition system TS.

It remains to consider the proof for the implication⇐=. Let us assume that Tracesfin(TS) ⊆
Tracesfin(TS′). As TS has no terminal states, all traces of TS are infinite. Let A0A1 . . . ∈

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

118 Linear-Time Properties

Traces(TS). To prove that A0A1 . . . ∈ Traces(TS′) we have to show that there exists a
path in TS′, say s0 s1 . . ., that generates this trace, i.e., trace(s0 s1 . . .) = A0 A1

Any finite prefix A0 A1 . . .Am of the infinite trace A0A1 . . . is in Tracesfin(TS), and as
Tracesfin(TS) ⊆ Tracesfin(TS′), also in Tracesfin(TS′). Thus, for any natural number m,
there exists a finite path πm = sm0 s

m
1 . . . s

m
m in TS′ such that

trace(πm) = L(sm0)L(sm1) . . . L(smm) = A0A1 . . .Am

where L denotes the labeling function of TS′. Thus, L(smj) = Aj for all 0 � j � m.

Although A0 . . .Am is a prefix of A0 . . .Am+1, it is not guaranteed that path πm is a
prefix of πm+1. Due to the finiteness of TS′, however, there is an infinite subsequence
πm0 πm1 πm2 . . . of π0 π1 π2 . . . such that πmi and πmi+1 agree on the first i states. Thus,
πm0 πm1 πm2 . . . induces an infinite path π in TS′ with the desired property.

This is formally proven using a so-called diagonalization technique. This goes as follows.
Let I0, I1, I2, . . . be an infinite series of infinite sets of indices (i.e., natural numbers) with
In ⊆ {m ∈ IN | m � n } and s0, s1, . . . be states in TS′ such that for all natural numbers
n it holds that

(1) n � 1 implies In−1 ⊇ In,

(2) s0 s1 s2 . . . sn is an initial, finite path fragment in TS′,

(3) for all m ∈ In it holds that s0 . . . sn = sm0 . . . s
m
n .

The definition of the sets In and states sn is by induction on n.

Base case (n = 0): As { sm0 | m ∈ IN } is finite (since it is a subset of the finite set of initial
states of TS′), there exists an initial state s0 in TS′ and an infinite index set I0 such that
s0 = sm0 for all m ∈ I0.

Induction step n =⇒ n+1. Assume that the index sets I0, . . . , In and states s0, . . . , sn are
defined. Since TS′ is finite, Post(sn) is finite. Furthermore, by the induction hypothesis
sn = smn for all m ∈ In, and thus

{ smn+1 | m ∈ In,m � n+1 } ⊆ Post(sn).

Since In is infinite, there exists an infinite subset In+1 ⊆ {m ∈ In | m � n+1 } and a
state sn+1 ∈ Post(sn) such that smn+1 = sn+1 for all m ∈ In+1. It follows directly that the
above properties (1) through (3) are fulfilled.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Safety Properties and Invariants 119

We now consider the state sequence s0 s1 . . . in TS′. Obviously, this state sequence is a
path in TS′ satisfying trace(s0 s1 . . .) = A0 A1 Consequently, A0 A1 . . . ∈ Traces(TS′).

Remark 3.31. Image-Finite Transition Systems

The result stated in Theorem 3.30 also holds under slightly weaker conditions: it suffices
to require that TS has no terminal states (as in Theorem 3.30) and that TS′ is AP image-
finite (rather than being finite).

Let TS′ = (S,Act,→, I,AP, L). Then, TS′ is called AP image-finite (or briefly image-
finite) if

(i) for all A ⊆ AP, the set { s0 ∈ I | L(s0) = A } is finite and

(ii) for all states s in TS′ and all A ⊆ AP, the set of successors { s′ ∈ Post(s) | L(s′) = A }
is finite.

Thus, any finite transition system is image-finite. Moreover, any transition system that is
AP-deterministic is image-finite. (Recall that AP-determinism requires { s0 ∈ I | L(s0) =
A } and { s′ ∈ Post(s) | L(s′) = A } to be either singletons or empty sets; see Definition
2.5, page 24.)

In fact, a careful inspection of the proof of Theorem 3.30 shows that (i) and (ii) for
TS′ are used in the construction of the index sets In and states sn. Hence, we have
Traces(TS) ⊆ Traces(TS′) iff Tracesfin(TS) ⊆ Tracesfin(TS′), provided TS has no terminal
states and TS′ is image-finite.

Trace and finite trace inclusion, however, coincide neither for infinite transition systems
nor for finite ones which have terminal states.

Example 3.32. Finite vs. Infinite Transition System

Consider the transition systems sketched in Figure 3.10, where b stands for an atomic
proposition. Transition system TS (on the left) is finite, whereas TS′ (depicted on the
right) is infinite and not image-finite, because of the infinite branching in the initial state.
It is not difficult to observe that

Traces(TS) �⊆ Traces(TS′) and Tracesfin(TS) ⊆ Tracesfin(TS′).

This stems from the fact that TS can take the self-loop infinitely often and never reaches
a b-state, whereas TS′ does not exhibit such behavior. Moreover, any finite trace of TS is

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

120 Linear-Time Properties

of the form (∅)n for n � 0 and is also a finite trace of TS′. Consequently, LT properties of
TS′ do not carry over to TS (and those of TS may not hold for TS′). For example, the LT
property “eventually b” holds for TS′, but not for TS. Similarly, the LT property “never
b” holds for TS, but not for TS′.

Although these transition systems might seem rather artificial, this is not the case: TS
could result from an infinite loop in a program, whereas TS′ could model the semantics
of a program fragment that nondeterministically chooses a natural number k and then
performs k steps.

{ b }

{ b }

{ b }

{ b }

Figure 3.10: Distinguishing trace inclusion from finite trace inclusion.

3.4 Liveness Properties

Informally speaking, safety properties specify that “something bad never happens”. For
the mutual exclusion algorithm, the “bad” thing is that more than one process is in its
critical section, while for the traffic light the “bad” situation is whenever a red light phase
is not preceded by a yellow light phase. An algorithm can easily fulfill a safety property
by simply doing nothing as this will never lead to a “bad” situation. As this is usually
undesired, safety properties are complemented by properties that require some progress.
Such properties are called “liveness” properties (or sometimes “progress” properties). In-
tuitively, they state that ”something good” will happen in the future. Whereas safety
properties are violated in finite time, i.e., by a finite system run, liveness properties are
violated in infinite time, i.e., by infinite system runs.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Liveness Properties 121

3.4.1 Liveness Properties

Several (nonequivalent) notions of liveness properties have been defined in the literature.
We follow here the approach of Alpern and Schneider [5, 6, 7]. They provided a formal
notion of liveness properties which relies on the view that liveness properties do not con-
strain the finite behaviors, but require a certain condition on the infinite behaviors. A
typical example for a liveness property is the requirement that certain events occur in-
finitely often. In this sense, the ”good event” of a liveness property is a condition on the
infinite behaviors, while the ”bad event” for a safety property occurs in a finite amount
of time, if it occurs at all.

In our approach, a liveness property (over AP) is defined as an LT property that does not
rule out any prefix. This entails that the set of finite traces of a system are of no use at
all to decide whether a liveness property holds or not. Intuitively speaking, it means that
any finite prefix can be extended such that the resulting infinite trace satisfies the liveness
property under consideration. This is in contrast to safety properties where it suffices to
have one finite trace (the “bad prefix”) to conclude that a safety property is refuted.

Definition 3.33. Liveness Property

LT property Plive over AP is a liveness property whenever pref(Plive) = (2AP)∗.

Thus, a liveness property (over AP) is an LT property P such that each finite word can be
extended to an infinite word that satisfies P . Stated differently, P is a liveness property
if and only if for all finite words w ∈ (2AP)∗ there exists an infinite word σ ∈ (2AP)ω

satisfying wσ ∈ P .

Example 3.34. Repeated Eventually and Starvation Freedom

In the context of mutual exclusion algorithms the natural safety property that is required
ensures the mutual exclusion property stating that the processes are never simultaneously
in their critical sections. (This is even an invariant.) Typical liveness properties that are
desired assert that

• (eventually) each process will eventually enter its critical section;

• (repeated eventually) each process will enter its critical section infinitely often;

• (starvation freedom) each waiting process will eventually enter its critical section.

Let’s see how these liveness properties are formalized as LT properties and let us check that

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

122 Linear-Time Properties

they are liveness properties. As in Example 3.14, we will deal with the atomic propositions
wait1, crit1,wait2, crit2 where waiti characterizes the states where process Pi has requested
access to its critical section and is in its waiting phase, while criti serves as a label for
the states where Pi has entered its critical section. We now formalize the three properties
by LT properties over AP = {wait1, crit1,wait2, crit2}. The first property (eventually)
consists of all infinite words A0 A1 . . . with Aj ⊆ AP such that

(∃j � 0. crit1 ∈ Aj) ∧ (∃j � 0. crit2 ∈ Aj)

which requires that P1 and P2 are in their critical sections at least once. The second
property (repeated eventually) poses the condition

(∀k � 0.∃j � k. crit1 ∈ Aj) ∧ (∀k � 0.∃j � k. crit2 ∈ Aj)

stating that P1 and P2 are infinitely often in their critical sections. This formula is often
abbreviated by (∞

∃ j � 0. crit1 ∈ Aj

)
∧

(∞
∃ j � 0. crit2 ∈ Aj

)
.

The third property (starvation freedom) requires that

∀j � 0. (wait1 ∈ Aj ⇒ (∃k > j. crit1 ∈ Ak)) ∧
∀j � 0. (wait2 ∈ Aj ⇒ (∃k > j. crit2 ∈ Ak)) .

It expresses that each process that is waiting will acquire access to the critical section
at some later time point. Note that here we implicitly assume that a process that starts
waiting to acquire access to the critical section does not “give up” waiting, i.e., it continues
waiting until it is granted access.

All aforementioned properties are liveness properties, as any finite word over AP is a prefix
of an infinite word where the corresponding condition holds. For instance, for starvation
freedom, a finite trace in which a process is waiting but never acquires access to its critical
section can always be extended to an infinite trace that satisfies the starvation freedom
property (by, e.g., providing access in an strictly alternating fashion from a certain point
on).

3.4.2 Safety vs. Liveness Properties

This section studies the relationship between liveness and safety properties. In particular,
it provides answers to the following questions:

• Are safety and liveness properties disjoint?, and

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Liveness Properties 123

• Is any linear-time property a safety or liveness property?

As we will see, the first question will be answered affirmatively while the second question
will result in a negative answer. Interestingly enough, though, for any LT property P an
equivalent LT property P ′ does exist which is a combination (i.e., intersection) of a safety
and a liveness property. All in all, one could say that the identification of safety and
liveness properties thus provides an essential characterization of linear-time properties.

The first result states that safety and liveness properties are indeed almost disjoint. More
precisely, it states that the only property that is both a safety and a liveness property is
nonrestrictive, i.e., allows all possible behaviors. Logically speaking, this is the equivalent
of “true”.

Lemma 3.35. Intersection of Safety and Liveness Properties

The only LT property over AP that is both a safety and a liveness property is (2AP)ω.

Proof: Assume P is a liveness property over AP. By definition, pref(P) = (2AP)∗. It
follows that closure(P) = (2AP)ω. If P is a safety property too, closure(P) = P , and
hence P = (2AP)ω.

Recall that the closure of property P (over AP) is the set of infinite words (over 2AP)
for which all prefixes are also prefixes of P . In order to show that an LT property can
be considered as a conjunction of a liveness and a safety property, the following result is
helpful. It states that the closure of the union of two properties equals the union of their
closures.

Lemma 3.36. Distributivity of Union over Closure

For any LT properties P and P ′:

closure(P) ∪ closure(P ′) = closure(P ∪ P ′).

Proof: ⊆: As P ⊆ P ′ implies closure(P) ⊆ closure(P ′), we have P ⊆ P ∪ P ′ implies
closure(P) ⊆ closure(P∪P ′). In a similar way it follows that closure(P ′) ⊆ closure(P∪P ′).
Thus, closure(P) ∪ closure(P ′) ⊆ closure(P ∪ P ′).

⊇: Let σ ∈ closure(P ∪ P ′). By definition of closure, pref(σ) ⊆ pref(P ∪ P ′). As pref(P ∪
P ′) = pref(P) ∪ pref(P ′), any finite prefix of σ is in pref(P) or in pref(P ′) (or in both).

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

124 Linear-Time Properties

As σ ∈ (2AP)ω, σ has infinitely many prefixes. Thus, infinitely many finite prefixes
of σ belong to pref(P) or to pref(P ′) (or to both). W.l.o.g., assume pref(σ) ∩ pref(P)
to be infinite. Then pref(σ) ⊆ pref(P), which yields σ ∈ closure(P), and thus σ ∈
closure(P)∪ closure(P ′). The fact that pref(σ) ⊆ pref(P) can be shown by contraposition.
Assume σ̂ ∈ pref(σ) \ pref(P). Let |σ̂| = k. As pref(σ) ∩ pref(P) is infinite, there exists
σ̂′ ∈ pref(σ) ∩ pref(P) with length larger than k. But then, there exists σ′ ∈ P with
σ̂′ ∈ pref(σ′). It then follows that σ̂ ∈ pref(σ̂′) (as both σ̂ and σ̂′ are prefixes of σ) and as
pref(σ̂′) ⊆ pref(P), it follows that σ̂ ∈ pref(P). This contradicts σ̂ ∈ pref(σ) \ pref(P).

Consider the beverage vending machine of Figure 3.5 (on page 97), and the following
property:

“the machine provides beer infinitely often
after initially providing soda three times in a row”

In fact, this property consists of two parts. On the one hand, it requires beer to be
provided infinitely often. As any finite trace can be extended to an infinite trace that
enjoys this property it is a liveness property. On the other hand, the first three drinks it
provides should all be soda. This is a safety property, since any finite trace in which one
of the first three drinks provided is beer violates it. The property is thus a combination
(in fact, a conjunction) of a safety and a liveness property. The following result shows
that every LT property can be decomposed in this way.

Theorem 3.37. Decomposition Theorem

For any LT property P over AP there exists a safety property Psafe and a liveness property
Plive (both over AP) such that

P = Psafe ∩ Plive .

Proof: Let P be an LT property over AP. It is easy to see that P ⊆ closure(P). Thus:
P = closure(P) ∩ P , which by set calculus can be rewritten into:

P = closure(P)︸ ︷︷ ︸
=Psafe

∩
(
P ∪

(
(2AP)ω \ closure(P)

))
︸ ︷︷ ︸

=Plive

By definition, Psafe = closure(P) is a safety property. It remains to prove that Plive =

P ∪
(
(2AP)ω \ closure(P)

)
is a liveness property. By definition, Plive is a liveness property

whenever pref(Plive) = (2AP)∗. This is equivalent to closure(Plive) = (2AP)ω. As for any

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Liveness Properties 125

LT property P , closure(P) ⊆ (2AP)ω holds true, it suffices to showing that (2AP)ω ⊆
closure(Plive). This goes as follows:

closure(Plive) = closure
(
P ∪ ((2AP)ω \ closure(P))

)
Lemma 3.36= closure(P) ∪ closure

(
(2AP)ω \ closure(P)

)
⊇ closure(P) ∪

(
(2AP)ω \ closure(P)

)
= (2AP)ω

where in the one-but-last step in the derivation, we exploit the fact that closure(P ′) ⊇ P ′

for all LT properties P ′.

The proof of Theorem 3.37 shows that Psafe = closure(P) is a safety property and
Plive = P ∪ ((2AP)ω \ closure(P)) a liveness property with P = Psafe ∩ Plive . In fact,
this decomposition is the ”sharpest” one for P since Psafe is the strongest safety property
and Plive the weakest liveness property that can serve for a decomposition of P :

Lemma 3.38. Sharpest Decomposition

Let P be an LT property and P = Psafe ∩ Plive where Psafe is a safety property and Plive

a liveness property. We then have

1. closure(P) ⊆ Psafe ,

2. Plive ⊆ P ∪ ((2AP)ω \ closure(P)).

Proof: See Exercise 3.12, page 147.

A summary of the classification of LT properties is depicted as a Venn diagram in Fig-
ure 3.11. The circle denotes the set of all LT properties over a given set of atomic propo-
sitions.

Remark 3.39. Topological Characterizations of Safety and Liveness

Let us conclude this section with a remark for readers who are familiar with basic notions
of topological spaces. The set (2AP)ω can be equipped with the distance function given by
d(σ1, σ2) = 1/2n if σ1, σ2 are two distinct infinite words σ1 = A1A2 . . . and σ2 = B1B2 . . .
and n is the length of the longest common prefix. Moreover, we put d(σ, σ) = 0. Then,
d is a metric on (2AP)ω, and hence induces a topology on (2AP)ω. Under this topology,

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

126 Linear-Time Properties

liveness properties

neither liveness
nor safety properties

invariants

safety properties

safety and liveness property

(2AP)ω

Figure 3.11: Classification of linear-time properties.

the safety properties are exactly the closed sets, while the liveness properties agree with
the dense sets. In fact, closure(P) is the topological closure of P , i.e., the smallest closed
set that contains P . The result stated in Theorem 3.37 then follows from the well-known
fact that any subset of a topological space (of the kind described above) can be written
as the intersection of its closure and a dense set.

3.5 Fairness

An important aspect of reactive systems is fairness. Fairness assumptions rule out infinite
behaviors that are considered unrealistic, and are often necessary to establish liveness
properties. We illustrate the concept of fairness by means of a frequently encountered
problem in concurrent systems.

Example 3.40. Process Fairness

Consider N processes P1, . . . , PN which require a certain service. There is one server
process Server that is expected to provide services to these processes. A possible strategy
that Server can realize is the following. Check the processes starting with P1, then P2,
and so on, and serve the first thus encountered process that requires service. On finishing
serving this process, repeat this selection procedure once again starting with checking P1.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Fairness 127

Now suppose that P1 is continuously requesting service. Then this strategy will result
in Server always serving P1. Since in this way another process has to wait infinitely
long before being served, this is called an unfair strategy. In a fair serving strategy it is
required that the server eventually responds to any request by any one of the processes.
For instance, a round-robin scheduling strategy where each process is only served for a
limited amount of time is a fair strategy: after having served one process, the next (in the
round-robin order) is checked and, if needed, served.

When verifying concurrent systems one is often only interested in paths in which enabled
transitions (statements) are executed in some “fair” manner. Consider, for instance, a
mutual exclusion algorithm for two processes. In order to prove starvation freedom, the
situation in which a process that wants to enter its critical section has to wait infinitely
long, we want to exclude those paths in which the competitor process is always being
selected for execution. This type of fairness is also known as process fairness, since it
concerns the fair scheduling of the execution of processes. If we were to consider unfair
paths when proving starvation freedom, we would usually fail, since there always exists an
unfair strategy according to which some process is always neglected, and thus can never
make progress. One might argue that such unfair strategy is unrealistic and should be
avoided.

Example 3.41. Starvation Freedom

Consider the transition systems TSSem and TSPet for the semaphore-based mutual exclu-
sion algorithms (see Example 2.24 on page 43) and Peterson’s algorithm. The starvation
freedom property

“Once access is requested, a process does not have to wait infinitely long before
acquiring access to its critical section”

is violated by transition system TSSem while it permits only one of the processes to pro-
ceed, while the other process is starving (or only acquiring access to the critical section
finitely often). The transition system TSPet for Peterson’s algorithm, however, fulfills this
property.

The property

“Each of the processes is infinitely often in its critical section”

is violated by both transition systems as none of them excludes the fact that a process
would never (or only finitely often) request to enter the critical section.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

128 Linear-Time Properties

Process fairness is a particular form of fairness. In general, fairness assumptions are needed
to prove liveness or other properties stating that the system makes some progress (“some-
thing good will eventually happen”). This is of vital importance if the transition system to
be checked contains nondeterminism. Fairness is then concerned with resolving nondeter-
minism in such a way that it is not biased to consistently ignore a possible option. In the
above example, the scheduling of processes is nondeterministic: the choice of the next pro-
cess to be executed (if there are at least two processes that can be potentially selected) is
arbitrary. Another prominent example where fairness is used to “resolve” nondeterminism
is in modeling concurrent processes by means of interleaving. Interleaving is equivalent to
modeling the concurrent execution of two independent processes by enumerating all the
possible orders in which activities of the processes can be executed (see Chapter 2).

Example 3.42. Independent Traffic Lights

Consider the transition system

TS = TrLight1 ||| TrLight2

for the two independent traffic lights described in Example 2.17 (page 36). The liveness
property

“Both traffic lights are infinitely often green”

is not satisfied, since

{ red1, red2 } { green1, red2 } { red1, red2 } { green1, red2 } . . .

is a trace of TS where only the first traffic light is infinitely often green.

What is wrong with the above examples? In fact, nothing. Let us explain this. In the
traffic light example, the information whether each traffic light switches color infinitely
often is lost by means of interleaving. The trace in which only the first traffic light is
acting while the second light seems to be completely stopped is formally a trace of the
transition system TrLight1 |||TrLight2. However, it does not represent a realistic behavior
as in practice no traffic light is infinitely faster than another.

For the semaphore-based mutual exclusion algorithm, the difficulty is the degree of ab-
straction. A semaphore is not a willful individual that arbitrarily chooses a process which
is authorized to enter its critical section. Instead, the waiting processes are administered
in a queue (or another “fair” medium). The required liveness can be proven in one of the
following refinement steps, in which the specification of the behavior of the semaphore is
sufficiently detailed.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Fairness 129

3.5.1 Fairness Constraints

The above considerations show that we—to obtain a realistic picture of the behavior of a
parallel system modeled by a transition system—need a more alleviated form of satisfaction
relation for LT properties, which implies an “adequate” resolution of the nondeterministic
decisions in a transition system. In order to rule out the unrealistic computations, fairness
constraints are imposed.

In general, a fair execution (or trace) is characterized by the fact that certain fairness
constraints are fulfilled. Fairness constraints are used to rule out computations that are
considered to be unreasonable for the system under consideration. Fairness constraints
come in different flavors:

• Unconditional fairness: e.g.,“Every process gets its turn infinitely often.”

• Strong fairness: e.g., “Every process that is enabled infinitely often gets its turn
infinitely often.”

• Weak fairness: e.g., “Every process that is continuously enabled from a certain time
instant on gets its turn infinitely often.”

Here, the term “is enabled” has to be understood in the sense of “ready to execute (a
transition)”. Similarly, “gets its turn” stands for the execution of an arbitrary transition.
This can, for example, be a noncritical action, acquiring a shared resource, an action in
the critical section, or a communication action.

An execution fragment is unconditionally fair with respect to, e.g., “a process enters its
critical section” or “a process gets its turn”, if these properties hold infinitely often. That
is to say, a process enters its critical section infinitely often, or, in the second example,
a process gets its turn infinitely often. Note that no condition (such as “a process is
enabled”) is expressed that constrains the circumstances under which a process gets its
turn infinitely often. Unconditional fairness is sometimes referred to as impartiality.

Strong fairness means that if an activity is infinitely often enabled—but not necessarily
always, i.e., there may be finite periods during which the activity is not enabled—then it
will be executed infinitely often. An execution fragment is strongly fair with respect to
activity α if it is not the case that α is infinitely often enabled without being taken beyond
a certain point. Strong fairness is sometimes referred to as compassion.

Weak fairness means that if an activity, e.g., a transition in a process or an entire pro-
cess itself, is continuously enabled—no periods are allowed in which the activity is not

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

130 Linear-Time Properties

enabled—then it has to be executed infinitely often. An execution fragment is weakly fair
with respect to some activity, α say, if it is not the case that α is always enabled beyond
some point without being taken beyond this point. Weak fairness is sometimes referred
to as justice.

How to express these fairness constraints? There are different ways to formulate fairness
requirements. In the sequel, we adopt the action-based view and define strong fairness for
(sets of) actions. (In Chapter 5, also state-based notions of fairness will be introduced and
the relationship between action-based and state-based fairness is studied in detail.) Let A
be a set of actions. The execution fragment ρ is said to be strongly A-fair if the actions in
A are not continuously ignored under the circumstance that they can be executed infinitely
often. ρ is unconditionally A-fair if some action in A is infinitely often executed in ρ. Weak
fairness is defined in a similar way as strong fairness (see below).

In order to formulate these fairness notions formally, the following auxiliary notion is
convenient. For state s, let Act(s) denote the set of actions that are executable in state
s, that is,

Act(s) = {α ∈ Act | ∃s′ ∈ S. s α−−→ s′ }.

Definition 3.43. Unconditional, Strong, and Weak Fairness

For transition system TS = (S,Act,→, I,AP, L) without terminal states, A ⊆ Act, and
infinite execution fragment ρ = s0 α0−−→ s1 α1−−→ . . . of TS:

1. ρ is unconditionally A-fair whenever
∞
∃ j. αj ∈ A.

2. ρ is strongly A-fair whenever(∞
∃ j. Act(sj) ∩ A �= ∅

)
=⇒

(∞
∃ j. αj ∈ A

)
.

3. ρ is weakly A-fair whenever(∞
∀ j. Act(sj) ∩ A �= ∅

)
=⇒

(∞
∃ j. αj ∈ A

)
.

Here,
∞
∃ j stands for “there are infinitely many j” and

∞
∀ j for “for nearly all j” in the

sense of “for all, except for finitely many j”. The variable j, of course, ranges over the
natural numbers.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Fairness 131

To check whether a run is unconditionally A-fair it suffices to consider the actions that
occur along the execution, i.e., it is not necessary to check which actions in A are enabled
in visited states. However, in order to decide whether a given execution is strongly or
weakly A-fair, it does not suffice to only consider the actions actually occurring in the
execution. Instead, also the enabled actions in all visited states need to be considered.
These enabled actions are possible in the visited states, but do not necessarily have to be
taken along the considered execution.

Example 3.44. A Simple Shared-Variable Concurrent Program

Consider the following two processes that run in parallel and share an integer variable x
that initially has value 0:

proc Inc = while 〈x � 0 do x := x+ 1 〉 od

proc Reset = x := −1

The pair of brackets 〈. . .〉 embraces an atomic section, i.e., process Inc performs the check
whether x is positive and the increment of x (if the guard holds) as one atomic step. Does
this parallel program terminate? When no fairness constraints are imposed, it is possible
that process Inc is permanently executing, i.e., process Reset never gets its turn, and the
assignment x = −1 is not executed. In this case, termination is thus not guaranteed, and
the property is refuted. If, however, we require unconditional process fairness, then every
process gets its turn, and termination is guaranteed.

An important question now is: given a verification problem, which fairness notion to
use? Unfortunately, there is no clear answer to this question. Different forms of fairness
do exist—the above is just a small, though important, fragment of all possible fairness
notions—and there is no single favorite notion. For verification purposes, fairness con-
straints are crucial, though. Recall that the purpose of fairness constraints is to rule out
certain “unreasonable” computations. If the fairness constraint is too strong, relevant
computations may not be considered. In case a property is satisfied (for a transition sys-
tem), it might well be the case that some reasonable computation that is not considered
(as it is ruled out by the fairness constraint) refutes this property. On the other hand,
if the fairness constraint is too weak, we may fail to prove a certain property as some
unreasonable computations (that are not ruled out) refute it.

The relationship between the different fairness notions is as follows. Each unconditionally
A-fair execution fragment is strongly A-fair, and each strongly A-fair execution fragment
is weakly A-fair. In general, the reverse direction does not hold. For instance, an execution
fragment that solely visits states in which no A-actions are possible is strongly A-fair (as
the premise of strong A-fairness does not hold), but not unconditionally A-fair. Besides,

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

132 Linear-Time Properties

an execution fragment that only visits finitely many states in which some A-actions are
enabled but never executes an A-action is weakly A-fair (as the premise of weak A-fairness
does not hold), but not strongly A-fair. Summarizing, we have

unconditional A-fairness =⇒ strong A-fairness =⇒ weak A-fairness

where the reverse implication in general does not hold.

Example 3.45. Fair Execution Fragments

Consider the transition system TSSem for the semaphore-based mutual exclusion solution.
We label the transitions with the actions reqi, enteri (for i=1, 2), and rel in the obvious
way, see Figure 3.12.

In the execution fragment

〈n1, n2, y = 1〉 req1−−−−→〈w1, n2, y = 1〉 enter1−−−−−→〈c1, n2, y = 0〉 rel−−−→〈n1, n2, y = 1〉 req1−−−−→ . . .

only the first process gets its turn. This execution fragment is indicated by the dashed
arrows in Figure 3.12. It is not unconditionally fair for the set of actions

A = { enter2 }.

It is, however, strongly A-fair, since no state is visited in which the action enter2 is
executable, and hence the premise of strong fairness is vacuously false. In the alternative
execution fragment

〈n1, n2, y = 1〉 req2−−−−→〈n1, w2, y = 1〉 req1−−−−→〈w1, w2, y = 1〉 enter1−−−−−→
〈c1, w2, y = 0〉 rel−−−→〈n1, w2, y = 1〉 req1−−−−→ . . .

the second process requests to enter its critical section but is ignored forever. This ex-
ecution fragment is indicated by the dotted arrows in Figure 3.12. It is not strongly
A-fair: although the action enter2 is infinitely often enabled (viz. every time when visiting
the state 〈w1, w2, y = 1〉 or 〈n1, w2, y = 1〉), it is never taken. It is, however, weakly
A-fair, since the action enter2 is not continuously enabled—it is not enabled in the state
〈c1, w2, y = 0〉.

A fairness constraint imposes a requirement on all actions in a set A. In order to enable
different fairness constraints to be imposed on different, possibly nondisjoint, sets of ac-
tions, fairness assumptions are used. A fairness assumption for a transition system may
require different notions of fairness with respect to several sets of actions.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Fairness 133

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel

rel

Figure 3.12: Two examples of fair execution fragments of the semaphore-based mutual
exclusion algorithm.

Definition 3.46. Fairness Assumption

A fairness assumption for Act is a triple

F = (Fucond ,Fstrong ,Fweak)

with Fucond ,Fstrong ,Fweak ⊆ 2Act. Execution ρ is F-fair if

• it is unconditionally A-fair for all A ∈ Fucond ,

• it is strongly A-fair for all A ∈ Fstrong , and

• it is weakly A-fair for all A ∈ Fweak .

If the set F is clear from the context, we use the term fair instead of F-fair.

Intuitively speaking, a fairness assumption is a triple of sets of (typically different) action
sets, one such set of action sets is treated in a strongly fair manner, one in a weakly fair
manner, and one in an unconditionally fair way. This is a rather general definition that
allows imposing different fairness constraints on different sets of actions. Quite often, only
a single type of fairness constraint suffices. In the sequel, we use the casual notations
for these fairness assumptions. For F ⊆ 2Act, a strong fairness assumption denotes the
fairness assumption (∅,F ,∅). Weak, and unconditional fairness assumptions are used in
a similar way.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

134 Linear-Time Properties

The notion of F-fairness as defined on execution fragments is lifted to traces and paths
in the obvious way. An infinite trace σ is F-fair if there is an F-fair execution ρ with
trace(ρ) = σ. F-fair (infinite) path fragments and F-fair paths are defined analogously.

Let FairPathsF (s) denote the set of F-paths of s (i.e., infinite F-fair path fragments that
start in state s), and FairPathsF (TS) the set of F-fair paths that start in some initial
state of TS. Let FairTracesF (s) denote the set of F-fair traces of s, and FairTracesF (TS)
the set of F-fair traces of the initial states of transition system TS:

FairTracesF (s) = trace(FairPathsF (s)) and

FairTracesF (TS) =
⋃
s∈I

FairTracesF (s).

Note that it does not make much sense to define these notions for finite traces as any finite
trace is fair by default.

Example 3.47. Mutual Exclusion Again

Consider the following fairness requirement for two-process mutual exclusion algorithms:

“process Pi acquires access to its critical section infinitely often”

for any i ∈ { 1, 2 }. What kind of fairness assumption is appropriate to achieve this?
Assume each process Pi has three states ni (noncritical), wi (waiting), and ci (critical).
As before, the actions reqi, enteri, and rel are used to model the request to enter the
critical section, the entering itself, and the release of the critical section. The strong-
fairness assumption

{ {enter1, enter2} }
ensures that one of the actions enter1 or enter2, is executed infinitely often. A behavior
in which one of the processes gets access to the critical section infinitely often while the
other gets access only finitely many times is strongly fair with respect to this assumption.
This is, however, not intended. The strong-fairness assumption

{ { enter1 }, { enter2 } }

indeed realizes the above requirement. This assumption should be viewed as a requirement
on how to resolve the contention when both processes are awaiting to get access to the
critical section.

Fairness assumptions can be verifiable properties whenever all infinite execution fragments
are fair. For example, it can be verified that the transition system for Peterson’s algorithm

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Fairness 135

satisfies the strong-fairness assumption

Fstrong = { { enter1 }, { enter2 } }.

But in many cases it is necessary to assume the validity of the fairness conditions to verify
liveness properties.

A transition system TS satisfies the LT property P under fairness assumption F if all
F-fair paths fulfill the property P . However, no requirements whatsoever are imposed on
the unfair paths. This is formalized as follows.

Definition 3.48. Fair Satisfaction Relation for LT Properties

Let P be an LT property over AP and F a fairness assumption over Act. Transition
system TS = (S,Act,→, I,AP, L) fairly satisfies P , notation TS |=F P , if and only if
FairTracesF (TS) ⊆ P .

For a transition system that satisfies the fairness assumption F (i.e., all paths are F-fair),
the satisfaction relation |= without fairness assumptions (see Definition 3.11, page 100)
corresponds with the fair satisfaction relation |=F . In this case, the fairness assumption
does not rule out any trace. However, in case a transition system has traces that are not
F-fair, then in general we are confronted with a situation

TS |=F P whereas TS �|= P.

By restricting the validity of a property to the set of fair paths, the verification can be
restricted to “realistic” executions.

Before turning to some examples, a few words on the relationship between unconditional,
strong, and weak fairness are (again) in order. As indicated before, we have that the set
of unconditional A-fair executions is a subset of all strong A-fair executions. In a similar
way, the latter set of executions is a subset of all weak A-fair executions. Stated differ-
ently, unconditional fairness rules out more behaviors than strong fairness, and strong
excludes more behaviors than weak fairness. For F = {A1, . . . , Ak }, let fairness as-
sumption Fucond = (F ,∅,∅), Fstrong = (∅,F ,∅), and Fweak = (∅,∅,F). Then for any
transition system TS and LT property P it follows that:

TS |=Fweak
P ⇒ TS |=Fstrong P ⇒ TS |=Fucond

P.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

136 Linear-Time Properties

Example 3.49. Independent Traffic Lights

Consider again the independent traffic lights. Let action switch2green denote the switching
to green. Similarly switch2red denotes the switching to red. The fairness assumption

F = { { switch2green1, switch2red1 }, { switch2green2, switch2red2 } }
expresses that both traffic lights infinitely often switch color. In this case, it is irrelevant
whether strong, weak, or unconditional fairness is required.

Note that in this example F is not a verifiable system property (as it is not guaranteed
to hold), but a natural property which is satisfied for a practical implementation of the
system (with two independent processors). Obviously,

TrLight1 ||| TrLight2 |=F “each traffic light is green infinitely often”

while the corresponding proposition for the nonfair relation |= is refuted.

Example 3.50. Fairness for Mutual Exclusion Algorithms

Consider again the semaphore-based mutual exclusion algorithm, and assume the fairness
assumption F consists of

Fweak = {{ req1 }, { req2 }} and Fstrong = {{ enter1 }, { enter2 }}
and Fucond = ∅. The strong fairness constraint requires each process to enter its critical
section infinitely often when it infinitely often gets the opportunity to do so. This does not
forbid a process to never leave its noncritical section. To avoid this unrealistic scenario,
the weak fairness constraint requires that any process infinitely often requests to enter
the critical section. In order to do so, each process has to leave the noncritical section
infinitely often. It follows that TSSem |=F P where P stands for the property “every
process enters its critical section infinitely often”.

Weak fairness is sufficient for request actions, as such actions are not critical: if reqi is
executable in (global) state s, then it is executable in all direct successor states of s that
are reached by an action that differs from reqi.

Peterson’s algorithm satisfies the strong fairness property

“Every process that requests access to the critical section
will eventually be able to do so”.

We can, however, not ensure that a process will ever leave its noncritical section and
request the critical section. That is, the property P is refuted. This can be “repaired”
by imposing the weak fairness constraint Fweak = { { req1 }, { req2 } }. We now have
TSPet |=Fweak

P .

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Fairness 137

3.5.2 Fairness Strategies

The examples in the previous section indicate that fairness assumptions may be necessary
to verify liveness properties of transition system TS. In order to rule out the “unrealistic”
computations, fairness assumptions are imposed on the traces of TS, and it is checked
whether TS |=F P as opposed to checking TS |= P (without fairness). Which fairness as-
sumptions are appropriate to check P? Many model-checking tools provide the possibility
to work with built-in fairness assumptions. Roughly speaking, the intention is to rule out
executions that cannot occur in a realistic implementation. But what does that exactly
mean? In order to give some insight into this, we consider several fairness assumptions for
synchronizing concurrent systems. The aim is to establish a fair communication mecha-
nism between the various processes involved. A rule of thumb is: Strong fairness is needed
to obtain an adequate resolution of contentions (between processes), while weak fairness
suffices for sets of actions that represent the concurrent execution of independent actions
(i.e., interleaving).

For modeling asynchronous concurrency by means of transition systems, the following rule
of thumb can be adopted:

concurrency = interleaving (i.e., nondeterminism) + fairness

Example 3.51. Fair Concurrency with Synchronization

Consider the concurrent transition system:

TS = TS1 ‖ TS2 ‖ . . . ‖ TSn ,

where TSi = (Si,Acti,→i, Ii,APi, Li), for 1 � i � n, is a transition system without
terminal states. Recall that each pair of processes TSi and TSj (for i�=j) has to synchronize
on their common sets of actions, i.e., Syni,j = Acti ∩ Actj . It is assumed that Syni,j ∩
Actk = ∅ for any k �= i, j. For simplicity, it is assumed that TS has no terminal states.
(In case there are terminal states, each finite execution is considered to be fair.)

We consider several fairness assumptions on the transition system TS. First, consider the
strong fairness assumption

{Act1,Act2, . . . ,Actn}
which ensures that each transition system TSi executes an action infinitely often, provided
the composite system TS is infinitely often in a (global) state with a transition being
executable in which TSi participates. This fairness assumption, however, cannot ensure
that a communication will ever occur—it is possible for each TSi to only execute local
actions ad infinitum.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

138 Linear-Time Properties

In order to force a synchronization to take place every now and then, the strong fairness
assumption

{ {α } | α ∈ Syni,j, 0 < i < j � n } (3.1)

could be imposed. It forces every synchronization action to happen infinitely often. Alter-
natively, a somewhat weaker fairness assumption can be imposed by requiring every pair of
processes to synchronize—regardless of the synchronization action—infinitely often. The
corresponding strong fairness assumption is

{ Syni,j | 0 < i < j � n }. (3.2)

Whereas (3.2) allows processes to always synchronize on the same action, (3.1) does not
permit this. The strong fairness assumption:

{
⋃

0<i<j�n

Syni,j }

goes even one step further as it only requires a synchronization to take place infinitely
often, regardless of the process involved. This fairness assumption does not rule out
executions in which always the same synchronization takes place or in which always the
same pair of processes synchronizes.

Note that all fairness assumptions in this example so far are strong. This requires that
infinitely often a synchronization is enabled. As the constituting transition systems TSi

may execute internal actions, synchronizations are not continuously enabled, and hence
weak fairness is in general inappropriate.

If the internal actions should be fairly considered, too, then we may use, e.g., the strong
fairness assumption

{Act1 \ Syn1, . . . ,Actn \ Synn } ∪ { {α } | α ∈ Syn },

where Syni =
⋃

j �=i Syni,j denotes the set of all synchronization actions of TSi and
Syn =

⋃
i Syni.

Under the assumption that in every (local) state either only internal actions or only
synchronization actions are executable, it suffices to impose the weak fairness constraint

{Act1 \ Syn1, . . . ,Actn \ Synn }.

Weak fairness is appropriate for the internal actions α ∈ Acti \ Syni, as the ability to
perform an internal action is preserved until it will be executed.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Fairness 139

As an example of another form of fairness we consider the following sequential hardware
circuit.

Example 3.52. Circuit Fairness

For sequential circuits we have modeled the environmental behavior, which provides the
input bits, by means of nondeterminism. It may be necessary to impose fairness assump-
tions on the environment in order to be able to verify liveness properties, such as “the
values 0 and 1 are output infinitely often”. Let us illustrate this by means of a concrete ex-
ample. Consider a sequential circuit with input variable x, output variable y, and register
r. Let the transition function and the output function be defined as

λy = δr = x↔ ¬r.
That is, the circuit inverts the register and output evaluation if and only if the input bit
is set. If x=0, then the register evaluation remains unchanged. The value of the register
is output. Suppose all transitions leading to a state with a register evaluation of the form
[r = 1, . . .] are labeled with the action set . Imposing the unconditional fairness assumption
{{ set }} ensures that the values 0 and 1 are output infinitely often.

3.5.3 Fairness and Safety

While fairness assumptions may be necessary to verify liveness properties, they are irrele-
vant for verifying safety properties, provided that they can always be ensured by means of
an appropriate scheduling strategy. Such fairness assumptions are called realizable fairness
assumptions. A fairness assumption cannot be realized in a transition system whenever
there exists a reachable state from where no fair path begins. In this case, it is impossible
to design a scheduler that resolves the nondeterminism such that only fair paths remain.

Example 3.53. A Nonrealizable Fairness Assumption

Consider the transition system depicted in Figure 3.13, and suppose the unconditional
fairness assumption { {α } } is imposed. As the α-transition can only be taken once, it is
evident that the transition system can never guarantee this form of fairness. As there is
a reachable state from which no unconditional fair path exists, this fairness assumption is
nonrealizable.

Definition 3.54. Realizable Fairness Assumption

Let TS be a transition system with the set of actions Act and F a fairness assumption for
Act. F is called realizable for TS if for every reachable state s: FairPathsF (s) �= ∅.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

140 Linear-Time Properties

∅ aα

Figure 3.13: Unconditional fairness.

Stated in words, a fairness assumption is realizable in a transition system TS whenever in
any reachable state at least one fair execution is possible. This entails that every initial
finite execution fragment of TS can be completed to a fair execution. Note that there is
no requirement on the unreachable states.

The following theorem shows the irrelevance of realizable fairness assumptions for the
verification of safety properties. The suffix property of fairness assumptions is essential for
its proof. This means the following. If

ρ = s0
α1−−→ s1

α2−−→ s2
α3−−→ . . .

is an (infinite) execution fragment, then ρ is fair if and only if every suffix

sj
αj+1−−−−→ sj+1

αj+2−−−−→ sj+2
αj+3−−−−→ . . .

of ρ is fair too. Conversely, every fair execution fragment ρ (as above) starting in state s0
can be preceded by an arbitrary finite execution fragment

s′0
β1−−→ s′1

β2−−→ . . . βn−−→ s′n = s0

ending in s0. Proceeding in s0 by execution ρ yields the fair execution fragment:

s′0
β1−−→ s′1

β2−−→ . . . βn−−→ s′n︸ ︷︷ ︸
arbitrary starting fragment

= s0 α1−−→ s1
α2−−→ s2

α3−−→ . . .︸ ︷︷ ︸
fair continuation

Theorem 3.55. Realizable Fairness is Irrelevant for Safety Properties

Let TS be a transition system with set of propositions AP, F a realizable fairness assump-
tion for TS, and Psafe a safety property over AP. Then:

TS |= Psafe if and only if TS |=F Psafe .

Proof: “⇒”: Assume TS |= Psafe . Then, by definition of |= and the fact that the fair
traces of TS are a subset of the traces of TS, we have

FairTracesF (TS) ⊆ Traces(TS) ⊆ Psafe .

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Summary 141

Thus, by definition of |=F it follows that TS |=F Psafe .

“⇐”: Assume TS |=F Psafe . It is to be shown TS |= Psafe , i.e., Traces(TS) ⊆ Psafe .
This is done by contraposition. Let σ ∈ Traces(TS) and assume σ /∈ Psafe . As σ �∈ Psafe ,
there is a bad prefix of σ, σ̂ say, for Psafe . Hence, the set of properties that has σ̂ as a
prefix, i.e.,

P =
{
σ′ ∈

(
2AP

)ω
| σ̂ ∈ pref(σ′)

}
,

satisfies P ∩ Psafe = ∅. Further, let π̂ = s0 s1 . . . sn be a finite path fragment of TS with

trace(π̂) = σ̂.

Since F is a realizable fairness assumption for TS and sn ∈ Reach(TS), there is an F-fair
path starting in sn. Let

sn sn+1 sn+2 . . . ∈ FairPathsF (sn).

The path π = s0 . . . sn sn+1 sn+2 . . . is in FairPathsF (TS) and thus,

trace(π) = L(s0) . . . L(sn)L(sn+1)L(sn+2) . . . ∈ FairTracesF (TS) ⊆ Psafe .

On the other hand, σ̂ = L(s0) . . . L(sn) is a prefix of trace(π). Thus, trace(π) ∈ P . This
contradicts P ∩ Psafe = ∅.

Theorem 3.55 does not hold if arbitrary (i.e., possibly nonrealizable) fairness assumptions
are permitted. This is illustrated by the following example.

Example 3.56. Nonrealizable Fairness may harm Safety Properties

Consider the transition system TS in Figure 3.14 and suppose the unconditional fairness
assumption F = { {α } } is imposed. F is not realizable for TS, as the noninitial state
(referred to as state s1), is reachable, but has no F-fair execution. Obviously, TS has
only one fair path (namely the path that never leaves the initial state s0). In contrast,
paths of the form s0 . . . s0 s1 s1 s1 . . . are not fair, since α is only executed finitely often.
Accordingly, we have that

TS |=F “never a” but TS �|= “never a”.

3.6 Summary

• The set of reachable states of a transition system TS can be determined by a search
algorithm on the state graph of TS.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

142 Linear-Time Properties

∅ { a }

α β

Figure 3.14: Unconditional fairness may be relevant for safety properties.

• A trace is a sequence of sets (!) of atomic propositions. The traces of a transition
system TS are obtained from projecting the paths to the sequence of state labels.

• A linear-time (LT, for short) property is a set of infinite words over the alphabet
2AP.

• Two transition systems are trace-equivalent (i.e., they exhibit the same traces) if
and only if they satisfy the same LT properties.

• An invariant is an LT property that is purely state-based and requires a propositional
logic formula Φ to hold for all reachable states. Invariants can be checked using
a depth-first search where the depth-first search stack can be used to provide a
counterexample in case an invariant is refuted.

• Safety properties are generalizations of invariants. They constrain the finite behav-
iors. The formal definition of safety properties can be provided by means of their
bad prefixes in the sense that each trace that refutes a safety property has a finite
prefix, the bad prefix, that causes this.

• Two transition systems exhibit the same finite traces if and only if they satisfy the
same safety properties.

• A liveness property is an LT property if it does not rule out any finite behavior. It
constrains infinite behavior.

• Any LT property is equivalent to an LT property that is a conjunction of a safety
and a liveness property.

• Fairness assumptions serve to rule out traces that are considered to be unrealistic.
They consist of unconditional, strong, and weak fairness constraints, i.e., constraints
on the actions that occur along infinite executions.

• Fairness assumptions are often necessary to establish liveness properties, but they
are—provided they are realizable—irrelevant for safety properties.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Bibliographic Notes 143

3.7 Bibliographic Notes

The dining philosophers example discussed in Example 3.2 has been developed by Dijk-
stra [128] in the early seventies to illustrate the intricacies of concurrency. Since then it
has become one of the standard examples for reasoning about parallel systems.

The depth-first search algorithm that we used as a basis for the invariance checking al-
gorithm goes back to Tarjan [387]. Further details about graph traversal algorithms can
be found in any textbook on algorithms and data structures, e.g. [100], or on graph
algorithms [188].

Traces. Traces have been introduced by Hoare [202] to describe the linear-time behavior
of transition systems and have been used as the initial semantical model for the pro-
cess algebra CSP. Trace theory has further been developed by, among others, van de
Snepscheut [403] and Rem [354] and has successfully been used to design and analyze
fine-grained parallel programs that occur in, e.g., asynchronous hardware circuits. Sev-
eral extensions to traces and their induced equivalences have been proposed, such as fail-
ures [65] where a trace is equipped with information about which actions are rejected after
execution of such trace. The FDR model checker [356] supports the automated checking
of failure-divergence refinement and the checking of safety properties. A comprehensive
survey of these refined notions of trace equivalence and trace inclusion has recently been
given by Bruda [68].

Safety and liveness. The specification of linear-time properties using sets of infinite se-
quences of states (and their topological characterizations) goes back to Alpern and Schnei-
der [5, 6, 7]. An earlier approach by Gerth [164] was based on finite sequences. Lam-
port [257] categorized properties as either safety, liveness, or properties that are neither.
Alternative characterizations have been provided by Rem [355] and Gumm [178]. Sub-
classes of liveness and safety properties in the linear-time framework have been identified
by Sistla [371], and Chang, Manna, and Pnueli [80]. Other definitions of liveness proper-
ties have been provided by Dederichs and Weber [119] and Naumovich and Clarke [312]
(for linear-time properties), and Manolios and Trefler [285, 286] (for branching-time prop-
erties). A survey of safety and liveness has been given by Kindler [239].

Fairness. Fairness has implicitly been introduced by Dijkstra [126, 127] by assuming
that one should abstract from the speed of processors and that each process gets its turn
once it is initiated. Park [321] studied the notion of fairness in providing a semantics
to data-flow languages. Weak and strong fairness have been introduced by Lehmann,
Pnueli, and Stavi [267] in the context of shared variable concurrent programs. Queille and
Sifakis [348] consider fairness for transition systems. An overview of the fairness notions
has been provided by Kwiatkowska [252]. An extensive treatment of fairness can be found

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

144 Linear-Time Properties

in the monograph by Francez [155]. A recent characterization of fairness in terms of
topology, language theory, and game theory has been provided by Völzer, Varacca, and
Kindler [415].

3.8 Exercises

Exercise 3.1. Give the traces on the set of atomic propositions { a, b } of the following transition
system:

{ a }

∅

{ a, b }

{ a }

Exercise 3.2. On page 97, a transformation is described of a transition system TS with possible
terminal states into an “equivalent” transition system TS∗ without terminal states. Questions:

(a) Give a formal definition of this transformation TS �→ TS∗

(b) Prove that the transformation preserves trace-equivalence, i.e., show that if TS1,TS2 are
transition systems (possibly with terminal states) such that Traces(TS1) = Traces(TS2),
then Traces(TS∗

1) = Traces(TS∗
2).8

Exercise 3.3. Give an algorithm (in pseudocode) for invariant checking such that in case
the invariant is refuted, a minimal counterexample, i.e., a counterexample of minimal length, is
provided as an error indication.

Exercise 3.4. Recall the definition of AP-deterministic transition systems (Definition 2.5 on
page 24). Let TS and TS′ be transition systems with the same set of atomic propositions AP.
Prove the following relationship between trace inclusion and finite trace inclusion:

(a) For AP-deterministic TS and TS′:

Traces(TS) = Traces(TS′) if and only if Tracesfin(TS) = Tracesfin(TS′).

8If TS is a transition system with terminal states, then Traces(TS) is defined as the set of all words
trace(π) where π is an initial, maximal path fragment in TS.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Exercises 145

(b) Give concrete examples of TS and TS′ where at least one of the transition systems is not
AP-deterministic, but

Traces(TS) �⊆ Traces(TS′) and Tracesfin(TS) = Tracesfin(TS′).

Exercise 3.5. Consider the set AP of atomic propositions defined by AP = { x = 0, x > 1 }
and consider a nonterminating sequential computer program P that manipulates the variable x.
Formulate the following informally stated properties as LT properties:

(a) false

(b) initially x is equal to zero

(c) initially x differs from zero

(d) initially x is equal to zero, but at some point x exceeds one

(e) x exceeds one only finitely many times

(f) x exceeds one infinitely often

(g) the value of x alternates between zero and two

(h) true

(This exercise has been adopted from [355].) Determine which of the provided LT properties are
safety properties. Justify your answers.

Exercise 3.6. Consider the set AP = {A,B } of atomic propositions. Formulate the following
properties as LT properties and characterize each of them as being either an invariance, safety
property, or liveness property, or none of these.

(a) A should never occur,

(b) A should occur exactly once,

(c) A and B alternate infinitely often,

(d) A should eventually be followed by B.

(This exercise has been inspired by [312].)

Exercise 3.7. Consider the following sequential hardware circuit:

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

146 Linear-Time Properties

XOR

XOR

AND

x y

r

r

1

2

AND OR

OR

The circuit has input variable x, output variable y, and registers r1 and r2 with initial values
r1 = 0 and r2 = 1. The set AP of atomic propositions equals { x, r1, r2, y }. Besides, consider the
following informally formulated LT properties over AP:

P1 : Whenever the input x is continuously high (i.e., x=1), then the output y is infinitely often
high.

P2 : Whenever currently r2=0, then it will never be the case that after the next input, r1=1.

P3 : It is never the case that two successive outputs are high.

P4 : The configuration with x=1 and r1=0 never occurs.

Questions:

(a) Give for each of these properties an example of an infinite word that belongs to Pi. Do the
same for the property

(
2AP)ω \ Pi, i.e., the complement of Pi.

(b) Determine which properties are satisfied by the hardware circuit that is given above.

(c) Determine which of the properties are safety properties. Indicate which properties are in-
variants.

(i) For each safety property Pi, determine the (regular) language of bad prefixes.

(ii) For each invariant, provide the propositional logic formula that specifies the property
that should be fulfilled by each state.

Exercise 3.8. Let LT properties P and P ′ be equivalent, notation P ∼= P ′, if and only if
pref(P) = pref(P ′). Prove or disprove: P ∼= P ′ if and only if closure(P) = closure(P ′).

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Exercises 147

Exercise 3.9. Show that for any transition system TS, the set closure(Traces(TS)) is a safety
property such that TS |= closure(Traces(TS)).

Exercise 3.10. Let P be an LT property. Prove: pref(closure(P)) = pref(P).

Exercise 3.11. Let P and P ′ be liveness properties over AP. Prove or disprove the following
claims:

(a) P ∪ P ′ is a liveness property,

(b) P ∩ P ′ is a liveness property.

Answer the same question for P and P ′ being safety properties.

Exercise 3.12. Prove Lemma 3.38 on page 125.

Exercise 3.13. Let AP = { a, b } and let P be the LT property of all infinite words σ =
A0A1A2 . . . ∈

(
2AP

)ω such that there exists n � 0 with a ∈ Ai for 0 � i < n, { a, b } = An and
b ∈ Aj for infinitely many j � 0. Provide a decomposition P = Psafe ∩ Plive into a safety and a
liveness property.

Exercise 3.14. Let TSSem and TSPet be the transition systems for the semaphore-based mutual
exclusion algorithm (Example 2.24 on page 43) and Peterson’s algorithm (Example 2.25 on page
45), respectively. Let AP = {waiti, criti | i = 1, 2 }. Prove or disprove:

Traces(TSSem) = Traces(TSPet).

If the property does not hold, provide an example trace of one transition system that is not a trace
of the other one.

Exercise 3.15. Consider the transition system TS outlined on the right and the sets of actions
B1 = {α }, B2 = {α, β }, and B3 = { β }. Further, let Eb, Ea and E′ be the following LT
properties:

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

148 Linear-Time Properties

• Eb = the set of all words A0A1 · · · ∈
(
2{a,b})ω

with
Ai ∈ {{a, b}, {b}} for infinitely many i
(i.e., infinitely often b).

• Ea = the set of all words A0A1 · · · ∈
(
2{a,b})ω

with
Ai ∈ {{a, b}, {a}} for infinitely many i
(i.e., infinitely often a).

• E′ = set of all words A0A1 · · · ∈
(
2{a,b})ω

for which
there does not exist an i ∈ N s.t. Ai = {a}, Ai+1 =
{a, b} and Ai+2 = ∅.

∅
s1

s3 {b}s2{a}

s4

{a, b}

γ

γ

γ

α

α β
α

Questions:

(a) For which sets of actions Bi (i ∈ { 1, 2, 3 }) and LT properties E ∈ {Ea, Eb, E
′ } it holds

that TS |=Fi E? Here, Fi is a strong fairness condition with respect to Bi that does not
impose any unconditional or weak fairness conditions (i.e., Fi = (∅, {Bi },∅)).

(b) Answer the same question in the case of weak fairness (instead of strong fairness, i.e., Fi =
(∅,∅, {Bi })).

Exercise 3.16. Let TSi (for i=1, 2) be the transition system (Si,Act,→ i, Ii, APi, Li) and
F = (Fucond ,Fstrong ,Fweak) be a fairness assumption with Fucond = ∅. Prove or disprove (i.e.,
give a counterexample for) the following claims:

(a) Traces(TS1) ⊆ Traces(TS1 ‖ TS2) where Syn ⊆ Act

(b) Traces(TS1) ⊆ Traces(TS1 |||TS2)

(c) Traces(TS1 ‖ TS2) ⊆ Traces(TS1) where Syn ⊆ Act

(d) Traces(TS1) ⊆ Traces(TS2) ⇒ FairTracesF(TS1) ⊆ FairTracesF (TS2)

(e) For liveness property P with TS2 |=F P we have

Traces(TS1) ⊆ Traces(TS2) ⇒ TS1 |=F P.

Assume that in items (a) through (c), we have AP2 = ∅ and that TS1 ‖ TS2 and TS1 |||TS2,
respectively, have AP = AP1 as atomic propositions and L(〈s, s′〉) = L1(s) as labeling function.
In items (d) and (e) you may assume that AP1 = AP2.

Exercise 3.17. Consider the following transition system TS with the set of atomic propositions
{ a }:

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

Exercises 149

{a}
s1 s2 s3

s6

s4 s5

α

α

α

γ
β

β

ββ
α

Let the fairness assumption
F = (∅, {{α}, {β}} , {{β}}) .

Determine whether TS |=F “eventually a”. Justify your answer!

Exercise 3.18. Consider the following transition system TS (without atomic propositions):

s0

s1 s2

s4

αβ
α

αδ

β
δ

s3
β

α

Decide which of the following fairness assumptions Fi are realizable for TS. Justify your answers!

(a) F1 = ({{α}} , {{δ}} , {{α, β}})
(b) F2 = ({{δ, α}} , {{α, β}} , {{δ}})
(c) F3 = ({{α, δ}, {β}} , {{α, β}} , {{δ}})

Exercise 3.19. Let AP = { a, b }.

(a) P1 denotes the LT property that consists of all infinite words σ = A0A1A2 . . . ∈
(
2AP

)ω

such that there exists n � 0 with

∀j < n. Aj = ∅ ∧ An = {a} ∧ ∀k > n. (Ak = { a } ⇒ Ak+1 = { b }) .

(i) Give an ω–regular expression for P1.

(ii) Apply the decomposition theorem and give expressions for Psafe and Plive .

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

150 Linear-Time Properties

(iii) Justify that Plive is a liveness and that Psafe is a safety property.

(b) Let P2 denote the set of traces of the form σ = A0A1A2 . . . ∈
(
2AP

)ω such that

∞
∃ k. Ak = { a, b } ∧ ∃n � 0. ∀k > n. (a ∈ Ak ⇒ b ∈ Ak+1

)
.

Consider the following transition system TS:

s0

{ a }
s1 { b }

s2{ a, b } s3
∅

s4 { a, b }
δ η

γ αβ

α

γ

α

α β β
Consider the following fairness assumptions:

(a) F1 =
({{α}},{{β}, {δ, γ}, {η}},∅)

. Decide whether TS |=F1 P2.

(b) F2 =
({{α}},{{β}, {γ}},{{η}})

. Decide whether TS |=F2 P2.

Justify your answers.

Exercise 3.20. Let TS = (S,Act,→, I,AP, L) be a transition system without terminal states
and let A1, . . . , Ak, A′

1, . . . , A
′
l ⊆ Act.

(a) Let F be the fairness assumption F = (∅,Fstrong ,Fweak) where

Fstrong = {A1, . . . , Ak} and Fweak = {A′
1, . . . , A

′
l}.

Provide a sketch of a scheduling algorithm that resolves the nondeterminism in TS in an
F -fair way.

(b) Let Fucond = {A1, . . . , Ak}, viewed as an unconditional fairness assumption for TS. Design
a (scheduling) algorithm that checks whether Fucond for TS is realizable, and if so, generates
an Fucond -fair execution for TS.

Baier, Christel, and Joost-Pieter Katoen. Principles of Model Checking, MIT Press, 2008. ProQuest Ebook Central,
 http://ebookcentral.proquest.com/lib/socal/detail.action?docID=3338793.
Created from socal on 2021-01-20 22:27:15.

C
op

yr
ig

ht
 ©

 2
00

8.
 M

IT
 P

re
ss

. A
ll

rig
ht

s
re

se
rv

ed
.

