
6

A Survey of Statistical Model Checking

GUL AGHA and KARL PALMSKOG, University of Illinois at Urbana-Champaign, USA

Interactive, distributed, and embedded systems often behave stochastically, for example, when inputs, mes-

sage delays, or failures conform to a probability distribution. However, reasoning analytically about the be-

havior of complex stochastic systems is generally infeasible. While simulations of systems are commonly

used in engineering practice, they have not traditionally been used to reason about formal specifications.

Statistical model checking (SMC) addresses this weakness by using a simulation-based approach to reason

about precise properties specified in a stochastic temporal logic. A specification for a communication system

may state that within some time bound, the probability that the number of messages in a queue will be greater

than 5 must be less than 0.01. Using SMC, executions of a stochastic system are first sampled, after which sta-

tistical techniques are applied to determine whether such a property holds. While the output of sample-based

methods are not always correct, statistical inference can quantify the confidence in the result produced. In

effect, SMC provides a more widely applicable and scalable alternative to analysis of properties of stochastic

systems using numerical and symbolic methods. SMC techniques have been successfully applied to analyze

systems with large state spaces in areas such as computer networking, security, and systems biology. In this

article, we survey SMC algorithms, techniques, and tools, while emphasizing current limitations and tradeoffs

between precision and scalability.

CCS Concepts: • Mathematics of computing → Hypothesis testing and confidence interval compu-

tation; Statistical paradigms; • Theory of computation → Verification by model checking;

Additional Key Words and Phrases: Statistical model checking, hypothesis testing, temporal logic, simulation,

estimation

ACM Reference format:

Gul Agha and Karl Palmskog. 2018. A Survey of Statistical Model Checking. ACM Trans. Model. Comput.

Simul. 28, 1, Article 6 (January 2018), 39 pages.

https://doi.org/10.1145/3158668

1 MOTIVATION

The behavior of interactive, distributed, and embedded systems is often stochastic in nature, for
example, when input data, message delays, or failures conform to a probability distribution. In
some cases, the behavior of individual actors in a system may also be probabilistic—in fact, the
actors may be implementing a randomized algorithm [5].

Reasoning purely analytically about the behavior of complex stochastic systems is generally
infeasible. Instead, numerical techniques that can provide ever-higher accuracy at low additional

This work is supported by the National Science Foundation, under Grants No. NSF CCF 14-38982 and No. NSF CCF 16-

17401, and by AFOSR/AFRL Air Force Research Laboratory and the Air Force Office of Scientific Research under Agreement

No. FA8750-11-2-0084 for the Assured Cloud Computing at the University of Illinois at Urbana-Champaign.

Authors’ addresses: G. Agha and K. Palmskog, University of Illinois at Urbana-Champaign, Department of Computer Sci-

ence, Urbana, IL, 61801; emails: {agha, palmskog}@illinois.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1049-3301/2018/01-ART6 $15.00

https://doi.org/10.1145/3158668

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

https://doi.org/10.1145/3158668
mailto:permissions@acm.org
https://doi.org/10.1145/3158668

6:2 G. Agha and K. Palmskog

cost may be used [14]. However, because of their computational and memory requirements,
numerical techniques do not scale well. Moreover, numerical techniques require an explicit
system description that includes state transition probabilities. Due to these limitations, numerical
techniques are suitable only for those real-world systems that have a small state space and an
explicit system description. In addition, for systems with complex dynamics, e.g., timed and
hybrid systems, many basic problems have no efficient solution methods. In contrast, an approach
based on statistical analysis relies only on the ability to obtain samples of properties. Such
samples can be the result of simulations or a system execution. In fact, the statistical approach
is applicable even when a system is a “black box” whose behavior is not fully understood or
controllable [111]. Moreover, the statistical approach can be applied to systems with complex
dynamics, as long as the behavior of such systems is stochastic and its execution traces are
available.

Simulations and statistical inference over observations have a long history in engineering prac-
tice. In computer science, simulation and statistical inference have played a particularly impor-
tant role in assessing the performance and reliability of computer systems and in analyzing net-
works [60, 119]. For example, in queuing theory, analysis of observed network traffic has identified
a family of probability distributions (Poisson distributions) as common for the rate of message ar-
rival. This has allowed the behavior of networks to be explored through simulations, which varies
parameters such as throughput and delay.

However, simulations have traditionally not been used to reason about formal specifications—
and not often for the behavior of concurrent software. Statistical model checking (SMC) addresses
this weakness by using a simulation-based approach to reason about precise properties specified
in a stochastic temporal logic. Properties specified in such a temporal logic may be simple: for
example, that within some time bound, the probability that the number of messages in a queue
will be greater than 5 is less than 0.01. This sort of property may also be informally stated and
reasoned about in traditional queuing theory. Or the property may be more complex: for example,
that in some bounded time period, if a node crashes, the probability that it will recover within 5000
steps is between 0.9 and 0.99. The temporal logics can get richer and allow logical deduction to be
combined with statistical techniques.

In SMC, potential executions of a stochastic system are first sampled, after which statistical
inference may be applied. Statistical inference comes in one of two flavors: (a) hypothesis test-

ing is used to determine the extent to which observations “conform” to a given specification; and
(b) estimation is used to determine likely values of parameters based on the assumption that the
data is randomly drawn from a specified type of distribution. In either case, the result of an infer-
ence can used to evaluate a property specified in a stochastic temporal logic. Many such techniques
used for statistical inference have been incorporated into SMC.

While the output from statistical inference techniques is not always correct, statistical inference
nevertheless improves or weakens our confidence in a hypothesis. This confidence is based on the
assumption that a probabilistic property (or its negation) holds (is true). For example, statistical
inference may be used to conclude that, under the assumption that a coin is fair (has a 0.5 proba-
bility of producing a “Head”), the probability of a given finite sequence of observations is <0.01.
At this point, we may doubt the hypothesis that the coin is fair.

The process of hypothesis testing follows the scientific method: we can never provide proof of
the correctness of a hypothesis (theory or law). Instead, we conjecture that a model accurately
represents the behavior of a system, and we then use this model to make predictions. If a model
(theory) makes predictions that are consistent with the data, then our confidence in the model
increases. If observations about the system “contradict” the predictions of the model, then we
reject the model. Science is all about conjectures and refutations [99]. Of course, the process is more

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:3

complicated: the simplicity of a theory and the richness of its predictions are also considerations
in how confident we are about a theory.

In the case of statistical reasoning, a conjectured model is probabilistic. We reject the model
if the observations are sufficiently improbable based on the model. Estimation appears to be
more empiricist in form [13]—but, in fact, it must also be based on a model. For example, we may
base an estimate on the hypothesized model that the probabilistic behavior of a system follows
some specific parameterized function (representing a family of probability distributions). More-
over, we often assume that the data has been randomly sampled. Based on these assumptions and
the data in the samples, we estimate the probabilities of various possible values for the parameters.
From these probabilities, we may also derive the probability of a given property holding under
the assumptions.

This brings us to another basic question that must be answered before SMC can be applied: what
should we assume the probabilistic model of the behavior of a system is, given that we need such
a model as the basis of our statistical reasoning? One approach is as follows. Check if the property
of interest (ignoring probabilistic operators) holds in a given execution (trace) of a system and
treat it as a sample in a Bernoulli trial. Note that the Bernoulli distribution converges to normal
distribution in the limit (in fact, fairly rapidly). Treat these samples as observations. Now assume
that a given probabilistic specification does not hold (i.e., the negation of the specification holds).
Under this assumption, compute the probability of the observations that have been made. If the
observations are “sufficiently” improbable, then reject the conjecture that the system does not meet
its specification. This is essentially the approach followed by Sen et al. [111].

Although simulations of stochastic systems (Monte Carlo methods) are well studied and have
been applied extensively to real-world systems for many decades, SMC-related research has been
active in the past 15 years, with important initial results appearing from 2002 to 2005 [46, 54, 111,
112, 126, 131]. In fact, some key SMC ideas may be traced a further decade back, in particular,
to work in process algebra on establishing stochastic modal properties with arbitrary precision
using hypothesis testing [74]. Note that the term Statistical Model Checking was first coined by
Sen et al. [111].

SMC is a form of what has been called stochastic model checking, which also includes more
precise and exhaustive numerical and symbolic methods. However, SMC can often elide the state
space explosion problem that other model checking methods are prone to suffer from [61]. SMC
techniques have been successfully applied to analyze large-scale systems in areas such as computer
networking, security, and systems biology. This success has contributed to a recent proliferation
of related specification formalisms, algorithms, and tools [6, 15, 25, 28, 34, 41, 65, 94, 109, 113,
129].

System analysis using SMC techniques generally follows the workflow in Figure 1, where key
components are shown as boxes with rounded corners. Although a simulation driver, 3© in the
figure, is a core requirement for performing SMC, the low-level details of how a simulation is
performed are generally not of concern to SMC algorithms: improvements in discrete-event simu-
lation of stochastic systems can immediately benefit SMC-based analysis. Conversely, SMC algo-
rithms can usually be easily integrated with existing discrete-event simulators to provide extended
analysis capabilities to such frameworks. The specifics of simulation engines are beyond the scope
of this article. Moreover, note that the samples could also be obtained directly from the execution
of the system itself.

Outline of the Paper. Section 2 introduces some background material, including stochastic
processes and discrete event systems, stochastic logics, types of verification techniques, and
types of errors. Section 3 describes strategies for sampling, testing, and estimation of parameters,

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:4 G. Agha and K. Palmskog

Fig. 1. SMC workflow.

including specific methods that pertain to black box systems, Bayesian inference, and rarely re-
alized properties. Note that our treatment of statistical inference will not be detailed; foundations
and more details can be found in a textbook, such as that by Trivedi [119]. In Section 4, we turn
our attention to two specific classes of more complex properties—namely, those involving nested
formulas and those involving the “unbounded until” operator. Section 5 describes three specific
classes of systems that require specialized logics and algorithms: systems that have (unquantified)
nondeterminism as well as probabilistic behavior, timed systems, and hybrid systems. Section 6
lists key areas to which SMC has been applied. In Section 7, we provide some details about specific
tools and their use, along with suggested heuristics for choosing a tool. Finally, Section 8 concludes
with a discussion of the limitations and applicability of SMC as well as some directions for future
research.

2 BACKGROUND

SMC requires inputting an executable system and a specification. In this section, we discuss some
varieties of these inputs (1© in Figure 1), specifications 2©, and the two forms of SMC: hypothesis
testing and estimation 4©. We then provide some background relevant to the problem of reducing
the chances of errors in judgment about hypotheses (the results).

Numerical and symbolic analysis methods for stochastic systems generally require explicit,
finite-state (“white box”) models, usually in the form memoryless (Markovian) stochastic
processes. However, the stochastic model checking problem with respect to a specification in a
stochastic logic is well defined even without such an explicit model. SMC only requires that the sys-
tem to be analyzed can be simulated using discrete-event simulation and that there is a probability

space on executions of the system. SMC can even be applied on infinite-state and implicit (“black
box”) stochastic systems where measures on the probability space are not completely known
[111].

For example, SMC is directly applicable to systems whose behavior can modeled by a Discrete

Time Markov Chain (DTMC) or Continuous Time Markov Chain (CTMC) [131], by a (Generalized)

Semi Markov Process (GSMP) [111], or by a Generalized Stochastic Petri Net (GSPN) [15]. More
recently, SMC analysis has been extended to timed and hybrid systems with stochastic behavior
[39, 41], as well as Markov Decision Processes (MDPs), where some purely nondeterministic choices
(i.e., choices without a probability assignment) may also be made by a system [79].

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:5

Fig. 2. A discrete time Markov chain and its transition matrix.

2.1 Stochastic Processes and Discrete Event Systems

A stochastic process is a collection of random variables indexed by some set, whose elements are
traditionally interpreted as points in time. Each random variable assumes values from a state space,
and processes are said to occupy some state from this space at any time.

While conventional analysis techniques require an explicit stochastic process, SMC is applicable
to any process, implicit or explicit, that can be considered a stochastic discrete event system, which
occupies a state for some duration before an event causes a transition to occur [111, 126]. As
alluded to above, SMC works as long as sequences of states (paths) generated by the system are
measurable. In particular, a DTMC represents a stochastic process indexed over the (non-negative)
integers, which can be considered as a discrete event system evolving over discrete time.

In this article, we will sometimes use fully defined finite-state DTMCs as examples to concretize
the presentation of SMC concepts and algorithms. However, ideas will typically carry over to other
types of stochastic systems, such as CTMCs, with only minor differences.

Definition 2.1. Let AP be a finite set of atomic propositions. A DTMC is a tupleM = (S, si ,M,L)
where S is a finite set of states, si ∈ S is the initial state,M : S × S → [0, 1] is a transition probability

function s.t. for all s ∈ S ,
∑

s ′ ∈S M (s, s ′) = 1, and L : S → 2AP is a labeling function associating states
with their respective true atomic propositions.

In the context of a DTMCM, paths are infinite sequences s1, s2, . . . of elements of S . Traces, or
path prefixes, are finite non-empty prefixes of such sequences. For some purposes, e.g., symbolic
computation, it can be beneficial to view M in the DTMCM as a matrix rather than a function.
To do so, some order relation on states must be fixed.M is at any moment of time in one of its
states s , from which it makes a transition to some state s ′ according to the probabilities given by
M—an operation that takes one unit of time.

Example 2.2. Consider a DTMCM with five states represented pictorially in Figure 2 (Note that
this example is due to Roohi and Viswanathan [105]). There are two atomic propositions p and q,
which hold as indicated in the figure, e.g., p is true in the state s1. As emphasized by the circle’s
thickness, s1 is the initial state. By the definition of the transition matrix, the probability thatM
traverses the path prefix s1, s2, s3, s2 is M (s1, s2) ×M (s2, s3) ×M (s3, s2) = 0.5 × 1 × 1 = 0.5.

2.2 Stochastic Logics

Functional, qualitative properties of systems such as state invariants are traditionally expressed
in temporal logics over (non-stochastic) transition system models. One classic such logic is the
branching-time Computational Tree Logic (CTL) [33]. In contrast, logics for stochastic systems
must permit quantitative reasoning about probabilities and time.

As an example, we describe Probabilistic Computational Tree Logic (PCTL), which extends CTL
with operators for probability and time bounds to allow quantitative property specification [48].

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:6 G. Agha and K. Palmskog

Table 1. PCTL Syntax

ϕ ::= � | a | ¬ϕ | ϕ ∧ ϕ ′ | P≥θ (ψ) a ∈ AP atomic proposition

ψ ::= ϕ | Xϕ | ϕ U≤t ϕ ′ | ϕ Uϕ ′ θ ∈ [0, 1] probability bound

t ∈ Z≥0 time bound

Fig. 3. Path where ϕ U≤t ϕ ′ holds.

As in CTL, formulas in PCTL quantify over either states or paths, with ϕ used to denote the former
kind of formula andψ to denote the latter. Table 1 gives the syntax definition of PCTL formulas. We
use only the ≥ (greater than or equal to) comparison operator on probabilities. Since the probabil-
ities we deal with are continuous, there is no meaningful distinction between > and ≥ (or between
< and ≤). Moreover, < can be defined in terms of ≥ and ¬.

The semantics of a PCTL formula is defined with respect to a DTMCM and a state s ∈ S . More
specifically, the formula � is always true in s , and a is true when a is in the set of labels associated
with s , i.e., when a ∈ L(s). Negation and conjunction have the usual meanings. Intuitively, the
formula P≥θ (ψ) is true in s when the probability that ψ holds on paths starting from s is greater
than or equal to θ .

For a path π = s, s1, . . . , the formula ϕ is true for π if ϕ holds in s , and Xϕ is true for π if ϕ
holds in the next state after s , i.e., in s1. As illustrated in Figure 3, the formula ϕ U≤t ϕ ′ is true for
a path π = s, s1, . . . , st , . . . whenever there is a state sk+1 with k + 1 ≤ t in π where ϕ ′ holds, and
for all states up to and including sk , ϕ holds. The corresponding formula without the condition
on t , ϕ Uϕ ′, loosens the requirement for ϕ ′ to be true within an a priori fixed number of steps in
a path. In particular, the formula �Uϕ ′ holds if ϕ ′ is true at some undetermined point along the
path. In other words, �Uϕ ′ encodes the property that an event “eventually” occurs—a property
often specified for systems using non-stochastic temporal logics.

Example 2.3. Consider a queue system with stochastic task arrivals modeled as a DTMC,
with pending, done ∈ AP , pending true for states where a received task is being processed,
and done true for states where processing a task is completed. Then, the PCTL formula
P≥0.98 (pendingU≤10 done) holds in paths π starting from a given state s if, with probability 0.98
or more, pending holds for all states along the path up to a state s ′ where done holds, with a
distance (i.e., number of units of time) in π from s to s ′ of at most 10. With the condition ≤10
omitted for the until operator U in the formula, there is no upper bound on the number of units
of time before done must be true; as discussed in Section 4.2, such unbounded until formulas
are particularly difficult to verify algorithmically for stochastic systems in general and thus for
DTMCs.

There are several variants and extensions of PCTL. Our PCTL syntax notably omits a long-run
(steady-state) operator. Some tools such as PRISM [69] allow users to specify that they want to ob-
tain (an estimate of) the probability for a path formula rather than a comparison of that probability
to a given threshold. However, since some SMC algorithms do not compute an explicit estimate
of the probability, users will not always be able to obtain such probabilities from SMC tools.

The literature contains many stochastic logics, which allow different kinds of properties to
be expressed, defined over a variety of stochastic systems. For example, Continuous Stochastic

Logic (CSL) [10, 11] extends CTL to capture quantitative properties of CTMCs, and Quantitative

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:7

Temporal Expressions (QuaTEx), which are defined over probabilistic rewrite systems, allow
properties related to expected values of any expression to be queried [5].

2.3 Verification Techniques

Assume we are given some process that defines a stochastic discrete event system, along with a
specification of a state property in a stochastic logic. Does the the property hold for some specific
state in the state space? This is the stochastic analogue to the classic model checking problem for
temporal logics such as CTL for which many algorithms and tools for automated verification have
been developed [33].

For example, if we are given a DTMCM, and a PCTL specification P≥θ (ψ), where ψ is a path
formula, does the specification hold in the initial state si ofM? This stochastic model checking
problem on DTMCs (and its analogue for CSL specifications on CTMCs) can in principle be solved
using numeric techniques. In such algorithms, the probability p of (the measure of) ψ inM for
si is computed up to some precision and then compared with θ . One established approach is to
construct a new DTMC based onM, where states that immediately make the specification true
when reached are made self-looping with probability 1, i.e., absorbing. From this DTMC, a vector
of probabilities representing the measure for each state can be obtained via an infinite sum [130].
Arguably, however, such methods solve a harder problem than the original one.

Numeric-symbolic manipulations of a Markov chain can be made more efficient by operating
on optimized representations, e.g., binary decision diagrams and sparse matrices and arrays. The
potential for sparse representations for transition matrices is highlighted in the example DTMC
in Figure 2, where M has at most two entries in any row or column. Depending on the Markov
chain structure, analysis on one particular representation may be faster than on others, but require
more memory—limiting the state space that can be explored even when using tools that employ a
plethora of techniques to improve efficiency. For example, Younes et al. concluded in 2011 that the
numeric approach was then feasible only when the state space of the system under analysis was
of size 109 or less [129].

In contrast, using SMC, a system is executed repeatedly using discrete event simulation
(Monte Carlo experiments) without the need for an explicit representation. The path formula ψ
in P≥θ (ψ) is checked on each path prefix (trace) generated by the simulation. A checked path
prefix provides an observation, or sample point, of a Bernoulli random variable X , which is 1
if ψ holds and 0 otherwise. Thus, SMC may be used for hypothesis testing or for probability
estimation.

Hypothesis Testing. Suppose H0 and H1 are two competing and complementary hypotheses: H0

is the hypothesis that the probability measure p of ψ for si is greater than or equal to θ (H0 : p ≥
θ), while the alternate hypothesis H1 states that p is less than θ (H1 : p < θ). Let H0 be the “null
hypothesis”: what we would accept until proved otherwise. Now, if we claim H0 is false, while H0

is true, then we make what is called a Type I error. In hypothesis testing, we use a statistics to
estimate the probability of the observations assuming H0 is true. Call this probability 1 − α . Thus,
α is the probability of Type I error if we reject H0 based on these observations. We can also use
statistics to estimate the probability of the observations assuming H1 is true. Now if we decide
H0 is true (reject H1) while H1 is true, we make what is called a Type II error. The probability of
Type II error is denoted by β .

Observe that what we are really interested in is the probability that H0 is true (or false). How-
ever, as we noted earlier, there is no mathematical way to get at this probability: we can only
rigorously estimate the probability of observations based on a hypothesis, not the probability of
the hypothesis itself being true based on the observations. Theories about the probability that

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:8 G. Agha and K. Palmskog

Table 2. Schema of Errors in a Hypothetical Statistical Test with

Parameters α and β

Decision

Truth accept H0, reject H1 reject H0, accept H1

p ≥ θ : H0 true, H1 false correct (>1 − α) type I error (≤α)

p < θ : H0 false, H1 true type II error (≤β) correct (>1 − β)

The conditions inside parentheses are on the probability for the given outcome.

a hypothesis is true are beliefs, which may be informed by estimates based on observations. The
Bayesian method provides what appears to be a reasonable way of revising beliefs about hypothesis
based on observations (see Section 3.4).

Estimation. Assuming that a given set of observations represents a random sample, and that the
behavior of the underlying process follows a specified family of probability distributions, obser-
vations may be used to estimate the parameters of the distribution. For example, if we assume that
the system being tested follows a Bernoulli process, then we may estimate a probability measure p
characterizing the distribution. The estimated probability measure may be compared to θ to reach
a conclusion that p ≥ θ (or p < θ) is likely. The probability estimate may also be provided to the
user along with the result.

2.4 Error Control for Hypothesis Testing

Given that a sample size is always finite, decisions about hypotheses (and estimates) using a sta-
tistical test run the risk of either a Type I or Type II error. Typically, tests take parameters α and β ,
for α + β ≤ 1, that bound the probability of a Type I error and a Type II error, respectively.

Consider as above a Bernoulli random variable X that is observed after simulating a DTMC
M and checking ψ in traces for the PCTL specification P≥θ (ψ). Suppose X has parameter p, i.e.,
Pr[X = 1] = p and Pr[X = 0] = 1 − p. The possible outcomes of a hypothetical statistical test are
then as shown in Table 2.

Let Lp be the probability of accepting H0 in a hypothetical statistical test. To provide the desired
error bounds, the test has to guarantee that whenever p < θ , we have Lp ≤ β , and additionally that
whenever p ≥ θ , we have Lp > 1 − α . As shown, e.g., by Younes et al. [130], these requirements
on the test can be illustrated by plotting p against Lp as in Figure 4(a). However, this graph
reveals the precarious case when p ≈ θ , where Lp > 1 − α holds, but where also Lp ≤ β holds
for p infinitesimally smaller than θ . Ensuring both conditions are obeyed by the test requires
either sampling more extensively or setting β = 1 − α [132]. The former may be infeasible, and
the latter implies that error probabilities for Type I and Type II errors are not independently
controllable.

To enable construction of practical and flexible tests, an often-used solution is to define an indif-

ference region around the bound θ . Whenp is contained in this region, tests provide no error-related
guarantees. Typically, tests take a parameter δ , which is the half-width of the indifference inter-
val; Figure 4(b) plots p against Lp for such a test. Note that the test obeys the bounds indicated in
Figure 4(a) everywhere but inside the indifference region. To take the indifference region into ac-
count, the original hypothesisH0 : p ≥ θ is changed toH0 : p ≥ θ + δ , and its converseH1 : p < θ is
changed toH1 : p ≤ θ − δ . Consequently, bothH0 andH1 are false whenp is inside the indifference
region. The resulting schema of errors is shown in Table 3.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:9

Fig. 4. Probability Lp of accepting the hypothesis H0 : p ≥ θ , as function of p, with and without an indiffer-

ence region.

Table 3. Schema of Errors in a Practical Statistical Test with Parameters α , β , and δ

Decision

Truth accept H0, reject H1 reject H0, accept H1

p ≥ θ + δ : H0 true, H1 false correct (>1 − α) type I error (≤α)

θ − δ < p < θ + δ : H0, H1 false indifferent indifferent

p ≤ θ − δ : H0 false, H1 true type II error (≤β) correct (>1 − β)

The conditions inside parentheses are on the probability for the given outcome.

2.5 Error Control in Estimation

Early work on estimation-based SMC introduced sample-based probability estimation based on
Chernoff bounds [54]. Applications of Chernoff bounds can limit the deviation of a sampled
expectancy from a true expectancy for sums of Bernoulli random variables. More precisely, given
an error probability bound α and precision ϵ , an algorithm can compute a probability p ′ such that
|p ′ − p | ≤ ϵ with confidence α . In other words, the probability that |p ′ − p | ≤ ϵ is greater than or
equal to 1 − α . To make a judgment about the threshold comparison with the desired confidence,
the implied interval that contains p, i.e., [p ′ − ϵ,p ′ + ϵ], must be taken into account. In terms of
the hypotheses defined for statistical testing, we obtain p ′ and conclude that H0 holds if p ′ − ϵ > θ
and that H1 holds if p ′ + ϵ < θ .

More general estimation methods that establish confidence intervals, based on the Student’s t-
distribution (and its normal distribution approximation), have also been implemented in SMC tools
[100], and yield similar guarantees but with different tradeoffs on the sample size and confidence
parameters, as explained in more detail in Section 3.

2.6 Mitigating Risk

The above treatment may lead one to think that there is a symmetry between the cost of Type I
errors and the cost of Type II errors. In general, such a conclusion would be misleading. For
example, a specification may say something about a Quality of Service (QoS) parameter. If SMC

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:10 G. Agha and K. Palmskog

erroneously suggests that the specification is violated, then the erroneous conclusion may lead
to an unnecessary provisioning of extra resources to improve the robustness of the system. The
price of such an error is the cost of over-engineering. On the other hand, if SMC erroneously
suggests that the specification will be satisfied, then the error in judgment may lead to a violation
of a specification during deployment—something that may be very expensive.

Statistical decision theory can be used to account for risk. It can also be used to determine how
large a sample to take and when to continue sampling. The classic work of Wald [122] provides
an excellent treatment of the statistical decision functions.

3 SAMPLING, TESTING, AND ESTIMATION

Hypothesis testing can be performed on a set of samples that has been collected. If we can
generate samples on demand, then the size of this sample may be predetermined—this is called
fixed-size sampling. Alternatively, samples may be collected and statistical tests performed as
they are collected, until a decision is reached—this is called sequential testing [121]. For fixed-size
sampling, the number of sample points must be precomputed, based on the risk functions asso-
ciated with error probabilities α and β [122]. In sequential testing, the key idea is to repeatedly
generate sample points until enough information has been obtained to return an answer with the
required confidence; as a consequence, the number of observations required need not be known
beforehand.

We first discuss sampling strategies where we can control the sample and then discuss “black
box” systems, where we are given a fixed set of traces up front as the basis for our analysis. We
then discuss the problem of estimating probabilities, Bayesian analysis, and finally sampling and
reasoning about rare events.

To reason about a system’s behavior, we need to know that the system follows a well-defined
stochastic model for which properties can be expressed in a specific logic. As in Section 2, we
assume for purposes of exposition a DTMC M, such that we can define a PCTL specification
P≥θ (ψ), a probability p for ψ in the initial state of M, an indifference interval half-width δ ,
antagonistic test hypotheses H0 : p ≥ p0 and H1 : p ≤ p1 where p0 = θ + δ and p1 = θ − δ , and
error probability parameters α and β . Finally, we let Xi range over Bernoulli random variables
associated with simulations ofM, and xi range over observations of such variables, i.e., xi = 0 or
xi = 1.

3.1 Sampling and Tests

There are two sampling strategies: fixed sample sizes or incremental testing. These sampling strate-
gies involve a tradeoff in terms of the cost of sampling and the reliability of tests.

Fixed-Size Sample Testing. A strategy for statistical testing with fixed sample size is usually called
a single sampling plan (SSP). An SSP can be completely defined by its number of samples n and
a constant c , where H0 is accepted when

∑n
i=1 xi > c and H1 is accepted otherwise. This schema

leaves room for many variations; for example, Sen et al. proposed to use SSPs for SMC where the
hypothesis H0 is accepted when

∑n
i=1 xi/n ≥ θ [112]. In general, there is no analytical expression

for n that achieves a given confidence and indifference interval for an SSP. Adcock provides an
overview of different methods to determinen for several distributions, including the here pertinent
binomial distribution [2].

SSPs are oblivious as to whether conclusions can be made on-the-fly as simulations are per-
formed. For example, it may be the case that

∑m
i=1 xi > c for somem such thatm < n, allowing H0

to be concluded immediately with the required confidence, but nevertheless the remaining n −m

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:11

planned observations are still carried out. Sequential testing can be viewed as an attempt to limit
the expected number of sample points by allowing such on-the-fly decisions.

Sequential Testing. In sequential testing, we do not start with a set of samples or even fix a sample
size in advance. Instead, hypothesis testing is done as more samples are collected [121]. Note that
any SSP can in fact be turned into a sequential test by obtaining sample points one-at-a-time
and checking the appropriate acceptance conditions after each observation. Sequential sampling
can often result in significantly smaller sample sizes. On the other hand, sequential testing has
its own limitations. First, there is a cost associated with setting up an experiment and gathering
samples. Thus sequential testing may involve collecting a bundle of samples and then running a
test. The size of the bundle will depend on the relevant cost and risk functions. Second, one must
decide what properties to test for before samples are taken. If one wishes to subsequently test for
other properties, then the sample taken may be inadequate. In addition, sequential sampling is not
possible when new sample points cannot be generated on demand.

Sequential Probability Ratio Test (SPRT). In early work on SMC, Younes and Simmons advo-
cate the use of the sequential probability ratio test (SPRT) on account of its average-case effi-
ciency [131]. The SPRT was originally proposed by Wald in the 1940s and intuitively maintains a
Bayesian likelihood ratio that expresses how the hypotheses fare against each other based on all
hitherto observed outcomes [123]. After m observations have been made in the SPRT, i.e., after
x1, . . . ,xm have been obtained, let dm =

∑m
i=1 xi and define

fm =
m∏

i=1

Pr[Xi = xi | p = p1]

Pr[Xi = xi | p = p0]
=
pdm

1 (1 − p1)m−dm

pdm

0 (1 − p0)m−dm

. (1)

For example, suppose m = 2, with x1 = 1 and x2 = 0; then Pr[X1 = x1 | p = p1] = p1, Pr[X2 =

x2 | p = p1] = 1 − p1, and symmetrically for p0, whence fm =
p1 (1−p1)
p0 (1−p0) . In the general case, after

fm has been calculated using Equation (1), SPRT accepts H0 if fm ≤ β/(1 − α), accepts H1 if
fm ≥ (1 − β)/α , or moves on to the next sample point if neither condition holds.

SPRT has an impressive optimality property of minimizing the expected sample size under cer-
tain strict assumptions. However, these assumptions may not be true in practice. For example, if the
actual value of a parameter lies within an “indifference region” between two alternate hypotheses,
Wald’s SPRT performs worse than the classic fixed sample size test. A number of other analysis
methods rules have been developed to address these weaknesses. Lai gives a comprehensive gen-
eral overview of sequential analysis and its applications [73], while Tartakovsky et al. provide a
detailed treatment of sequential testing and stopping rules [117].

Undecided Results. Conventional hypothesis tests establish bounds on the probability p of a path
property. Nevertheless, as a consequence of the use of an indifference interval, there are no error-
related guarantees associated with the result when p falls within δ of either side of the threshold
θ . In effect, a test can return any convenient answer in such cases with no obvious indication, a
fact that an SMC user must be aware of.

In the context of testing black box systems, explained in more detail below, Sen et al. first in-
troduced the idea that SMC algorithms can return an undecided result [111]. Their idea is to first
test the null hypothesis—and only if it fails, test the alternate. On the other hand, Younes proposes
to simultaneously test two pairs of hypotheses against each other and draw a conclusion based on
both outcomes. Permitting such explicit undecided results in hypothesis tests can provide uncon-
ditional error-related guarantees for any decided result [128].

More precisely, in the first testH⊥0 : p ≥ θ is evaluated againstH⊥1 : p ≤ θ − δ , and in the second
test H�0 : p ≥ θ + δ is evaluated against H�1 : p ≤ θ . The formula P≥θ (ψ) is deemed to be true if

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:12 G. Agha and K. Palmskog

Table 4. Schema of Errors in a Statistical Test that Allows Undecided Results

with Parameters α , β , δ , and γ

Decision

Truth accept H⊥0 , H�0 accept H⊥�0 , H⊥�1 accept H⊥1 ,H
�
1

p ≥ θ correct (>1 − α − γ) undecided type I error (≤α + γ)

p < θ type II error (≤β + γ) undecided correct (>1 − β − γ)

The conditions inside parentheses are on the probability for the given outcome. “accept H⊥�
i

”

means accepting precisely one of H⊥
i

and H�
i

.

both H⊥0 and H�0 are accepted, and deemed false if both H⊥1 and H�1 are accepted. Otherwise, an
undecided result is returned.

To perform the tandem tests, an additional parameter γ must be provided along with α , β , and
δ . Intuitively, γ is the upper bound on the probability of an undecided outcome. Consequently,
when p ≥ θ , a correct result is returned with a probability greater than 1 − α − γ , and when p < θ ,
a correct result is returned with a probability greater than 1 − β − γ . Table 4 shows the resulting
schema of errors for statistical tests based on the tandem tests approach.

3.2 Samples from Black Box Systems

SMC loosens the requirement of numerical techniques for an explicit system model. However, the
above discussion of sampling assumes that traces can be obtained on command using discrete-
event simulation. Not all stochastic systems are controllable, in the sense that it is possible to
randomly generate a trace starting from some state. For example, we may wish to analyze an
already deployed system, and only have access to a fixed set of “historical” traces obtained during
its execution. A pertinent question is how well these traces support the conclusion that some
property in a stochastic logic holds in a state in such otherwise unknown “black box” systems.
Clearly, the methods for hypothesis testing and estimation described above cannot be applied
exactly as given, since there can be no a priori known error-related guarantees with the sample
size fixed in advance. In particular, a sequential hypothesis test may run out of sample points long
before the specified error bounds can be established.

Sen et al. first proposed an algorithm for SMC on samples from uncontrollable black box systems
[111]. Along with a decision on whether a formula ϕ = P≥θ (ψ) holds for the system, the algorithm
provides a value in the interval [0, 1] that intuitively represents the confidence in the decision. In
statistics jargon, the number is a p-value, with outcomes near 0 indicating high confidence and
outcomes near 1 low confidence. Younes extends the work of Sen et al. by providing a closely
related algorithm that improves the initial algorithm in several ways [126].

Both the algorithm of Sen et al. and that of Younes are similar to an ordinary SSP in that they
define a constant c , such that the hypothesis H0 : p ≥ θ is accepted when

∑n
i=1 xi > c , for n the

sample size and xi the respective outcomes of checking ψ . For Sen et al., the choice of c is based
on the normal approximation of the binomial distribution and defined as �nθ
 − 1. In contrast, in
the algorithm of Younes, c is chosen so that the cumulative distribution function for the binomial
distribution with parameters c , n, and θ is near 0.5. More precisely, c is chosen so that the sum∑c

i=1

(
n
i

)
θ i (1 − θ)n−i is as close to 0.5 as it can be. As a consequence, the algorithm of Younes

always accepts the hypothesis with the smallest p-value. As discussed earlier, this may not be
desirable if the risk associated with the alternate hypothesis is not symmetric. Additionally, the
algorithm of Younes is less conservative in the calculation of p-value for conjunctive formulas,

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:13

and does not assume that traces are always long enough to enable evaluation of given bounded
until formulas.

There is no general algorithm that can determine the sample size required to achieve a certain
p-value for an arbitrary system. However, for particular families of probability distributions,
techniques exist to estimate the sample size needed for a given confidence level [2, 83, 116].

3.3 Estimation Methods

Estimation (sometimes called approximation) methods for SMC based on the application of Cher-
noff bounds were first suggested by Lassaigne and Peyronnet, and later explored in detail by
Hérault et al. in the context of the implementation of an SMC tool [54, 75]. With m sam-
ple points obtained, the proposed approximation of the underlying parameter p of the random
variables is defined as p ′ =

∑m
i=1 xi/m. Application of a bound proved by Hoeffding then yields

Pr(|p ′ − p | ≥ ϵ) ≥ 2e−2mϵ 2
[57]. Lettingm = �ln(2α)/(2ϵ2)
, we obtain Pr(|p ′ − p | ≤ ϵ) ≥ 1 − α , as

required. The needed sample size n when using this method is thus uniquely determined by the
confidence α and the precision ϵ .

The SMC component of the model checker PRISM implements two estimation methods in
addition to the one based on Chernoff bounds [100]. The first method is based on Student’s t-
distribution and takes the familiar precision ϵ , confidence α , and sample sizen as parameters. Since
the parameters are interdependent, either n or ϵ is normally omitted. Ultimately, the guarantees
about the produced estimate p ′ are analogous to those obtained via Chernoff bounds, i.e., p is con-
tained in [p ′ − ϵ,p ′ + ϵ] with confidence α . The second method approximates the t-distribution
using the normal distribution, and is thus more appropriate for large sample sizes.

Lassaigne and Peyronnet argue that estimation is more appropriate than hypothesis testing
when the actual probability that some property holds is required, rather than simply a threshold
comparison as expressed in PCTL formulas [76].

3.4 Bayesian Analysis

The statistical methods covered so far are frequentist, in the sense that a probability intuitively
corresponds to a relative frequency of some property in a sequence of observed outcomes. The
Bayesian approach, on the other hand, is based on the notion of probabilities as beliefs that can
be modified through observations. One advantage of the Bayesian approach is that prior beliefs in
specific domains, refined by accumulation of many observations of a long time, can be used as a
basis for new attempted refinements.

Jha et al. propose an algorithm for SMC based on Bayesian hypothesis testing [65]. Intuitively,
in each step, the algorithm produces a Bayes factor B that measures the relative confidence
in the specification of a system. This factor is then compared against a fixed threshold T > 1,
and the algorithm terminates if eitherB > T orB < 1

T
. In the former case, the null hypothesis that

the given specification holds is accepted, and in the latter case, it is rejected. The algorithm also
provides a way for SMC users to specify prior knowledge in the form of a probability distribution;
such distributions are often available in the systems biology domain. The algorithm shown requires
fewer samples than frequentist SMC in the form of the SPRT, on benchmarks from systems biology.

Zuliani et al. describe an algorithm for Bayesian estimation-based SMC [134]. The algorithm
works by repeatedly producing a system trace, computing the so-called Bayesian estimator of
the underlying probability of the specification using a provided prior distribution, computing an
interval estimate, and finally deriving a posterior probability. If the posterior probability is greater
than or equal to a provided coefficient, then the algorithm terminates and returns an interval and
the current estimator. The algorithm is used to perform SMC analysis of a Stateflow/Simulink

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:14 G. Agha and K. Palmskog

model of a fuel control system with hybrid behavior. Zuliani et al. demonstrate the algorithms
use for analysis of Stateflow/Simulink models of hybrid systems, and show that it is orders of
magnitude faster than earlier frequentist estimation-based algorithms.

3.5 Analysis of Rare Properties

A stochastic logic formula may describe a property in stochastic system that is rarely realized. For
example, for a PCTL specificationϕ = P≥θ (ψ), the probability that a randomly sampled path prefix
from a DTMCM satisfies ψ may be low. With standard SMC techniques, establishing such rare
properties with reasonable confidence requires large sample sizes and long traces. In particular,
if a system is treated as a Bernoulli trial, with a sufficiently large sample, the distribution will
approach a normal distribution with a standard deviation of

√
npq where n is the sample size, p is

the probability of success in a Bernoulli trial and q = 1 − p. Thus, the variance of the probability

of success will be
√
pq/n. When the values of p are much higher or lower, far larger samples are

required. More specifically, for a desired error probability bound α and precision ϵ , the required
sample size will be n = z2

α (
pq

ϵ 2), where zα is the ordinate on the normal curve corresponding to
α [93]. This relationship means that sample size grows faster than linearly both as ϵ becomes
smaller and as α becomes smaller.

When more reliable numeric-symbolic techniques are infeasible to use to analyze rare proper-
ties, a curtailed single sampling plan may be used. Under such a plan, a system is deemed unsafe
after an a priori known number k of failures have been observed, or deemed safe after an a priori

known number of total observations have been made and the number of failures is less than k [97].
However, this approach gives no control over the probability of falsely rejecting a system that has
acceptable chances of failure (although systems without possibility of failures are guaranteed to
pass the test). Younes and Simmons suggest to use SMC with a curtailed single sampling plan with
k = 1 for rare properties. They argue that the tradeoff is attractive and describe an experiment on
properties with probability of failure of 10−5 or less where the SPRT sometimes requires more than
an order of magnitude larger sample size than a curtailed SSP [132].

General methods for reduction of variance in samples from Monte Carlo simulations have been
explored since the 1940s; one key technique is importance sampling [115]. Intuitively, when impor-
tance sampling is applied in SMC, simulations on a system are first weighted in favor of realizing
the rare property, and the hypothesis test or estimation method then compensates appropriately
when considering the outcomes. The general idea is to introduce a weighting function on the ran-
dom variables to be observed, without changing their expectancy. The problem then lies in finding
a distribution for the weighting function, which results in lower variance than for the standard,
crude estimator. In practice, optimal biasing (zero variance) is difficult to achieve, but reasonable
distributions may be found by examining members of a parameterized family of distributions to
which the optimal distribution belongs. In particular, the cross-entropy method is able to select fam-
ily members that minimize a certain type of divergence from the optimally biasing distribution. To
select the appropriate distribution family member, the method requires sampling from the original
unbiased distribution.

Reijsbergen et al. present a method based on importance sampling for SMC analysis of CTMCs
for a restricted class of CSL properties, demonstrating significant performance gains for a
benchmark model of a distributed database system with rare disk failures [104]. Clarke and
Zuliani show preliminary results of using importance sampling with the cross-entropy method
to analyze a Stateflow/Simulink model in MATLAB of a fault-tolerant fuel control system [35].
Even when adding up the sample points required to compute the biasing distribution and those

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:15

in the subsequent biased sampling, unbiased sampling requires many orders of magnitude larger
sample size to maintain a reasonable relative error (1014 vs. 105).

Barbot et al. introduce an importance sampling method for SMC that provides explicit
guarantees on the variance reduction and provides a true confidence interval for the estimated
probability of the alternative random variable (as opposed to approximate intervals obtained
through the normal distribution) [16]. The method assumes that the system can be represented
as a Markov chain M with certain structural properties and finds the biasing parameters by
performing numeric-symbolic analysis on a reduced version ofM. Barbot et al. automate several,
but not all, steps of their method in the SMC tool COSMOS [36] and analyze rarely realized
properties in four benchmark systems, aided by the numerical model checker PRISM. As in the
experiments of Clarke and Zuliani, importance sampling is shown to improve the scalability
of SMC by several orders of magnitude. Jegourel et al. show that when stochastic models are
parameterized at the level of syntax using guarded commands, there is an efficient algorithm
that finds an optimal parameterized importance sampling distribution [64]. The algorithm avoids
avoids an explicit representation of a transition matrix and minimizes a vector of parameters
of the model according to the cross-entropy method, ultimately producing a unique optimum.
An implementation of the algorithm in the SMC tool PLASMA Lab [98] is shown to give
orders-of-magnitude variance reduction over classic SMC on benchmark systems. Developing
powerful new importance sampling techniques for use in Monte Carlo simulations is an active
area of research, and such techniques are generally applicable in SMC [47, 118].

Importance splitting is an alternative to importance sampling for variance reduction. Intuitively,
importance splitting decomposes a single simulation where a certain property has a low probabil-
ity of realization into a series of simulations where conditional properties have higher probability
to be realized. A central problem in applying importance splitting for SMC is how to perform
decomposition of the specification property to enable separate simulations in this way. Jegourel
et al. suggest that the decomposition may be expressed as a score function that discriminates paths
where the rare property occurs from those where it does not [62]. They describe two importance
splitting algorithms, where the first takes a (possibly manually specified) score function as input
and the second finds the details of a score function adaptively [30], and evaluate them on bench-
marks in PLASMA Lab, showing substantial variance reductions. Jegourel et al. propose further
improvements in the form of a heuristic, fine-grained score function and an optimized adaptive
algorithm [63]. Legay et al. give an overview of their previous work on importance sampling and
importance splitting for SMC and its implementation in PLASMA Lab [80].

Finally, Randomized Quasi Monte Carlo (RQMC) is a collection of methods for reducing
variance in statistical analysis. RQMC can be combined with importance splitting or impor-
tance sampling, or both, to yield better variance reduction than either alone could achieve.
L’Ecuyer et al. discuss RQMC methods and their applications and limitations in a general Monte
Carlo simulation setting [78].

4 COMPLEX PROPERTIES

We now deal with more complicated types of properties in stochastic logics that require special
treatment. Specifically, we describe techniques to check nested formulas and formulas with un-
bounded until operators.

4.1 Nested Formulas

Although the PCTL syntax in Table 1 permits nested occurrences of the probabilistic oper-
ator P, we have not previously considered such formulas directly. For example, the formula
P≥θ 1

(P≥θ 2
(ψ) U≤t ϕ), for given probability bounds θ 1 and θ 2, state formula ϕ, and path formulaψ ,

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:16 G. Agha and K. Palmskog

has a well-defined meaning on a DTMC. In one notable SMC case study, nesting is used to express
that a robot moving on a grid reaches a point (n,n) within a number of time units with probability
at least θ 1 = 0.9, all the while periodically communicating with a base station with probability
at least θ 2 = 0.5 [132]. With c true whenever the robot communicates, and x = i and y = j true
whenever the robot’s position is (i, j) on the grid, the robot specification is:

P≥0.9 (P≥0.5 (�U≤t2 c) U≤t1 x = n ∧ y = n) (2)

Nested formulas are difficult to accommodate with reasonable efficiency using SMC, and then
only with significant caveats. Intuitively, a formula and probability bound in the scope of a prob-
ability operator represents a hypothesis test on that formula, which means, in the case of nesting,
that the outcome of one test depends on the outcome of another test using a different trace. Since
tests may have errors, it can then no longer be assumed that path properties can be checked with
certainty on a trace. In effect, what is observed when checking a trace is no longer the outcome
xi of a random variable Xi as defined above, but some other outcome yi of a random variable Yi

related to Xi .
Younes and Simmons initially proposed to handle bounded until formulas with nesting by, in

turn, nesting the tests [131]. However, to deal with the uncertainty of outcome in an inner test,
and guarantee the outer error bounds α and β , an inner test uses a narrower indifference interval
and error bounds α ′ and β ′ such that α ′ < α and β ′ < β . Generally, these requirements lead to
an increased sample size compared to formulas without nesting. In addition, the approach only
works for systems that are Markov chains. Younes and Simmons later suggested improvements in
handling of nesting to address previous shortcomings in efficiency and soundness [132]. Younes
also extended the approach that permits undecided results to the nested case [128].

For scenarios where an explicit definition of the system as a Markov chain is available, Younes
et al. present an alternative approach using a combination of numeric-symbolic and SMC meth-
ods [130]. The outermost bound and formula ranged over by a probabilistic operator is handled
via hypothesis testing, while the inner ones use numeric-symbolic algorithms. The combination
is attractive for several reasons. First, numeric-symbolic results restore certainty when checking
path formulas in the scope the outermost probability operator. Second, numeric-symbolic methods
compute the probabilities that nested formulas hold for all states at once. Third, compared to only
relying on numeric-symbolic methods, the use of SMC for the outermost probabilistic operator
gives better scaling characteristics for large state spaces. Obviously, this combination of methods
is not possible to use for black box systems.

4.2 Unbounded Until Formulas

Consider PCTL state formulas of the form P≥θ (ϕ Uϕ ′), i.e., formulas where the until operator U

carries no restriction on the units of time untilϕ ′must become true. For a trace to provide a sample
point in statistical testing or estimation, the path formulaψ = ϕ Uϕ ′ must be unambiguously true
or false in the trace. In the case of the corresponding bounded formula, the maximum trace length
required to obtain the sample point is equal to the time bound t . However, no finite trace length
is sufficient to guarantee obtaining a sample point for unbounded until formulas; for example,
paths in a DTMC M that do not satisfy �Uϕ ′ are all infinite. Consequently, none of the SMC
methods described so far in this section directly support the unbounded until operator. In fact,
in a recent evaluation of algorithms proposed for this purpose, Roohi and Viswanathan conclude
that the problem has not yet been satisfactorily solved [105]. We describe methods that have been
proposed thus far and note their deficiencies.

Sen et al. proposed the first SMC algorithm that circumvents the ostensible requirement for
infinite paths in sample points for unbounded until formulas [112]. The algorithm builds on the

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:17

Fig. 5. Discrete time Markov chain with termination probabilities.

insight that forψ to be true in a path π inM, it must be the case that ϕ ′ eventually becomes true
in π . Hence, if we are simulatingM and have reached a state where it is possible to determine
with some certainty that ¬ϕ ′ always holds regardless of how the current trace is extended, we can
terminate with the conclusion that ψ is false. Since the remaining possibilities for ψ to be true or
false inM can be witnessed by finite paths, sampling of traces can then proceed as usual. More
generally, as the simulation traverses a state, the strategy of the algorithm is to decide statistically
whether the PCTL formula P≤0 (ϕ Uϕ ′) holds (which subsumes the case where ¬ϕ ′ always holds)
and use the result in a nested test forψ .

To enable statistical testing of P≤0 (ϕ Uϕ ′), the algorithm introduces a certain termination prob-

ability pT < 1 to each state in the original DTMCM, so that simulation runs will end. In effect,
a new DTMCMT is constructed fromM, adding an absorbing state sT to which all other states
have transition probability pT . In addition, if ps is a transition probability between states s and s ′ in
M, the corresponding transition probability forMT becomes (1 − pT)ps . For example, if we add a
termination probability pT = 0.1, then the Markov chain in Figure 2 becomes as shown in Figure 5.

In an SMC implementation, the DTMC MT does not need to be constructed and simulated
explicitly. Instead, when simulating M, the modified transition probabilities can be taken into
account on-the-fly. In each state, such instrumented simulations then terminate and provide a
“premature” trace with probability pT , i.e., the state sT is never directly reached. Clearly, however,
a sample point obtained straightforwardly from a trace produced by the instrumented simulation
represents an outcome of a different Bernoulli random variable XT than the one we originally
wanted to observe inM. In particular, the parameter p ′ of XT is different from the parameter p
of the corresponding random variable X inM. However, as shown by Sen et al., a bound on the
parameter ofX can be expressed in terms of the parameter ofXT , specifically,p (1 − pT)N ≤ p ′ ≤ p,
where N is the number of states inM. Finally, when pT = c/N for some constant c , this bound
allows reducing the model checking problem for P≤0 (ϕ Uϕ ′) with indifference interval half-width
δ onM to the corresponding problem onMT with half-width δ (1 − pT)N .

Younes et al. argue that the bound relating the parameters of the variables X and XT in the al-
gorithm of Sen et al. are inadequate in practice and propose two alternative algorithms [129]. The
first algorithm relies on precisely deciding P≤0 (ϕ Uϕ ′) on states by performing reachability analy-
sis. In effect, the algorithm considers a non-probabilistic CTL formula on states inM, and removes
outgoing transitions from states where the formula is true. From Markov chain theory, we obtain
that sample points from the modified DTMC M′ are observations of a stochastic variable with
the same parameter as the corresponding variable forM. In addition, ifM is homogeneous (i.e.,
transition probabilities are independent of the number of steps taken thus far in a simulation), and
simulations are terminated in the absorbing states ofM′, then finite paths will be obtained with
certainty inM′. Reachability analysis is resource-intensive in practice and limits the applicability
of the algorithm, excluding. However, the use of statistical techniques in the final analysis step
avoids the principal overhead of numeric-symbolic methods, allowing scaling analysis to larger

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:18 G. Agha and K. Palmskog

state spaces than such methods can handle. Obviously, reachability analysis is not applicable to
black box systems.

The second algorithm proposed by Younes et al. uses a termination probability pT in the same
way as the algorithm by Sen et al., i.e., for constructing the new DTMCMT with altered transition
probabilities and extra state sT as above. However,MT is here used for sampling a certain non-
Bernoulli stochastic variable XT , which, as the authors show, has the same expectation as the
parameter p of the variable X in the original DTMCM. Due to XT being non-Bernoulli, statistical
testing cannot be used on samples fromMT . Instead, the algorithm uses an estimation method due
to Chow and Robbins that works on variables with unknown but finite variance [32]. Following
the established pattern for estimation, the output value p ′, in this method defined as the arithmetic
mean of the sampled observations, is such that the probability that |p ′ − p | ≤ δ is greater than or
equal to 1 − α . The method proceeds sequentially, by checking a stopping rule after each obtained
observation. Younes et al. give a characterization of when the condition of finite variance holds
in terms of the termination probability pT . More precisely, XT has finite variance if and only if
pT < 1 − |λ∗ |, where λ∗ is the subdominant eigenvalue of the transition matrixM ofM. Computing
the exact subdominant eigenvalue of a matrix is a hard problem in general, so approximations
based, e.g., on the number of states inM may be used to determine pT in practice, at the risk of
bad performance and low accuracy.

Younes et al. note that their approach to constructing the non-Bernoulli random variable is
originally due to von Neumann and Ulam, who use it in a Monte Carlo algorithm for computing
the inverse of a matrix. The algorithm of von Neumann and Ulam can be viewed as a randomized
version of a numerical algorithm for solving systems of equations. Both the randomized algorithm
and its numerical counterparts depend on the subdominant eigenvalue of a matrix to achieve a
certain precision, which is echoed in the analysis of the SMC algorithm.

Basu et al. propose an algorithm for deciding unbounded until formulas based purely on esti-
mation [17]. The algorithm computes an estimate p ′ ofψ ′ = ϕ U≤t ϕ ′, for carefully chosen (large)
values of t , which then becomes the estimate of ψ inM. The underlying insight is that, as t be-
comes arbitrarily large, the probability measure of ψ ′ and ψ coincide, and additionally, there is
some point k0 = t where the difference in the measures becomes small enough to be negligible
with respect to the required precision. The first phase of the algorithm identifies such a point k0

by iteratively estimating measures of formulas of the form:

ψ k = (ϕ U≤k ϕ) ∨ (¬ϕ ′U≤k (¬ϕ ∧ ϕ ′)). (3)

Such formulas state that ψ is either true or false in at most k steps. The second phase computes
an estimate of the measure of ψ k0

and returns this as the final result. With all intermediate
formulas using the bounded until operator, the standard estimation techniques of, e.g., Hérault
et al. become applicable [54]. However, the first phase of the algorithm as presented by Basu et al.
comes with the caveat that P≤0 (¬(�U (ϕ ′ ∨ ¬ϕ))) is assumed to hold in the state s inM for which
the unbounded until formula is considered, i.e., it assumes that there are no positive-probability
infinite paths inM starting from s where ϕ ∧ ¬ϕ ′ holds in every state. Roohi and Viswanathan
show that the algorithm can be modified to work with any reliable estimate of the measure of
¬(�U (ϕ ′ ∨ ¬ϕ)) in s , which may nevertheless be a considerable burden to obtain in practice
[105].

Both Lassaigne and Peyronnet as well as El Rabih and Pekergin propose to use the subdomi-
nant eigenvalue of the matrix M of ergodic Markov chains to obtain a time bound k0 that allows
the measure of the bounded until formula be close to that of the corresponding unbounded until
formula [44, 76]. However, Roohi and Viswanathan give an ergodic counterexample where the
bounded and unbounded formulas have measures far apart [105]. Another algorithm idea due to

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:19

El Rabih and Pekergin is based on sampling until a previously sampled state in encountered, in
effect forming a finite lasso [44, 46]; Roohi and Viswanathan show that the measure spaces of
stochastic logics are incompatible with this approach [105].

Younes et al. compare the performance of variations of their algorithms based on reachability
analysis and a termination probability with that of two iterative numeric algorithms implemented
in PRISM, for two standard benchmarks (analysis of a polling system and a tandem queuing net-
work, respectively) [129]. Similarly to algorithms for bounded until, the numeric algorithms come
out on top for small state spaces, but their performance degrades quickly as the state space grows.
The two statistical algorithms alternately win the performance race for large state spaces, with the
cost of reachability analysis ultimately determining the outcome. Roohi and Viswanathan compare
the performance of the algorithm of Sen et al. (Algorithm 1), the reachability analysis algorithm
and termination probability algorithm of Younes et al. (Algorithms 2 and 3, respectively), and the
algorithm of Basu et al. (Algorithm 4) on the polling system and tandem queueing network bench-
marks [105]. For the polling system, Algorithm 2 is the fastest and Algorithm 4 is the slowest,
with Algorithm 1 the runner-up when a polling failure probability is used, and Algorithm 3 the
runner-up without such failures. For the queueing network, Algorithm 1 was too slow to include
in the comparison; Algorithm 4 was slowest among the rest, with Algorithm 3 narrowly edging
out Algorithm 2 for large state spaces.

More recently, Daca et al. present an algorithm for unbounded untils that only requires
only requires a lower bound on the minimum transition probability of the underlying assumed
Markov chain [37]. The main idea of the algorithm is monitor the process of obtaining a sample
path and use the obtained information to build knowledge about the structure of the Markov
chain. The algorithm of Daca et al. shows substantial improvements over earlier algorithms
in experiments on DTMC and CTMC benchmarks in the PRISM model checker. In addition, a
modified version of the algorithm can handle mean payoff (long-run average reward) properties
of Markov chains. Similar ideas for SMC on-the-fly analysis are explored by Legay and Traonouez
in a different context to detect and flag changes in the underlying probability of some property
[81].

The problem of handling unbounded untils is distinct from, but related to, handling steady-state

formulas (alluded to in Section 2). Such formulas can express bounds on the probability that some
property holds in the long run for a stochastic process. El Rabih and Pekergin propose to use
perfect sampling [44] from the steady-state distribution to handle these formulas, via an approach
that determines on-the-fly how far to run the system [101].

5 NONDETERMISTIC, TIMED, AND HYBRID SYSTEMS

Systems in the real world often have properties such as nondeterministic behavior, real-time dead-
lines, and behaviors governed by continuous variables. SMC algorithms and tools have been devel-
oped for analyzing these models. Nondeterminism is a natural model of concurrency in a system
where the probability distribution of the inputs or communication delays may not known. In fact,
the inputs or delays may not even conform to a probability distribution. This makes it difficult for
a simulator to choose schedules.

In both nondeterministic as well as timed or hybrid systems, expressing properties requires
specialized logics. Moreover, timed and hybrid systems add complexity in simulations as these
simulations have to include timing constraints and, in case of hybrid systems, may have to solve
systems of differential equations. However, timed and hybrid systems may be fully stochastic and
therefore their integration with SMC is more direct than it is in case of nondeterministic systems.
Thus the techniques for these systems are very different. We treat these cases of real-world
systems separately.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:20 G. Agha and K. Palmskog

5.1 Nondeterminism

Successful application of SMC depends crucially on that a suitable probability space can be de-
fined for a system. Generally, this means that the system must be fully stochastic, i.e., it never
performs nondeterministic steps. However, a practically useful class of systems that interleaves
stochastic state transitions and nondeterministic choices have been formalized as MDPs and are
well studied in the literature. MDPs have also found many applications [124]. MDPs can have
rewards associated with nondeterministic choices, which may be used to model certain optimiza-
tion problems. More generally, MDPs can reflect the behavior of concurrent probabilistic systems,
where probabilistic transitions correspond to local stochastic behavior that depends on state, and
nondeterministic transitions correspond to behavior where several nodes or sites perform actions
concurrently in some unspecified order. For example, such actions may be triggered by events ex-
ternal to the system. MDPs only become amenable to classic SMC analysis if nondeterminism is
resolved by the use of a scheduler, in which case the system becomes an ordinary Markov chain.
Schedulers may be arbitrarily complex in general, whence assumptions are often made on how
they are represented, and on their memory requirements, to enable analysis in practice.

Bogdoll et al. extend SMC to handle systems with spurious nondeterminism, i.e., systems where
all schedulers give rise to the same transition probabilities, and consequently the same Markov
chain [19]. Such spuriousness may arise in practice, e.g., when using compositional approaches
in system design, and is then a hindrance to application of simulation techniques. Bogdoll et al.
use networks of probabilistic automata, which are similar to MDPs, as a basis for an algorithm for
SMC based on partial order reduction. The algorithm is implemented in the tool MODEST [22]
and compared on benchmarks with spurious nondeterminism against an approach that resolves
nondeterminism uniformly.

Lassaigne and Peyronnet extend estimation-based probabilistic planning, which is related to but
distinct from verification of stochastic logic properties as in SMC, to MDPs for the restricted class
of memoryless schedulers [77]. Henriques et al. similarly assume memoryless schedulers, but in a
more standard verification-based setting where the objective is find schedulers that maximize or
minimize the probability of some property [53]. They propose an algorithm that resolves nonde-
terminism probabilistically and then applies reinforcement learning techniques to guide resolution
of actions towards an optimum. The algorithm is implemented in the PRISM tool and shown to
scale better than numeric-symbolic techniques.

Legay et al. describe an approach to SMC analysis of MDPs based on sampling of history-
dependent schedulers that avoids some of the issues with memory requirements in previous solu-
tions [79]. In related work, D’Argenio et al. describe sophisticated scheduler sampling techniques
that make the approach of Legay et al. more practical [38].

As part of work that straddles MDPs and statistical methods, Lukina et al. present a synthesis
algorithm of optimal plans for taking the initial state of some MDP to a state with cost below some
given threshold [85]. The algorithm is inspired by importance splitting, and uses extensively a ran-
domized approximation algorithm called Particle Swarm Optimization, inspired by bird flocking.

5.2 Timed Systems

Many real-world systems are subject to hard requirements on time, or, more generally, consump-
tion of resources such as energy. Classical approaches to analysis of such systems focus on mod-
eling them as timed automata and expressing requirements in variants of CTL that include opera-
tors that take resource bounds as parameters. Tools and techniques can then establish worst-case
bounds on execution time and resource consumption, and perform schedulability analysis. How-
ever, there may still be a need to choose among appropriate schedulers, preferring, say, the one

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:21

that provides the most attractive properties in the expected or average case. At the same time,
many basic problems for timed automata and generalizations, e.g., priced timed automata (PTAs),
are known to be undecidable. For example, model checking the CTL variant for PTAs, WCTL
(Weighted CTL), is undecidable even when only using three different clocks to represent time and
consumption of resources [24].

David et al. define a stochastic semantics for networks of PTAs (NPTAs), where each component
decides independently based on clock variables, and subject to probability distributions, when and
what to output to other components [41]. Simulation and SMC analysis of systems in the semantics
using the stochastic logic PWCTL have been implemented as an extension to the UPPAAL timed
model checker, and applied in many case studies, e.g., communication protocols for wireless sensor
networks and job-shop problems [26, 42].

Bogdoll et al. implement a discrete-event simulator for Stochastic Timed Automata (STA), called
MODES [20]. Similarly to NPTAs, STAs can express real-time behavior and coupled delays with ar-
bitrary probability distributions. In addition, STAs allow nondeterministic choices. Together with
other components in the MODEST tool set [22], MODES enables sound SMC analysis of a class of
nondeterministic models expressed in the MODES language. Bohlender et al. provide a comparison
of SMC performance for analysis of timed systems in the tools UPPAAL and MODES [21].

5.3 Hybrid Systems

Hybrid systems consist of a discrete part and a continuous part that interact in various ways, with
evolution of the discrete subsystem governed programmatically and that of the continuous part
by differential equations. Abate et al. show that the dynamics of a stochastic hybrid systems can
sometimes be reduced to that of a DTMC, whence SMC analysis methods become applicable [1].

Meseguer and Sharykin extend the probabilistic rewriting logic language PMaude to enable
specifying object-based stochastic hybrid systems [89]. The resulting language, SHYMaude (Sto-
chastic Hybrid Maude), allows transitions in such systems to be defined using probabilistic rewrite
rules. SHYMaude’s implementation on top of PMaude [5], which has an interface to the PVESTA
tool, gives a way to perform SMC analysis on SHYMaude models. Properties about SHYMaude
models specified in PMaude’s QuaTEx language. Meseguer and Sharykin describe two case stud-
ies in SHYMaude, a repeated second-price auction and a thermostat model, and report that VESTA
is able to establish the respective QuaTEx correctness properties with 95% confidence.

Martins et al. introduce the notion of Distributed Discrete-Time Hybrid Automata (DDTHA),
which intuitively allows expressing interconnected systems of hybrid automata that communicate
asynchronously [88]. By probabilising the schedulers for the hybrid automata, they obtain a sto-
chastic semantics for DDTHA for which properties of executions can be expressed in a bounded
stochastic logic. Finally they describe an algorithm for Bayesian SMC to analyze such systems
of stochastic hybrid automata.

David et al. extend their stochastic semantics for NPTAs to let clocks rates depend on values
from other clocks, which amounts to defining ordinary differential equations, and modify the SMC
capabilities of UPPAAL to permit analysis of the resulting stochastic networks of hybrid automata
(NHAs) [39]. In later work, David et al. extend the approach using NHAs and its UPPAAL im-
plementation to permit modeling systems with dynamic creation and termination of individual
hybrid automata [40]. This extension requires a dynamic specification logic, since not all hybrid
automata (“threads”) are known beforehand. The proposed logic is called Quantified Dynamic Met-
ric Temporal Logic (QDMTL), and is defined over an arbitrary collection of templates for processes
that may be statically or dynamically instantiated in an execution. Template variables can occur in
formulas and are placeholders for the runtime names of processes. As required for SMC analysis,
a proper measure on execution paths can be defined for QDMTL formulas. David et al. analyze a

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:22 G. Agha and K. Palmskog

variant of a case study originally due to Younes [132], where robots are dynamically spawned on
a grid, as well as a client-server example using UPPAAL. Notably, the UPPAAL implementation
of SMC with QDMTL uses formula rewriting to allow concurrent generation of a path prefix and
path formula evaluation, lowering total analysis time.

Kalajdzic et al. propose a feedback-control framework for statistical checking of cyber-physical
systems [67]. The key ideas of the framework is to learn the system model by observing outputs,
determine the hidden state by statistical inference, and finally infer the system control policy,
to estimate the probability of rare events. This is achieved by applying importance sampling and
importance splitting in a feedback-control setting. The framework is demonstrated on a CPS model
of the classic dining philosophers scenario and a model of a sequence of Bernoulli trials.

SMC requires obtaining truth values of path properties from system traces. However, it may not
be feasible in practice to keep entire traces in memory or on storage. A more efficient approach
is to equip system executions with runtime monitors synthesized from the path properties [49];
this is possible even when execution is distributed in a network [110]. Most directly, simulators
can use instrumentation to add monitors, but more complex systems such as hybrid system may
require custom on-the-fly monitoring [86].

6 APPLICATIONS

Within computer science, probability theory is generally useful for performance analysis of non-
stochastic systems, analysis of randomized algorithms, describing environment uncertainty, and
capturing aggregate behavior of large populations. Typical applications of stochastic model check-
ing for analysis are partly reflected in benchmarks commonly used to compare tools: leader elec-
tion and synchronization protocols in distributed systems, queueing systems, and birth-death pro-
cesses [61]. However, recent developments of SMC-related tools are often motivated by the needs
of analysis in specific application areas that are ultimately outside of computer science, such as
systems biology and implementation of control mechanisms for, e.g., energy systems.

6.1 Communication Protocols

Since SMC provides a randomized approach to stochastic model checking, SMC can be used wher-
ever the corresponding numeric-symbol techniques are applicable, which historically includes
probabilistic analysis of network protocols. For example, the CSMA/CD protocol, used in net-
working over Ethernet, has been analyzed using both the estimation-based APMC tool and the
numeric-symbolic engine in PRISM [43]. Haverkort et al. describe a case study of dependable clus-
ter of workstations [50], which has been successfully analyzed using SMC techniques, in, e.g., the
Ymer tool for large parameters [132]. Aspects of protocols other than average-case performance,
such as resistance to denial-of-service attacks, have also been considered using SMC techniques
[4]. More recently, SMC techniques have been used to perform quantitative analysis of the consis-
tency of distributed key-value stores [84].

MDPs can model distributed systems with local probabilistic actions where nondeterministic
choices are deferred to a scheduler. Legay et al. consider a wireless LAN protocol modeled as an
MDP and analyze probability of collisions in the protocol using SMC techniques [79].

6.2 Queueing Systems

Queuing systems generally assume specific probability distributions that govern arrival and
processing rates, whence no additional assumptions about the environment need to be made to
enable analysis. An often-used case study for SMC is a tandem queuing network originally due to
Hermanns et al. [56]. The property of interest for the system is whether the probability that queues
become full after t time units is less than 0.5. Younes and Simmons provide a comprehensive

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:23

analysis of such networks using Ymer [132], and Jansen et al. perform a similar analysis with
many different tools [61]. Another popular SMC benchmark analyzed in Ymer and other SMC
tools is an n-station symmetric polling system described by Ibi and Trivedi, where a single server
goes through all stations and processes messages that have arrived [59]. A correctness property
states that if the first station has a message, will be attended to by the server within t time units
with probability at least 0.5.

6.3 Real-Time and Cyber-Physical Systems

Many communication protocols have real-time or energy consumption considerations, and may
thus benefit from SMC average-case analysis. For example, David et al. consider the Lightweight
Medium Access Protocol (LMAC) for wireless sensors and explore using SMC techniques how to
minimize energy consumption and collisions [41].

Proper cyber-physical systems (CPSs) whose dynamics can be modeled by differential equations
have been analyzed using SMC techniques, e.g., fuel control systems [35, 134] and thermostats
[89]. Martins et al. use SMC to analyze a model of a dynamically adaptable power grid expressed
as interconnected hybrid automata [88].

Distributed Adaptive Real-time Systems (DARTs) consist of independent nodes that communi-
cate to achieve some goal, and are able to increase their chances of success via self-adaptation.
Kyle et al. introduce the DART Modeling and Programming Language (DMPL) that can express
DART systems and their specifications [72]. They implement a logging tool for DART nodes and
perform SMC analysis on all collected logs to estimate the probability of a property in a DART.
The approach is evaluated in several scenarios involving mobile robots, which perform various
time-critical maneuvers and adapt to environmental conditions.

A System-of-Systems (SoS) is a dynamic conglomeration of distributed and independent sys-
tems that collaborate to achieve an overall goal. Both the constituent systems and the overall
architecture of an SoS may evolve over time, e.g., by systems leaving or arriving. An air traffic
management systems at an airport is one example of an SoS. Arnold et al. propose an approach
to verification of SoSs based on reducing the problem to SMC using the Plasma Lab tool [9]. In
this approach, requirements are first expressed in formalism called the Goal Contract Requirement
Language (GCRL), which constrains inputs and outputs of constituent systems. Then, GCRL for-
mulas are translated to BLTL formulas supported by Plasma Lab. An SoS is specified by means
of its architecture in the UPDM modeling language, and constituent systems as so-called Func-
tional Mock-up Units (FMUs). At analysis time, FMUs are jointly simulated to produce traces for
SMC-based verification.

Interlocking systems ensure the safety of train traffic in stations. Interlockings are configured
using data on track layout and interlocking alternatives. While safety (e.g., absence of train colli-
sions) is of paramount concern, interlocking systems must also provide various liveness properties,
such as eventual progress of trains away from a station. Cappart et al. present an SMC-based ap-
proach to verification of interlocking systems that avoids the state space explosion problem of
previous analyses based on regular model checking [29]. The idea is to express liveness proper-
ties in the stochastic logic BLTL and use a variety of statistical tests on simulated interlocking
scenarios to verify the system.

A hierarchical scheduling systems consists of a set of scheduling units (e.g., CPU tasks) orga-
nized in a tree. Each scheduling unit is equipped with a deadline, and an objective is to determine
the schedulability of some task with respect to a system, i.e., whether the task can be executed
without missing its real-time deadline under the specific assumptions on the total CPU time. Such
problems arise, for example, in avionics, and have been addressed primarily by analytical means
that do no scale well. Chadli et al. present a framework for capturing schedulability problems

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:24 G. Agha and K. Palmskog

using timed and stochastic automata in the UPPAAL tool [31]. For the latter kind of automata,
this enables the use of SMC using the UPPAAL-SMC extension.

Dynamic software architectures are able to capture the dynamism in the environment present
in modern systems by being capable of being reconfigured over time while still upholding key
properties. Quilbeuf et al. present a stochastic logic called DynBLTL that can describe such prop-
erties [103]. They implement support for the logic in the PLASMA tool, enabling support for ver-
ifying systems specified in the π -ADL architectural language using SMC.

6.4 Systems Biology

The dynamics of biological systems can sometimes be modeled as stochastic processes, usually
finite-state or countably infinite CTMCs. Most biological models lack key parameters; these pa-
rameters can usually only be obtained by expensive real-world experiments. In addition, even if
available, parameter values can be affected by imprecisions in the initial conditions of experiments.
As Zuliani describes in a recent survey, the combination of models with large state spaces and the
fact that precise analysis methods often do not yield additional predictive power is a strong argu-
ment in favor of applying SMC for biology [133].

The main idea of many biological models is to represent a series of transformations of bags
of molecular types (chemical species) to other bags. The dynamics of the transformations can
be represented either via ordinary differential equations (ODEs) or using a stochastic simulation
algorithm (SSA); for high numbers of molecules, an SSA can approximate the more precise ODEs.

Using an SSA, SMC can be used either for verification of model properties or for parameter esti-
mation and synthesis; both have been considered in detail for various biological systems. Jha et al.
analyze several benchmarks from MATLAB’s Systems Biology Toolbox, modeling, e.g., chemical
reactions, using Bayesian SMC methods [65]. Sankaranarayanan and Fainekos model the insulin-
glucose regulatory system to capture possibly-faulty behavior from insulin pumps, and they use
Bayesian SMC to estimate the probability of dangerous conditions, as specified using Metric Tem-
poral Logic [107]. Jha and Langmead use SMC with Bayesian hypothesis testing to check rare
properties of biological models defined using stochastic differential equations; in particular, they
consider properties on systems that model tumor progression [66]. Palaniappan et al. use SMC to
calibrate models of pathway signaling based on ODEs [95].

Peng et al. consider the problem of composing existing models from population biology into
one while adapting and ensuring preservation of key properties of the constituents [96]. Their
proposed approach is to generate simulations for the composed model and check hypotheses syn-
thesized from previous properties by applying SMC. The models in their case study of several
predator-prey models are expressed in a formalism having CTMC semantics with properties in
CSL and non-stochastic linear temporal logic.

Heiner et al. perform a comparison of analysis methods for Generalized Stochastic Petri Nets
(GSPNs) that capture biochemical networks [52]. Specifically, they compare using (a) exact numer-
ical analysis, (b) approximate numerical analysis, and (c) simulation. No overall winner is declared,
but they note that simulation is a more generally applicable technique than the others. In addition,
Heiner et al. conclude that memory is the limiting factor for numerical methods, while accuracy
requirements limit simulation-based methods.

7 TOOLS

In this section, we describe some key SMC tools and their relation to specific applications of SMC.
While there are many tools that support numeric-symbolic stochastic model checking with the
same input as SMC (e.g., a DTMC and a PCTL formula), we do not include such tools unless they
incorporate SMC techniques in some form. We also restrict ourselves to tools that are currently

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:25

Table 5. SMC Tool Property Comparison; HT Means Hypothesis Testing, E Means Estimation, NS Means

Numeric-symbolic Methods

Tool Systems Logics Area Techniques

Ymer DTMC/CTMC/GSMP PCTL/CSL general HT+NS

(P)VESTA DTMC/CTMC/PMaude PCTL/CSL/QuaTEx general HT

MultiVESTA DTMC/CTMC/... PCTL/CSL/MultiQuaTEx general HT

PRISM DTMC/CTMC PCTL/CSL/pLTL/PCTL∗ general HT+E+NS

UPPAAL NPTA/NHA PWCTL timed systems HT+E

COSMOS DESP HASL general HT+E

SBIP DTMC PBLTL component-based HT+E

PLASMA Lab DTMC/CTMC/... BLTL/ABLTL/GCSL general/biology HT+E

MRMC DTMC/CTMC PCTL/CSL general E+NS

SAM StoKLAIM MoSL mobile systems E+NS

APMC DTMC/CTMC pLTL/PCTL general E

MODES STA MODEST timed systems HT

MARCIE XSPN CSRL/PLTLc general E+NS

GreatSPN GSPN/SWN CSLTA general E+NS

available directly to the academic community in some form. This means that we exclude the SMC
tool BioLab [34], since to the best of our knowledge it has never seen a public release.

Table 5 lists the tools surveyed, along with their fundamental properties, i.e., the systems and
logics they support, what application areas they are targeting, and the SMC techniques they
implement.

7.1 PRISM

PRISM is a general stochastic model checking tool that supports both numeric-symbolic techniques
and SMC, written primarily in Java and developed mainly at the University of Oxford [69]. PRISM
has its own language for specifying stochastic systems in the form of DTMCs, CTMCs, MDPs, and
Probabilistic Time Automata PTAs. Properties can be specified in PCTL, CSL, pLTL, and PCTL∗.
PRISM can simulate systems at the level of the language (on-the-fly), and hence does not need
to store complete representations in memory. The PRISM SMC component [100] supports two
different confidence interval methods, one estimation method based on Chernoff bounds, and the
sequential probability ratio hypothesis test, with only the latter being restricted to threshold-based
properties such as those defined in the PCTL fragment in Section 2. While PTAs are not supported
at all by PRISM’s simulator, MDPs can be checked as usual, but with potentially misleading results,
since nondeterminism is resolved in a uniformly random way. PRISM is available under the open
source GNU GPL license, version 2.

7.2 Ymer

Ymer is an SMC tool written in C and C++, developed initially at Carnegie Mellon University and
later at Google [125]. Ymer uses a dialect of the PRISM language to describe systems, which can be
DTMCs, CTMCs, or GSMPs. Properties can be defined in either PCTL or CSL. Like PRISM, Ymer
simulates systems at the language level, and even includes a numeric-symbolic engine from PRISM
that can be used in tandem with its standard sequential hypothesis tests to more quickly decide

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:26 G. Agha and K. Palmskog

nested formulas. Ymer makes use of the fact that system traces are to be observed independently
to enable parallelization via multithreading on a single single machine and distribution of work
across multiple machines. Ymer is a general-purpose SMC tool and has been used to, e.g., verify
simulated stochastic behavior of robots on grids [127]. Ymer is available under the open source
GNU GPL license, version 2.

7.3 VESTA and PVESTA

VESTA is an SMC tool written in Java and developed at the University of Illinois at Urbana-
Champaign, initially released in 2004 [113]. PVESTA is an extension of VESTA [102] that adds
a client-server architecture for parallel, distributed sampling and checking [6]. PVESTA includes
the original DTMC/CTMC simulation engine from VESTA and supports a format for system def-
initions close to that of PRISM, along with models in the PMaude probabilistic rewriting logic
dialect [5]. Properties can be defined in PCTL, CSL, or the more powerful language of Quantita-
tive Temporal Expressions (QuaTEx). PVESTA is released without source code under a University
of Illinois license.

VESTA and PVESTA have been applied to analyze denial-of-service attacks using PMaude mod-
els for TCP-related protocols, using the Maude rewriting logic engine for Monte Carlo simulations
[4]. More recently, PVESTA has been used to analyze the performance of models of protocols for
distributed key-value stores [84].

7.4 MultiVESTA

MultiVESTA [92] is an extension of PVESTA, developed at IMT Lucca, that builds on the premise
that VESTA’s analysis algorithms are independent of the specific system model and simulation
engine used. Hence, MultiVESTA adds general support for standalone discrete event simulators,
e.g., the ARGoS swarm robotic library and the DEUS simulation environment. In addition, the
tool supports the MultiQuaTEx logic that in contrast to regular QuaTEx allows specification of
multiple measures to be observed in a single simulation. MultiVESTA has been applied to analyze
cloud computing scenarios where tasks must be evenly distributed among volunteer participants.
Through the use of MultiQuaTEx formulas, an order of magnitude improvement in the number of
simulations required can sometimes be achieved. MultiVESTA is available under the same license
as PVESTA.

7.5 UPPAAL

UPPAAL is a tool for modeling and verification of real-time systems, developed jointly by re-
searchers at Uppsala University and Aalborg University [120]. The basic underlying framework
is that of timed automata, and the problem considered by UPPAAL is called timed model check-
ing. UPPAAL has been extended with discrete-event simulation and SMC analysis capabilities for
stochastic analysis of timed systems [42]. UPPAAL can perform distributed SMC while avoiding
output bias by splitting simulations optimally [26]. UPPAAL binaries are provided under a propri-
etary license that permits free non-commercial use.

7.6 COSMOS

COSMOS is an SMC tool for model checking of Discrete Event Stochastic Processes (DESPs) in the
form of General Stochastic Petri Net (GSPN), implemented in C++ [36]. DESPs resemble GSMPs
and are thus more general than Markov chains; they can have an infinite number of states and
arbitrary delay distributions. An execution of a DESP is an infinite sequence of states with both
an event and an occurrence time attached to each transition.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:27

To express properties about DESPs, COSMOS supports specifications in the Hybrid Automata
Stochastic Logic (HASL). A formula in HASL consists of two parts, the first of which is a Linear
Hybrid Automaton (LHA) that attempts to synchronize with an execution of the given DESP. The
second part of a HASL formula is an expression related to the automaton, based on moments of
a path random variable. While classical statistical model checking focuses on the first moment of
a binomial stochastic variable, COSMOS can produce estimates of general expressions involving
random variables related to the specification formulas. The tool uses confidence interval compu-
tation and exhibits performance comparable to PRISM on several benchmarks [15]. COSMOS is
released under the open sourcen GNU GPL license, version 3.

7.7 SBIP

SBIP is an SMC tool with support for a stochastic extension of the Behavior Interaction Priority
(BIP) language for modeling component-based systems [108]. A system in Stochastic BIP (SBIP)
behaves equivalently to a DTMC. Since stochastic BIP systems are assumed to have finite life,
properties are specified in PBLTL, a stochastic bounded variant of LTL. SBIP supports SMC based
on both hypothesis testing and confidence interval computation. One motivation for extending
BIP with probabilities was to enable capturing uncertainty, e.g., with respect to deployment envi-
ronments, when designing systems.

SBIP has been applied to analyze the accuracy of a clock synchronization protocol, to analyze the
quality of service of an implementation of an MPEG2 video codec, and in verification of protocols
used in embedded systems for avionics [94]. SBIP is developed at Verimag and is implemented
primarily in Java, with some components only available as Linux binaries.

7.8 PLASMA Lab

PLASMA Lab is a Java library developed at INRIA that enables applying SMC techniques in a
variety of contexts, e.g., as part of other tools [98]. For example, the tool has been used to enable
SMC analysis through SciLab and MATLAB [25]. PLASMA Lab supports Bounded LTL (BLTL)
specifications, along with Adaptive BLTL and GCSL. The tool offers three analysis methods in
the form of simple Monte Carlo, Monte Carlo using Chernoff bounds, and sequential hypothesis
testing. PLASMA Lab also supports parallel and distributed sampling. One of the key points
in developing PLASMA Lab was to avoid tying the tool to a specific high-level language for
stochastic systems. PLASMA Lab supports a Biological Language (BL) to define systems that
targets applications of SMC in systems biology.

7.9 MRMC

Markov Reward Model Checker (MRMC) is a tool for verification of both classical DTMCs and
CTMCs and various Markov reward models, developed primarily at RWTH Aachen [91]. MRMC
supports PCTL and CSL for property specification (along with analogues for reward models).
MRMC offers SMC with confidence interval computation as an alternative to its main numeric-
symbolic methods for PCTL/CSL model checking. However, since MRMC always loads Markov
chain representations into memory completely, some of the benefits of simulation-based tech-
niques are not available.

MRMC supports the .tra format generated by other tools for stochastic Petri Nets and process
algebras. MRMC is implemented in C and is available under the open source GNU GPL license,
version 3.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:28 G. Agha and K. Palmskog

7.10 SAM

Stochastic Analyzer for Mobility (SAM) is a statistical model checking tool for systems defined in
the StoKLAIM language, implemented in OCaml and developed at the University of Florence [106].
StoKLAIM is a stochastic extension of KLAIM, which targets modeling and verification of mobile
and distributed systems. SAM supports specifications of StoKLAIM systems in the Mobile Stochas-
tic Logic (MoSL), which is similar to CSL but additionally supports referencing the spatial structure
of a network. SAM can also perform numeric-symbolic model checking by using the MRMC tool
as backend. SAM has been used to analyze and compare several leader election protocols [28].

7.11 APMC

Approximate Probabilistic Model Checker (APMC) is an SMC tool that uses Chernoff bounds to
compute confidence intervals after trace generation and checking [54]. The last production release
of APMC, version 2.0, is implemented in C [7]. A beta version of version 3.0 is implemented in a
mix of Java and C, and added a layer for distributing the work of model checking [8, 55]. An
experimental version of APMC for the Cell microprocessor (APMC-CA) was also developed and
shown to outperform APMC 3.0 on two standard benchmarks [23]. APMC has been used to analyze
the IEEE 802.3 CSMA/CD protocol [43], and MAC protocols for sensor networks [27].

7.12 MODES

MODES is discrete-event simulator for SMC analysis of timed systems in the form of STA [20, 90]. It
is part of the comprehensive MODEST toolset that can perform analysis of a variety of probabilistic
models and also uses UPPAAL as a backend. The toolset takes stochastic timed systems defined
in the MODEST language as input and can perform, e.g., the sequential probability ratio test on
given properties.

7.13 MARCIE

MARCIE is a tool for analysis of GSPNs, including those that have been augmented with re-

wards [51, 87]. While the semantics of GSPNs can be mapped to that of CTMCs, MARCIE elides
any conversion to CTMC representations internally. MARCIE has several analysis engines, among
which is a stochastic simulation engine based on statistical estimation, which supports multi-core
parallelization. For simulation-based analysis, properties of models can be expressed as formulas
in Continuous Stochastic Reward Logic (CSRL) or probabilistic LTL with numerical constraints
(PLTLc). The simulation engine also supports XSPNs, which extend GSPNs with deterministically
timed transitions and do not have the Markovian (memoryless) property in general.

7.14 GreatSPN

GreatSPN is a tool for modeling and analysis of both timed and stochastic Petri nets [12, 18, 45].
GreatSPN supports both GSPNs and Stochastic Well-Formed Nets (SWNs). The latter allows dis-
tinguishing between different tokens by their color, and transitions to be parameterized on such
colors. GreatSPN has a graphical interface to build a Petri net and specify so-called performance
indexes, which can drive the analysis. The tool includes several analysis modules, among which is a
module for event-driven simulation that can compute confidence intervals, i.e., perform statistical
estimation.

7.15 Tool Comparison

While hypothesis testing (HT) of the kind applied in SMC is inherently parallelizable, both at the
level of multiple processor cores and across different systems, not all tools that implement HT

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:29

Table 6. SMC tool Implementation Comparison

Tool Initial Last System Language Impl. Lang. Distributed? License

Ymer 2004 2015 PRISM C/C++ � GPLv2

(P)VESTA 2004 2011 PRISM/PMaude Java � proprietary

MultiVESTA 2013 2015 PRISM/PMaude Java � proprietary

PRISM 2011 2015 PRISM Java/C ✘ GPLv2

UPPAAL 2011 2014 UPPAAL � proprietary

COSMOS 2011 2015 GSPN C++ ✘ GPLv3

SBIP 2013 2013 SBIP Java/C++ ✘ proprietary

PLASMA Lab 2013 2016 PRISM/ARML/BL Java � as-is

MRMC 2008 2011 .tra C ✘ GPLv3

SAM 2010 2010 StoKLAIM OCaml ✘ as-is

APMC 2004 2006 PRISM C/Java ✘ GPLv2

MODES 2012 2017 MODEST C# ✘ proprietary

MARCIE 2010 2017 GSPN/XSPN C++ ✘ proprietary

GreatSPN 1995 2013 GSPN/SWN C/Java ✘ proprietary

offer either possibility. Sequential HT has the notable property that a test run in parallel may be
considered a speculation, whose result is not part of the final output. SMC tools based on estimation
may also be parallelized and distributed.

Table 6 compares the same tools as above for more practical properties, i.e., the year of initial and
latest release, the language for defining systems, tool implementation language, whether model
checking can be distributed across computers, and the tool license terms.

Jansen et al. carried out an in-depth performance comparison of some stochastic model checking
tools [61]. Among the tools covered here, MRMC, PRISM, Ymer, and VESTA were included in
the comparison. However, SMC was only used when running Ymer and VESTA. The comparison
concluded that Ymer was the fastest and slimmest tool (even including numeric-symbolic tools),
having low and nearly constant memory consumption when run on the selected benchmarks.
While VESTA’s memory use was also nearly constant, it was similar to that of numeric-symbolic
tools in several cases. In addition, Jansen et al. note that VESTA’s runtime varies considerably
more than Ymer’s, with nested properties in particular taking an unfeasibly long time to check in
VESTA even on small systems. On the usability side, Jansen et al. commended PRISM and VESTA
for their graphical user interfaces.

Based on the currently available tools, their limitations, and published case studies, we suggest
the following heuristics for applying SMC in practice. If the system under analysis has dynamics
that can be captured in a timed or hybrid model, then UPPAAL and its extensions for SMC [120]
is the primary choice. For biological systems, PLASMA Lab and its biological language [98] are
particularly relevant. Actor-based stochastic systems are best expressed using probabilistic rewrit-
ing logic [5], and then analyzed using PVESTA [102] and other tools in the Maude toolset. For
general stochastic systems whose behavior can be programmatically described, we suggest using
PRISM [100] or Ymer [125]; for general implicit or black box systems, we suggest MultiVESTA [92],
Ymer, or PLASMA Lab.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:30 G. Agha and K. Palmskog

8 DISCUSSION

Compared to approaches based on numerical methods, the main advantage of SMC is that large
state spaces become feasible to analyze. A secondary advantage is that SMC supports even systems
whose implementation details are unknown and cannot be simulated on demand. However, in
such black box systems, whether the key SMC requirement of stochastic behavior is satisfied
may not be easily determined by simple inspection of traces; one way is to apply statistical tests
[71].

Model Estimation. Statistical tests can also be used to reject proposed stochastic models of sys-
tems, e.g., DTMCs produced by estimation. Of course, such estimation of probabilities will pro-
duce values within some error bounds. We may use Interval-valued Discrete Time Markov Chains

(IDTMCs) to account for the estimation error. An IDTMC is essentially a family of DTMCs, each
with a different transition probability function drawn from the IDTMC. In this case, each execu-
tion path needs to follow a sample DTMC drawn from a family of DTMCs. It is also possible that
the probabilities in the systems themselves suffer from jitter around a distribution—thus requiring
sampling from the space of probability bounds on each transition (rather than fixing it for each
execution path as in IDTMCs). To capture such jitter, Interval Markov Decision Processes may be
used to model the behavior. Analyzing such systems exactly is possible but computationally in-
tractable [114]. SMC techniques treating the system as a black box may be effective for these cases,
but further study is required.

Whether to use actual traces as sample points directly or use them to validate a model that is
subsequently analyzed using SMC is largely a contextual decision. White box models have, e.g.,
the advantage of efficient support for specification formulas with nesting via combined statistical
and numeric-symbolic techniques. On the other hand, the precision of the analysis may be illusory
if the model is inaccurate.

Support for large state spaces and the possibility to rely on Bayesian methods make SMC an
attractive choice for domains with well-known priors, such as systems biology. Similarly, the in-
tractability of exhaustive analysis of stochastic timed and hybrid systems puts SMC tools in a
favorable light. However, even less so than is the case in regular model checking, it is not clear
that SMC analysis can be performed at the push of a button given that the tradeoffs between error
probabilities and bounds in specification formulas must be weighed against required sample sizes
and overhead of simulation.

For some stochastic systems, the interesting quantitative properties may concern aggregate be-
haviors rather than soft deadlines concerning specific actions. In this case, it is possible to forego
SMC by modeling the evolution of probability distributions of local states [70]. Such modeling al-
lows us to express properties such as bounds on transient rewards and expected values in execu-
tion paths—properties that are not expressible in logics such as PCTL. If the behavior of a system
is Markovian, then it is possible to (non-stochastically) verify aggregate properties on execution
paths using Euclidian model checking [3, 71]. Analyzing the evolution of probability distributions
is more complicated if the underlying system is governed by an MDP, though it has been shown
to be decidable for certain classes of MDPs and applied to a pharmacokinetic model [68].

Limitations of SMC. SMC shares the limitations of all formal methods as well as those of sta-
tistical techniques. The fact that the observations are likely given a hypothesis is no guarantee
of the correctness of the hypothesis itself. In cases where the reliability and safety of a piece of
software is at issue, we believe the best strategy is to assume a specification is false (i.e., that the
system is buggy—that the specified probabilistic property does not hold) and then try to refute
this hypothesis with a high probability. In this case, the only consequence of a Type II error is
over-engineering of a system to increase its safety.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

A Survey of Statistical Model Checking 6:31

SMC, like all formal methods, should be thought of as another bug finding technique—not a
guarantee of “correctness.” Properties are tested with respect to a hypothesized model. For one,
the model is itself usually an abstraction, which may fail to capture some essential element. For
another, we are often interested in some abstract “meta-properties” such as safety and security.
The properties we test are specific manifestations of these desirable attributes and usually not
exhaustive. Often, new requirements will be discovered as systems are deployed and new use
cases developed. Testing and verification, including for properties appropriate to test using SMC,
must be a continual process. Moreover, in stochastic systems, the probability distribution over
processes may not be stationary but may change over time. Learning techniques and incremental
verification become useful in such cases.

Integrated Modeling and Verification. Functional and non-functional properties of systems are
generally verified separately, e.g., with Markov chains and queueing networks for performance and
nondeterministic transition systems for safety. A more attractive workflow is one where a com-
mon system model is used to seamlessly perform both functional and non-functional verification.
Since models for functional verification may lack the required probabilities to mirror uncertainties
and environmental constraints, one possibility is to allow optional decoration of transitions with
such measures. The PMaude extension to the Maude rewriting logic tool has been used in this
way to enable verification of performance properties of a distributed key-value store [84]. More-
over, because SMC works on both white box and black box systems, it can be used to establish
correspondence between implementations and abstract models for the purposes of non-functional
verification, in the way similar to that of model-based or property-based testing for functional
correctness. Finally, due to the diverse requirements of practitioners, it may be warranted to sup-
port stochastic systems with interrelated components described in different formalisms (e.g., part
DTMC, part MDP) within the same toolset.

Certified SMC. The last decade has seen considerable work on formalizing parts of measure
theory and probability relevant to probabilistic programming languages and stochastic processes
in proof assistants such as HOL4, Coq, and Isabelle/HOL. More recently, significant parts of PCTL
model checking on DTMCs have been verified in Isabelle/HOL [58]. A natural extension to this line
of work is to formalize in proof assistants all the theoretical underpinnings of SMC, primarily for
estimation and hypothesis testing. In the case of Isabelle/HOL and DTMCs, significant parts of the
theory are already available. However, it would be necessary to generate the required distributions
from Bernoulli streams of bits, and then apply the existing theories for random variable analysis
and DTMCs.

Ultimately, such a collection of theoretical results can be used in a certified toolchain for SMC.
This toolchain may be developed in at least two different ways. First, all SMC components (sim-
ulation, property checking, estimation, and hypothesis testing) can be developed jointly and in-
tegrated and proved correct inside the proof assistant, and then extracted to executable code in a
way similar to the CompCert verified C compiler [82]. Second, verified SMC components can be
integrated with an existing tool such as PRISM. The latter approach may necessitate generation of
certificates for results from unverified components to minimize the trusted base, but may benefit
from existing performance optimizations.

Tool Standardization and Integration. More effective benchmark performance comparisons
would be facilitated if tools supported the same syntax for systems and logics or provide trusted
converters. The PRISM format exhibits signs in becoming the de facto standard, but shows up
in many different incompatible variations across tools. In addition, practitioners would benefit if
there was better support for custom discrete-event generators in existing tools. Jansen et al. [61]

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

6:32 G. Agha and K. Palmskog

additionally suggest that stochastic model checking tools should support calling other tools from
the same graphical user interface by the simple push of a button.

While some tools support distribution of, e.g., sampling and testing on many computers in a
network, some tools such as PRISM do not. It may be called for to standardize the interface for
clients of stochastic model checkers. This would facilitate easier building of clusters for large-scale
tool deployment.

Although Jansen et al. established a suite of benchmarks for stochastic model checking [61],
SMC tools may require their own benchmark suite with a range that reflects typical application
areas. In particular, the suite would benefit from benchmarks with complicated nested properties,
unbounded untils, and rarely exhibited properties.

The semantics of model checking with hypothesis testing (which includes possibility of errors)
has been defined for various stochastic logics by Younes [128]. However, while new stochastic
logics are generally formalized in ideal settings, many lack a corresponding semantics at the level
of SMC, i.e., one that describes the guarantees provided at the level of the language. In particular,
having such semantics for both hypothesis testing and estimation methods for the same logic
would allow SMC users to better understand the tradeoffs inherent in both approaches.

Algorithmic Improvements. As explained in Section 4.2, algorithms for handling unbounded un-
til properties still leave much to desire. Moreover, nested and rare properties sometimes increase
model checking time substantially. When using SMC in some tools, the expressiveness may be
substantially reduced when compared to other techniques. Combinations of numeric-symbolic
techniques and SMC may therefore be warranted to model check specific properties. However,
since the verification semantics is usually different for each technique and combination, it is im-
portant that tools that implement combinations of algo rithms accurately represent results along
with a description of the confidence of the result.

ACKNOWLEDGMENTS

The authors thank Johannes Hölzl and Sylvain Peyronnet for their comments, Atul Sandur for
providing valuable feedback on earlier drafts of the article, and the anonymous reviewers for their
comments and suggestions.

REFERENCES

[1] Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Prandini. 2010. Approximate model checking of

stochastic hybrid systems. Eur. J. Control 16, 6 (2010), 624–641. DOI:http://dx.doi.org/10.3166/ejc.16.624-641

[2] C. J. Adcock. 1997. Sample size determination: A review. J. Roy. Stat. Soci. Ser. D (The Statistician) 46, 2 (1997), 261–

283. DOI:http://dx.doi.org/10.1111/1467-9884.00082

[3] Gul Agha. 2013. Euclidean model checking: A scalable method for verifying quantitative properties in probabilis-

tic systems. In Proceedings of the 5th International Conference on Algebraic Informatics (CAI’13), Traian Muntean,

Dimitrios Poulakis, and Robert Rolland (Eds.). Springer, Berlin, Germany, 1–3. DOI:http://dx.doi.org/10.1007/

978-3-642-40663-8_1

[4] Gul Agha, Carl Gunter, Michael Greenwald, Sanjeev Khanna, José Meseguer, Koushik Sen, and Prasanna Thati.

2005. Formal modeling and analysis of DoS using probabilistic rewrite theories. In Proceedings of the International

Workshop on Foundations of Computer Security (PCS’05).

[5] Gul Agha, José Meseguer, and Koushik Sen. 2006. PMaude: Rewrite-based specification language for probabilistic

object systems. Electron. Notes Theoret. Comput. Sci. 153, 2 (2006), 213–239. DOI:http://dx.doi.org/10.1016/j.entcs.

2005.10.040; Proceedings of the Third Workshop on Quantitative Aspects of Programming Languages (QAPL’05).

[6] Musab AlTurki and José Meseguer. 2011. PVeStA: A parallel statistical model checking and quantitative analysis

tool. In Proceedings of the 4th International Conference on Algebra and Coalgebra in Computer Science (CALCO’11),

Andrea Corradini, Bartek Klin, and Corina Cîrstea (Eds.). Springer, Berlin, Germany, 386–392. DOI:http://dx.doi.

org/10.1007/978-3-642-22944-2_28

[7] APMC. 2005. APMC2 tool. Retrieved from http://berbiqui.org/apmc2/apmc-2.0.0.tar.gz.

[8] APMCBeta. 2014. APMC3 Beta tool. Retrieved from https://web.archive.org/web/20140928144328http://sylvain.

berbiqui.org/apmc.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

http://dx.doi.org/10.3166/ejc.16.624-641
http://dx.doi.org/10.1111/1467-9884.00082
http://dx.doi.org/10.1007/978-3-642-40663-8_1
http://dx.doi.org/10.1016/j.entcs.2005.10.040;
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://berbiqui.org/apmc2/apmc-2.0.0.tar.gz.
https://web.archive.org/web/20140928144328
http://sylvain.berbiqui.org/apmc

A Survey of Statistical Model Checking 6:33

[9] Alexandre Arnold, Massimo Baleani, Alberto Ferrari, Marco Marazza, Valerio Senni, Axel Legay, Jean Quilbeuf, and

Christoph Etzien. 2016. An application of SMC to continuous validation of heterogeneous systems. In Proceedings

of the 9th EAI International Conference on Simulation Tools and Techniques (SIMUTOOLS’16). 76–85. DOI:http://dx.

doi.org/10.4108/eai.1-2-2017.152154

[10] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. 1996. Verifying continuous time Markov chains.

In Proceedings of the 8th International Conference on Computer Aided Verification (CAV’96), Rajeev Alur and Thomas

A. Henzinger (Eds.). Springer, Berlin, Germany, 269–276. DOI:http://dx.doi.org/10.1007/3-540-61474-5_75

[11] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert Brayton. 2000. Model-checking continuous-time Markov

chains. ACM Trans. Comput. Logic 1, 1 (July 2000), 162–170. DOI:http://dx.doi.org/10.1145/343369.343402

[12] Soheib Baarir, Marco Beccuti, Davide Cerotti, Massimiliano De Pierro, Susanna Donatelli, and Giuliana

Franceschinis. 2009. The GreatSPN tool: Recent enhancements. SIGMETRICS Perform. Eval. Rev. 36, 4 (March 2009),

4–9. DOI:http://dx.doi.org/10.1145/1530873.1530876

[13] Francis Bacon. 1902. Novum Organum. P. F. Collier & Sons.

[14] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen. 2003. Model-checking algorithms

for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29, 6 (June 2003), 524–541. DOI:http://dx.doi.org/10.

1109/TSE.2003.1205180

[15] Paolo Ballarini, Benoît Barbot, Marie Duflot, Serge Haddad, and Nihal Pekergin. 2015. HASL: A new approach for

performance evaluation and model checking from concepts to experimentation. Perform. Eval. 90 (2015), 53–77.

DOI:http://dx.doi.org/10.1016/j.peva.2015.04.003

[16] Benoît Barbot, Serge Haddad, and Claudine Picaronny. 2012. Coupling and importance sampling for statistical model

checking. In Proceedings of the 18th International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS’12), Cormac Flanagan and Barbara König (Eds.). Springer, Berlin, Germany, 331–346. DOI:http://

dx.doi.org/10.1007/978-3-642-28756-5_23

[17] Samik Basu, Arka P. Ghosh, and Ru He. 2009. Approximate model checking of PCTL involving unbounded path

properties. In Proceedings of the 11th International Conference on Formal Engineering Methods and Software Engi-

neering (ICFEM’09), Karin Breitman and Ana Cavalcanti (Eds.). Springer, Berlin, Germany, 326–346. DOI:http://

dx.doi.org/10.1007/978-3-642-10373-5_17

[18] Marco Beccuti and Giuliana Franceschinis. 2012. Efficient simulation of stochastic well-formed nets through sym-

metry exploitation. In Proceedings of the Winter Simulation Conference (WSC’12). Winter Simulation Conference,

Article 296, 13 pages. DOI:http://dx.doi.org/10.1109/WSC.2012.6465256

[19] Jonathan Bogdoll, Luis María Ferrer Fioriti, Arnd Hartmanns, and Holger Hermanns. 2011. Partial order methods

for statistical model checking and simulation. In Proceedings of the Joint 13th International Conference on Formal

Techniques for Distributed Systems (FMOODS’11) and 30th IFIP WG 6.1 International Conference (FORTE’11), Roberto

Bruni and Juergen Dingel (Eds.). Springer, Berlin, Germany, 59–74. DOI:http://dx.doi.org/10.1007/978-3-642-

21461-5_4

[20] Jonathan Bogdoll, Arnd Hartmanns, and Holger Hermanns. 2012. Simulation and statistical model checking for

modestly nondeterministic models. In Proceedings of the 16th International GI/ITG Conference on Measurement, Mod-

elling, and Evaluation of Computing Systems and Dependability and Fault Tolerance (MMB & DFT’12), Jens B. Schmitt

(Ed.). Springer, Berlin, Germany, 249–252. DOI:http://dx.doi.org/10.1007/978-3-642-28540-0_20

[21] Dimitri Bohlender, Harold Bruintjes, Sebastian Junges, Jens Katelaan, Viet Yen Nguyen, and Thomas Noll. 2014. A

review of statistical model checking pitfalls on real-time stochastic models. In Proceedings of the 6th International

Symposium on Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and Ap-

plications (ISoLA’14), Tiziana Margaria and Bernhard Steffen (Eds.). Springer, Berlin, Germany, 177–192. DOI:http://

dx.doi.org/10.1007/978-3-662-45231-8_13

[22] Henrik Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns, and Joost-Pieter Katoen. 2006. MODEST: A compo-

sitional modeling formalism for hard and softly timed systems. IEEE Trans. Softw. Eng. 32, 10 (Oct 2006), 812–830.

DOI:http://dx.doi.org/10.1109/TSE.2006.104

[23] Alexandre Borghi, Thomas Hérault, Richard Lassaigne, and Sylvain Peyronnet. 2008. Cell assisted APMC. In Pro-

ceedings of the 5th International Conference on Quantitative Evaluation of Systems (QEST’08). 75–76. DOI:http://

dx.doi.org/10.1109/QEST.2008.36

[24] Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. 2006. Improved undecidability results on weighted timed

automata. Inform. Process. Lett. 98, 5 (2006), 188–194. DOI:http://dx.doi.org/10.1016/j.ipl.2006.01.012

[25] Benoît Boyer, Kevin Corre, Axel Legay, and Sean Sedwards. 2013. PLASMA-lab: A flexible, distributable statisti-

cal model checking library. In Proceedings of the 10th International Conference on Quantitative Evaluation of Sys-

tems (QEST’13), Kaustubh Joshi, Markus Siegle, Mariëlle Stoelinga, and Pedro R. D’Argenio (Eds.). Springer, Berlin,

Germany, 160–164. DOI:http://dx.doi.org/10.1007/978-3-642-40196-1_12

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

http://dx.doi.org/10.4108/eai.1-2-2017.152154
http://dx.doi.org/10.1007/3-540-61474-5_75
http://dx.doi.org/10.1145/343369.343402
http://dx.doi.org/10.1145/1530873.1530876
http://dx.doi.org/10.1109/TSE.2003.1205180
http://dx.doi.org/10.1016/j.peva.2015.04.003
http://dx.doi.org/10.1007/978-3-642-28756-5_23
http://dx.doi.org/10.1007/978-3-642-10373-5_17
http://dx.doi.org/10.1109/WSC.2012.6465256
http://dx.doi.org/10.1007/978-3-642-21461-5_4
http://dx.doi.org/10.1007/978-3-642-28540-0_20
http://dx.doi.org/10.1007/978-3-662-45231-8_13
http://dx.doi.org/10.1109/TSE.2006.104
http://dx.doi.org/10.1109/QEST.2008.36
http://dx.doi.org/10.1016/j.ipl.2006.01.012
http://dx.doi.org/10.1007/978-3-642-40196-1_12

6:34 G. Agha and K. Palmskog

[26] Peter Bulychev, Alexandre David, Kim Guldstrand Larsen, Marius Mikučionis, Danny Bøgsted Poulsen, Axel Legay,

and Zheng Wang. 2012. UPPAAL-SMC: Statistical model checking for priced timed automata. In Proceedings of the

10th Workshop on Quantitative Aspects of Programming Languages and Systems (Electronic Proceedings in Theoretical

Computer Science), Herbert Wiklicky and Mieke Massink (Eds.), Vol. 85. Open Publishing Association, 1–16. DOI:
http://dx.doi.org/10.4204/EPTCS.85.1

[27] Michaël Cadilhac, Thomas Hérault, Richard Lassaigne, Sylvain Peyronnet, and Sébastien Tixeuil. 2007. Evaluating

complex MAC protocols for sensor networks with APMC. Electron. Notes Theoret. Comput. Sci. 185 (2007), 33–46.

DOI:http://dx.doi.org/10.1016/j.entcs.2007.05.027; Proceedings of the 6th International Workshop on Automated Veri-

fication of Critical Systems (AVoCS’06).

[28] Francesco Calzolai and Michele Loreti. 2010. Simulation and analysis of distributed systems in klaim. In Proceedings

of the 12th International Conference on Coordination Models and Languages (COORDINATION’10), Dave Clarke and

Gul Agha (Eds.). Springer, Berlin, Germany, 122–136. DOI:http://dx.doi.org/10.1007/978-3-642-13414-2_9

[29] Quentin Cappart, Christophe Limbrée, Pierre Schaus, Jean Quilbeuf, Louis-Marie Traonouez, and Axel Legay. 2017.

Verification of interlocking systems using statistical model checking. In Proceedings of the 2017 IEEE 18th Interna-

tional Symposium on High Assurance Systems Engineering (HASE’17). 61–68. DOI:http://dx.doi.org/10.1109/HASE.

2017.10

[30] Frédéric Cérou and Arnaud Guyader. 2007. Adaptive multilevel splitting for rare event analysis. Stochast. Anal. Appl.

25, 2 (2007), 417–443. DOI:http://dx.doi.org/10.1080/07362990601139628

[31] Mounir Chadli, Jin Hyun Kim, Axel Legay, Louis-Marie Traonouez, Stefan Naujokat, Bernhard Steffen, and Kim

Guldstrand Larsen. 2016. A model-based framework for the specification and analysis of hierarchical scheduling

systems. In Proceedings of the Joint 21st International Workshop on Formal Methods for Industrial Critical Systems

and 16th International Workshop on Automated Verification of Critical Systems (FMICS-AVoCS’16), Maurice H. ter

Beek, Stefania Gnesi, and Alexander Knapp (Eds.). Springer International Publishing, Cham, 133–141. DOI:http://

dx.doi.org/10.1007/978-3-319-45943-1_9

[32] Y. S. Chow and Herbert Robbins. 1965. On the asymptotic theory of fixed-width sequential confidence intervals for

the mean. Ann. Math. Stat. 36, 2 (1965), 457–462. DOI:http://dx.doi.org/10.1214/aoms/1177700156

[33] Edmund M. Clarke, E. Allen Emerson, and Aravinda Prasad Sistla. 1986. Automatic verification of finite-state con-

current systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8, 2 (April 1986), 244–263.

DOI:http://dx.doi.org/10.1145/5397.5399

[34] Edmund M. Clarke, James R. Faeder, Christopher J. Langmead, Leonard A. Harris, Sumit Kumar Jha, and Axel

Legay. 2008. Statistical model checking in biolab: Applications to the automated analysis of T-cell receptor sig-

naling pathway. In Proceedings of the 6th International Conference on Computational Methods in Systems Biology

(CMSB’08), Monika Heiner and Adelinde M. Uhrmacher (Eds.). Springer, Berlin, Germany, 231–250. DOI:http://

dx.doi.org/10.1007/978-3-540-88562-7_18

[35] Edmund M. Clarke and Paolo Zuliani. 2011. Statistical model checking for cyber-physical systems. In Proceedings

of the 9th International Symposium on Automated Technology for Verification and Analysis (ATVA’11), Tevfik Bultan

and Pao-Ann Hsiung (Eds.). Springer, Berlin, Germany, 1–12. DOI:http://dx.doi.org/10.1007/978-3-642-24372-1_1

[36] COSMOS. 2015. COSMOS tool. Retrieved from http://www.lsv.ens-cachan.fr/Software/cosmos/.

[37] Przemysław Daca, Thomas A. Henzinger, Jan Křetínský, and Tatjana Petrov. 2016. Faster statistical model checking

for unbounded temporal properties. In Proceedings of the 22nd International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS’16), Marsha Chechik and Jean-François Raskin (Eds.). Springer,

Berlin, Germany, 112–129. DOI:http://dx.doi.org/10.1007/978-3-662-49674-9_7

[38] Pedro D’Argenio, Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. 2015. Smart sampling for lightweight

verification of Markov decision processes. Int. J. Softw. Tools Technol. Transfer 17, 4 (2015), 469–484. DOI:http://dx.

doi.org/10.1007/s10009-015-0383-0

[39] Alexandre David, Dehui Du, Kim G. Larsen, Axel Legay, Marius Mikučionis, Danny Bøgsted Poulsen, and Sean

Sedwards. 2012. Statistical model checking for stochastic hybrid systems. In Proceedings of the 1st International

Workshop on Hybrid Systems and Biology (Electronic Proceedings in Theoretical Computer Science), Ezio Bartocci and

Luca Bortolussi (Eds.), Vol. 92. Open Publishing Association, 122–136. DOI:http://dx.doi.org/10.4204/EPTCS.92.9

[40] Alexandre David, Kim G. Larsen, Axel Legay, Guangyuan Li, and Danny Bøgsted Poulsen. 2014. Quantified dynamic

metric temporal logic for dynamic networks of stochastic hybrid automata. In Proceedings of the 2014 14th Interna-

tional Conference on Application of Concurrency to System Design. 32–41. DOI:http://dx.doi.org/10.1109/ACSD.2014.

21

[41] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, Danny Bøgsted Poulsen, Jonas Vliet, and Zheng

Wang. 2011. Statistical model checking for networks of priced timed automata. In Proceedings of the 9th International

Conference on Formal Modeling and Analysis of Timed Systems (FORMATS’11), Uli Fahrenberg and Stavros Tripakis

(Eds.). Springer, Berlin, Germany, 80–96. DOI:http://dx.doi.org/10.1007/978-3-642-24310-3_7

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

http://dx.doi.org/10.4204/EPTCS.85.1
http://dx.doi.org/10.1016/j.entcs.2007.05.027;
http://dx.doi.org/10.1007/978-3-642-13414-2_9
http://dx.doi.org/10.1109/HASE.2017.10
http://dx.doi.org/10.1080/07362990601139628
http://dx.doi.org/10.1007/978-3-319-45943-1_9
http://dx.doi.org/10.1214/aoms/1177700156
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1007/978-3-540-88562-7_18
http://dx.doi.org/10.1007/978-3-642-24372-1_1
http://www.lsv.ens-cachan.fr/Software/cosmos/.
http://dx.doi.org/10.1007/978-3-662-49674-9_7
http://dx.doi.org/10.1007/s10009-015-0383-0
http://dx.doi.org/10.4204/EPTCS.92.9
http://dx.doi.org/10.1109/ACSD.2014.21
http://dx.doi.org/10.1007/978-3-642-24310-3_7

A Survey of Statistical Model Checking 6:35

[42] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis, and Zheng Wang. 2011. Time for statistical model

checking of real-time systems. In Proceedings of the 23rd International Conference on Formal Modeling and Analysis

of Timed Systems (CAV’11), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, Berlin, Germany, 349–355.

DOI:http://dx.doi.org/10.1007/978-3-642-22110-1_27

[43] Marie Duflot, Laurent Fribourg, Thomas Herault, Richard Lassaigne, Frédéric Magniette, Stéphane Messika, Sylvain

Peyronnet, and Claudine Picaronny. 2005. Probabilistic model checking of the CSMA/CD protocol using PRISM and

APMC. Electron. Notes Theoret. Comput. Sci. 128, 6 (2005), 195–214. DOI:http://dx.doi.org/10.1016/j.entcs.2005.04.012;

Proceedings of the 4th International Workshop on Automated Verification of Critical Systems (AVoCS’04).

[44] Diana El Rabih and Nihal Pekergin. 2009. Statistical model checking using perfect simulation. In Proceedings of the

7th International Symposium on Automated Technology for Verification and Analysis (ATVA’09), Zhiming Liu and

Anders P. Ravn (Eds.). Springer, Berlin, Germany, 120–134. DOI:http://dx.doi.org/10.1007/978-3-642-04761-9_11

[45] GreatSPN. 2012. GreatSPN tool. Retrieved from http://www.di.unito.it/ greatspn/index.html.

[46] Radu Grosu and Scott A. Smolka. 2005. Monte carlo model checking. In Proceedings of the 11th International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’05), Nicolas Halbwachs and Lenore

D. Zuck (Eds.). Springer, Berlin, Germany, 271–286. DOI:http://dx.doi.org/10.1007/978-3-540-31980-1_18

[47] Stefan Hadjis and Stefano Ermon. 2015. Importance sampling over sets: A new probabilistic inference scheme. In

Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, Marina Meila and Tom Heskes (Eds.). AUAI

Press, Corvallis, OR, 355–364. Retrieved from http://auai.org/uai2015/proceedings/papers/143.pdf.

[48] Hans Hansson and Bengt Jonsson. 1994. A logic for reasoning about time and reliability. Formal Aspects Comput. 6,

5 (1994), 512–535. DOI:http://dx.doi.org/10.1007/BF01211866

[49] Klaus Havelund and Grigore Roşu. 2002. Synthesizing monitors for safety properties. In Proceedings of the 8th In-

ternational Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’02), Joost-Pieter

Katoen and Perdita Stevens (Eds.). Springer, Berlin, Germany, 342–356. DOI:http://dx.doi.org/10.1007/

3-540-46002-0_24

[50] Boudewijn R. Haverkort, Holger Hermanns, and Joost-Pieter Katoen. 2000. On the use of model checking techniques

for dependability evaluation. In Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS’00).

228–237. DOI:http://dx.doi.org/10.1109/RELDI.2000.885410

[51] Monika Heiner, Christian Rohr, and Martin Schwarick. 2013. MARCIE—Model checking and reachability anal-

ysis done efficiently. In Proceedings of the 34th International Conference on Application and Theory of Petri Nets

and Concurrency (PETRI NETS’13), José-Manuel Colom and Jörg Desel (Eds.). Springer, Berlin, Germany, 389–399.

DOI:http://dx.doi.org/10.1007/978-3-642-38697-8_21

[52] Monika Heiner, Christian Rohr, Martin Schwarick, and Stefan Streif. 2010. A comparative study of stochastic anal-

ysis techniques. In Proceedings of the 8th International Conference on Computational Methods in Systems Biology

(CMSB’10). ACM, New York, NY, 96–106. DOI:http://dx.doi.org/10.1145/1839764.1839776

[53] David Henriques, João G. Martins, Paolo Zuliani, André Platzer, and Edmund M. Clarke. 2012. Statistical model

checking for markov decision processes. In Proceedings of the 2012 9th International Conference on Quantitative

Evaluation of Systems (QEST’12). 84–93. DOI:http://dx.doi.org/10.1109/QEST.2012.19

[54] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet. 2004. Approximate probabilistic

model checking. In Proceedings of the 5th International Conference on Verification, Model Checking, and Abstract

Interpretation (VMCAI’04), Bernhard Steffen and Giorgio Levi (Eds.). Springer, Berlin, Germany, 73–84. DOI:http://

dx.doi.org/10.1007/978-3-540-24622-0_8

[55] Thomas Hérault, Richard Lassaigne, and Sylvain Peyronnet. 2006. APMC 3.0: Approximate verification of discrete

and continuous time markov chains. In Proceedings of the 3rd International Conference on the Quantitative Evaluation

of Systems (QEST’06). 129–130. DOI:http://dx.doi.org/10.1109/QEST.2006.5

[56] Holger Hermanns, Joachim Meyer-Kayser, and Markus Siegle. 1999. Multi terminal binary decision diagrams to rep-

resent and analyse continuous time markov chains. In Proceedings of the 3rd International Workshop on the Numerical

Solution of Markov Chains. 188–207.

[57] Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random variables. J. Amer. Stat. Assoc. 58, 301

(1963), 13–30. DOI:http://dx.doi.org/10.1080/01621459.1963.10500830

[58] Johannes Hölzl and Tobias Nipkow. 2012. Verifying pCTL model checking. In Proceedings of the18th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’12), Cormac Flanagan and

Barbara König (Eds.). Springer, Berlin, Germany, 347–361. DOI:http://dx.doi.org/10.1007/978-3-642-28756-5_24

[59] Oliver C. Ibe and Kishor S. Trivedi. 1990. Stochastic Petri net models of polling systems. IEEE J. Select. Areas Commun.

8, 9 (Dec 1990), 1649–1657. DOI:http://dx.doi.org/10.1109/49.62852

[60] Raj Jain. 1991. The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement,

Simulation, and Modeling. Wiley, Hoboken, NJ.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

http://dx.doi.org/10.1007/978-3-642-22110-1_27
http://dx.doi.org/10.1016/j.entcs.2005.04.012;
http://dx.doi.org/10.1007/978-3-642-04761-9_11
http://www.di.unito.it/ ignorespaces greatspn/index.html.
http://dx.doi.org/10.1007/978-3-540-31980-1_18
http://auai.org/uai2015/proceedings/papers/143.pdf.
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1007/3-540-46002-0_24
http://dx.doi.org/10.1109/RELDI.2000.885410
http://dx.doi.org/10.1007/978-3-642-38697-8_21
http://dx.doi.org/10.1145/1839764.1839776
http://dx.doi.org/10.1109/QEST.2012.19
http://dx.doi.org/10.1007/978-3-540-24622-0_8
http://dx.doi.org/10.1109/QEST.2006.5
http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1007/978-3-642-28756-5_24
http://dx.doi.org/10.1109/49.62852

6:36 G. Agha and K. Palmskog

[61] David N. Jansen, Joost-Pieter Katoen, Marcel Oldenkamp, Mariëlle Stoelinga, and Ivan Zapreev. 2008. How fast

and fat is your probabilistic model checker? An experimental performance comparison. In Hardware and Software:

Verification and Testing, Karen Yorav (Ed.). Lecture Notes in Computer Science, Vol. 4899. Springer, Berlin, Germany,

69–85. DOI:http://dx.doi.org/10.1007/978-3-540-77966-7_9

[62] Cyrille Jegourel, Axel Legay, and Sean Sedwards. 2013. Importance splitting for statistical model checking rare prop-

erties. In Proceedings of the 25th International Conference on Computer Aided Verification (CAV’13), Natasha Sharygina

and Helmut Veith (Eds.). Springer, Berlin, Germany, 576–591. DOI:http://dx.doi.org/10.1007/978-3-642-39799-8_38

[63] Cyrille Jegourel, Axel Legay, and Sean Sedwards. 2014. An effective heuristic for adaptive importance splitting in

statistical model checking. In Proceedings of the 6th International Symposium on Leveraging Applications of Formal

Methods, Verification and Validation. Specialized Techniques and Applications (ISoLA’14), Tiziana Margaria and Bern-

hard Steffen (Eds.). Springer, Berlin, Germany, 143–159. DOI:http://dx.doi.org/10.1007/978-3-662-45231-8_11

[64] Cyrille Jegourel, Axel Legay, and Sean Sedwards. 2016. Command-based importance sampling for statistical model

checking. Theoret. Comput. Sci. 649 (2016), 1–24. DOI:http://dx.doi.org/10.1016/j.tcs.2016.08.009

[65] Sumit K. Jha, Edmund M. Clarke, Christopher J. Langmead, Axel Legay, André Platzer, and Paolo Zuliani. 2009. A

Bayesian approach to model checking biological systems. In Proceedings of the 7th International Conference on Com-

putational Methods in Systems Biology (CMSB’09), Pierpaolo Degano and Roberto Gorrieri (Eds.). Springer, Berlin,

Germany, 218–234. DOI:http://dx.doi.org/10.1007/978-3-642-03845-7_15

[66] Sumit Kumar Jha and Christopher James Langmead. 2012. Exploring behaviors of stochastic differential equation

models of biological systems using change of measures. BMC Bioinfo. 13, 5 (12 Apr 2012), S8. DOI:http://dx.doi.org/

10.1186/1471-2105-13-S5-S8

[67] Kenan Kalajdzic, Cyrille Jegourel, Anna Lukina, Ezio Bartocci, Axel Legay, Scott A. Smolka, and Radu Grosu.

2016. Feedback control for statistical model checking of cyber-physical systems. In Proceedings of the 7th Inter-

national Symposium on Leveraging Applications of Formal Methods, Verification and Validation: Foundational Tech-

niques (ISoLA’16), Tiziana Margaria and Bernhard Steffen (Eds.). Springer International Publishing, Cham, 46–61.

DOI:http://dx.doi.org/10.1007/978-3-319-47166-2_4

[68] Vijay Anand Korthikanti, Mahesh Viswanathan, Gul Agha, and YoungMin Kwon. 2010. Reasoning about MDPs

as transformers of probability distributions. In Proceedings of the 7th International Conference on the Quantitative

Evaluation of Systems (QEST’10). 199–208. DOI:http://dx.doi.org/10.1109/QEST.2010.35

[69] Marta Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of probabilistic real-time

systems. In Proceedings of the 23rd International Conference on Computer Aided Verification (CAV’11), Ganesh

Gopalakrishnan and Shaz Qadeer (Eds.). Springer, Berlin, Germany, 585–591. DOI:http://dx.doi.org/10.1007/

978-3-642-22110-1_47

[70] Youngmin Kwon and Gul Agha. 2011. Verifying the evolution of probability distributions governed by a DTMC. IEEE

Trans. Softw. Eng. 37, 1 (Jan 2011), 126–141. DOI:http://dx.doi.org/10.1109/TSE.2010.80

[71] Youngmin Kwon and Gul Agha. 2013. Performance evaluation of sensor networks by statistical modeling and eu-

clidean model checking. ACM Trans. Sen. Netw. 9, 4, Article 39 (July 2013), 38 pages. DOI:http://dx.doi.org/10.1145/

2489253.2489256

[72] David Kyle, Jeffery Hansen, and Sagar Chaki. 2015. Statistical model checking of distributed adaptive real-time soft-

ware. In Proceedings of the 6th International Conference on Runtime Verification (RV’15), Ezio Bartocci and Rupak Ma-

jumdar (Eds.). Springer International Publishing, Cham, 269–274. DOI:http://dx.doi.org/10.1007/978-3-319-23820-3_

17

[73] Tze Leung Lai. 2001. Sequential analysis: Some classical problems and new challenges. Statistica Sinica 11, 2 (2001),

303–351. DOI:http://dx.doi.org/10.2307/24306854

[74] Kim G. Larsen and Arne Skou. 1991. Bisimulation through probabilistic testing. Info. Comput. 94, 1 (1991), 1–28.

DOI:http://dx.doi.org/10.1016/0890-5401(91)90030-6

[75] Richard Lassaigne and Sylvain Peyronnet. 2002. Approximate verification of probabilistic systems. In Proceedings

of the 2nd Joint International Workshop on Process Algebra and Probabilistic Methods: Performance Modeling and

Verification (PAPM-PROBMIV’02), Holger Hermanns and Roberto Segala (Eds.). Springer, Berlin, Germany, 213–214.

DOI:http://dx.doi.org/10.1007/3-540-45605-8_16

[76] Richard Lassaigne and Sylvain Peyronnet. 2008. Probabilistic verification and approximation. Ann. Pure Appl. Logic

152, 13 (2008), 122–131. DOI:http://dx.doi.org/10.1016/j.apal.2007.11.006; Proceedings of the 12th Workshop on Logic,

Language, Information and Computation.

[77] Richard Lassaigne and Sylvain Peyronnet. 2015. Approximate planning and verification for large Markov decision

processes. Int. J. Softw. Tools Technol. Transfer 17, 4 (2015), 457–467. DOI:http://dx.doi.org/10.1007/s10009-014-0344-z

[78] Pierre L’Ecuyer, Valérie Demers, and Bruno Tuffin. 2007. Rare events, splitting, and quasi-monte carlo. ACM Trans.

Model. Comput. Simul. 17, 2, Article 9 (April 2007). DOI:http://dx.doi.org/10.1145/1225275.1225280

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

http://dx.doi.org/10.1007/978-3-540-77966-7_9
http://dx.doi.org/10.1007/978-3-642-39799-8_38
http://dx.doi.org/10.1007/978-3-662-45231-8_11
http://dx.doi.org/10.1016/j.tcs.2016.08.009
http://dx.doi.org/10.1007/978-3-642-03845-7_15
http://dx.doi.org/10.1186/1471-2105-13-S5-S8
http://dx.doi.org/10.1007/978-3-319-47166-2_4
http://dx.doi.org/10.1109/QEST.2010.35
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1109/TSE.2010.80
http://dx.doi.org/10.1145/2489253.2489256
http://dx.doi.org/10.1007/978-3-319-23820-3_17
http://dx.doi.org/10.2307/24306854
http://dx.doi.org/10.1016/0890-5401(91)90030-6
http://dx.doi.org/10.1007/3-540-45605-8_16
http://dx.doi.org/10.1016/j.apal.2007.11.006;
http://dx.doi.org/10.1007/s10009-014-0344-z
http://dx.doi.org/10.1145/1225275.1225280

A Survey of Statistical Model Checking 6:37

[79] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. 2015. Scalable verification of Markov decision processes. In

Proceedings of the Workshops: HOFM, SAFOME, OpenCert, MoKMaSD, and WS-FMDS, Carlos Canal and Akram Idani

(Eds.). Springer International Publishing, Cham, 350–362. DOI:http://dx.doi.org/10.1007/978-3-319-15201-1_23

[80] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. 2016. Rare events for statistical model checking an

overview. In Proceedings of the 10th International Workshop on Reachability Problems (RP’16), Kim Guldstrand Larsen,

Igor Potapov, and Jiří Srba (Eds.). Springer International Publishing, Cham, 23–35. DOI:http://dx.doi.org/10.1007/

978-3-319-45994-3_2

[81] Axel Legay and Louis-Marie Traonouez. 2016. Statistical model checking with change detection. In Transactions

on Foundations for Mastering Change I, Bernhard Steffen (Ed.). Springer International Publishing, Cham, 157–179.

DOI:http://dx.doi.org/10.1007/978-3-319-46508-1_9

[82] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115. DOI:http://dx.

doi.org/10.1145/1538788.1538814

[83] Dennis V. Lindley. 1997. The choice of sample size. J. Roy. Stat. Soc. Ser. D (The Statistician) 46, 2 (1997), 129–138.

DOI:http://dx.doi.org/10.1111/1467-9884.00068

[84] Si Liu, Son Nguyen, Jatin Ganhotra, Muntasir Raihan Rahman, Indranil Gupta, and José Meseguer. 2015. Quantitative

analysis of consistency in NoSQL key-value stores. In Proceedings of the 12th International Conference on Quanti-

tative Evaluation of Systems (QEST’15), Javier Campos and R. Boudewijn Haverkort (Eds.). Springer International

Publishing, Cham, 228–243. DOI:http://dx.doi.org/10.1007/978-3-319-22264-6_15

[85] Anna Lukina, Lukas Esterle, Christian Hirsch, Ezio Bartocci, Junxing Yang, Ashish Tiwari, Scott A. Smolka, and Radu

Grosu. 2017. ARES: Adaptive receding-horizon synthesis of optimal plans. In Proceedings of the 23rd International

Conference on Quantitative Evaluation of Systems (TACAS’17), Axel Legay and Tiziana Margaria (Eds.). Springer,

Berlin, Germany, 286–302. DOI:http://dx.doi.org/10.1007/978-3-662-54580-5_17

[86] Oded Maler. 2016. Some thoughts on runtime verification. In Proceedings of the 16th International Conference, on

Runtime Verification (RV’16), Yliès Falcone and César Sánchez (Eds.). Springer International Publishing, Cham, 3–14.

DOI:http://dx.doi.org/10.1007/978-3-319-46982-9_1

[87] MARCIE. 2017. MARCIE tool. Retrieved from http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie.

[88] João Martins, André Platzer, and João Leite. 2011. Statistical model checking for distributed probabilistic-control hy-

brid automata with smart grid applications. In Proceedings of the 13th International Conference on Formal Engineering

Methods and Software Engineering (ICFEM’11), Shengchao Qin and Zongyan Qiu (Eds.). Springer, Berlin, Germany,

131–146. DOI:http://dx.doi.org/10.1007/978-3-642-24559-6_11

[89] José Meseguer and Raman Sharykin. 2006. Specification and analysis of distributed object-based stochastic hybrid

systems. In Proceedings of the 9th International Workshop on Hybrid Systems: Computation and Control (HSCC’06), João

P. Hespanha and Ashish Tiwari (Eds.). Springer, Berlin, Germany, 460–475. DOI:http://dx.doi.org/10.1007/11730637_

35

[90] MODES. 2006. MODES tool. Retrieved from http://www.modestchecker.net.

[91] MRMC. 2011. MRMC tool. Retrieved from http://www.mrmc-tool.org.

[92] MultiVESTA. 2015. MultiVESTA tool. Retrieved from http://sysma.imtlucca.it/tools/multivesta/.

[93] NIST. 2017. NIST/SEMATECH e-Handbook of Statistical Methods. Retrieved from http://www.itl.nist.gov/div898/

handbook/ppc/section3/ppc333.htm.

[94] Ayoub Nouri, Saddek Bensalem, Marius Bozga, Benoît Delahaye, Cyrille Jegourel, and Axel Legay. 2014. Statistical

model checking QoS properties of systems with SBIP. Int. J. Softw. Tools Technol. Transfer 17, 2 (2014), 171–185.

DOI:http://dx.doi.org/10.1007/s10009-014-0313-6

[95] Sucheendra K. Palaniappan, Benjamin M. Gyori, Bing Liu, David Hsu, and P. S. Thiagarajan. 2013. Statistical model

checking based calibration and analysis of bio-pathway models. In Proceedings of the 11th International Conference on

Computational Methods in Systems Biology (CMSB’13), Ashutosh Gupta and Thomas A. Henzinger (Eds.). Springer,

Berlin, Germany, 120–134. DOI:http://dx.doi.org/10.1007/978-3-642-40708-6_10

[96] Danhua Peng, Roland Ewald, and Adelinde M. Uhrmacher. 2014. Towards semantic model composition via exper-

iments. In Proceedings of the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM

PADS’14). ACM, New York, NY, 151–162. DOI:http://dx.doi.org/10.1145/2601381.2601394

[97] A. G. Phatak and N. M. Bhatt. 1967. Estimation of the fraction defective in curtailed sampling plans by attributes.

Technometrics 9, 2 (1967), 219–228. DOI:http://dx.doi.org/10.2307/1266419

[98] PLASMA. 2015. PLASMA Lab. Retrieved from http://project.inria.fr/plasma-lab/.

[99] Karl Popper. 1968. Conjectures and Refutations: The Growth of Scientific Knowledge. Harper Torchbooks.

[100] PRISM. 2017. PRISM Statistical Model Checker. Retrieved from http://www.prismmodelchecker.org/manual/

RunningPRISM/StatisticalModelChecking.

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

http://dx.doi.org/10.1007/978-3-319-15201-1_23
http://dx.doi.org/10.1007/978-3-319-45994-3_2
http://dx.doi.org/10.1007/978-3-319-46508-1_9
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1111/1467-9884.00068
http://dx.doi.org/10.1007/978-3-319-22264-6_15
http://dx.doi.org/10.1007/978-3-662-54580-5_17
http://dx.doi.org/10.1007/978-3-319-46982-9_1
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Marcie.
http://dx.doi.org/10.1007/978-3-642-24559-6_11
http://dx.doi.org/10.1007/11730637_35
http://www.modestchecker.net.
http://www.mrmc-tool.org.
http://sysma.imtlucca.it/tools/multivesta/.
http://www.itl.nist.gov/div898/handbook/ppc/section3/ppc333.htm.
http://dx.doi.org/10.1007/s10009-014-0313-6
http://dx.doi.org/10.1007/978-3-642-40708-6_10
http://dx.doi.org/10.1145/2601381.2601394
http://dx.doi.org/10.2307/1266419
http://project.inria.fr/plasma-lab/.
http://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking.

6:38 G. Agha and K. Palmskog

[101] James Gary Propp and David Bruce Wilson. 1996. Exact sampling with coupled markov chains and applica-

tions to statistical mechanics. Rand. Struct. Algor. 9, 1–2 (Aug. 1996), 223–252. DOI:http://dx.doi.org/10.1002/(SICI)

1098-2418(199608/09)9:1/2〈223::AID-RSA14〉3.0.CO;2-O

[102] PVESTA. 2011. PVESTA tool. Retrieved from http://maude.cs.uiuc.edu/tools/pvesta/.

[103] Jean Quilbeuf, Everton Cavalcante, Louis-Marie Traonouez, Flavio Oquendo, Thais Batista, and Axel Legay. 2016.

A logic for the statistical model checking of dynamic software architectures. In Proceedings of the 7th Interna-

tional Symposium on Leveraging Applications of Formal Methods, Verification and Validation: Foundational Tech-

niques (ISoLA’16), Tiziana Margaria and Bernhard Steffen (Eds.). Springer International Publishing, Cham, 806–820.

DOI:http://dx.doi.org/10.1007/978-3-319-47166-2_56

[104] Daniël Reijsbergen, Pieter-Tjerk de Boer, Werner Scheinhardt, and Boudewijn Haverkort. 2010. Rare event simula-

tion for highly dependable systems with fast repairs. In Proceedings of the 2010 7th International Conference on the

Quantitative Evaluation of Systems. 251–260. DOI:http://dx.doi.org/10.1109/QEST.2010.39

[105] Nima Roohi and Mahesh Viswanathan. 2015. Statistical model checking for unbounded until formulas. Int. J. Softw.

Tools Technol. Transfer 17, 4 (2015), 417–427. DOI:http://dx.doi.org/10.1007/s10009-015-0368-z

[106] SAM. 2010. SAM: Stochastic Analyser for Mobility. Retrieved from http://rap.dsi.unifi.it/SAM/.

[107] Sriram Sankaranarayanan and Georgios Fainekos. 2012. Simulating insulin infusion pump risks by in-silico model-

ing of the insulin-glucose regulatory system. In Proceedings of the 10th International Conference on Computational

Methods in Systems Biology (CMSB’12), David Gilbert and Monika Heiner (Eds.). Springer, Berlin, Germany, 322–341.

DOI:http://dx.doi.org/10.1007/978-3-642-33636-2_19

[108] SBIP. 2013. SBIP tool. Retrieved from http://www-verimag.imag.fr/Statistical-Model-Checking.html.

[109] Stefano Sebastio and Andrea Vandin. 2013. MultiVeStA: Statistical model checking for discrete event simulators. In

Proceedings of the 7th International Conference on Performance Evaluation Methodologies and Tools (ValueTools’13).

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels,

Belgium, 310–315. DOI:http://dx.doi.org/10.4108/icst.valuetools.2013.254377

[110] Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Roşu. 2004. Efficient decentralized monitoring of safety in

distributed systems. In Proceedings of the 26th International Conference on Software Engineering. 418–427. DOI:http://

dx.doi.org/10.1109/ICSE.2004.1317464

[111] Koushik Sen, Mahesh Viswanathan, and Gul Agha. 2004. Statistical model checking of black-box probabilistic sys-

tems. In Computer Aided Verification, Rajeev Alur and Doron A. Peled (Eds.). Lecture Notes in Computer Science,

Vol. 3114. Springer, Berlin, Germany, 202–215. DOI:http://dx.doi.org/10.1007/978-3-540-27813-9_16

[112] Koushik Sen, Mahesh Viswanathan, and Gul Agha. 2005. On statistical model checking of stochastic systems. In

Computer Aided Verification, Kousha Etessami and Sriram K. Rajamani (Eds.). Lecture Notes in Computer Science,

Vol. 3576. Springer, Berlin, Germany, 266–280. DOI:http://dx.doi.org/10.1007/11513988_26

[113] Koushik Sen, Mahesh Viswanathan, and Gul Agha. 2005. VESTA: A statistical model-checker and analyzer for

probabilistic systems. Proceedings of the International Conference on Quantitative Evaluation of Systems. 251–252.

DOI:http://dx.doi.org/10.1109/QEST.2005.42

[114] Koushik Sen, Mahesh Viswanathan, and Gul Agha. 2006. Model-checking markov chains in the presence of un-

certainties. In Proceedings of the 12th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’06), Holger Hermanns and Jens Palsberg (Eds.). Springer, Berlin, Germany, 394–410.

DOI:http://dx.doi.org/10.1007/11691372_26

[115] Rajan Srinivasan. 2002. Importance Sampling. Springer, Berlin, Germany.

[116] Lisa J. Strug, Charles A. Rohde, and Paul N. Corey. 2007. An introduction to evidential sample size calculations.

Amer. Stat. 61, 3 (2007), 207–212. Retrieved from http://www.jstor.org/stable/27643895.

[117] Alexander Tartakovsky, Igor Nikiforov, and Michèle Basseville. 2014. Sequential Analysis: Hypothesis Testing and

Changepoint Detection. Chapman and Hall/CRC, Boca Raton, FL.

[118] Philip S. Thomas and Emma Brunskill. 2017. Importance sampling with unequal support. In Proceedings of the 31st

AAAI Conference on Artificial Intelligence (AAAI’17). AAAI Press, Palo Alto, CA. Retrieved from https://aaai.org/ocs/

index.php/AAAI/AAAI17/paper/view/14957/14457.

[119] Kishor S. Trivedi. 2008. Probability & Statistics With Reliability, Queuing And Computer Science Applications (2nd ed.).

Wiley, Hoboken, NJ.

[120] UPPAAL 2015. UPPAAL. Retrieved from http://www.uppaal.org.

[121] Abraham Wald. 1945. Sequential tests of statistical hypotheses. Ann. Math. Stat. 16, 2 (1945), 117–186. DOI:http://

dx.doi.org/10.1214/aoms/1177731118

[122] Abraham Wald. 1950. Statistical Decision Functions. Wiley, New York, NY.

[123] Abraham Wald. 1992. Breakthroughs in Statistics: Foundations and Basic Theory. Springer New York, New York, NY,

Chapter Sequential Tests of Statistical Hypotheses, 256–298. DOI:http://dx.doi.org/10.1007/978-1-4612-0919-5_18

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

http://dx.doi.org/10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O
http://maude.cs.uiuc.edu/tools/pvesta/.
http://dx.doi.org/10.1007/978-3-319-47166-2_56
http://dx.doi.org/10.1109/QEST.2010.39
http://dx.doi.org/10.1007/s10009-015-0368-z
http://rap.dsi.unifi.it/SAM/.
http://dx.doi.org/10.1007/978-3-642-33636-2_19
http://www-verimag.imag.fr/Statistical-Model-Checking.html.
http://dx.doi.org/10.4108/icst.valuetools.2013.254377
http://dx.doi.org/10.1109/ICSE.2004.1317464
http://dx.doi.org/10.1007/978-3-540-27813-9_16
http://dx.doi.org/10.1007/11513988_26
http://dx.doi.org/10.1109/QEST.2005.42
http://dx.doi.org/10.1007/11691372_26
http://www.jstor.org/stable/27643895.
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14957/14457.
http://www.uppaal.org
http://dx.doi.org/10.1214/aoms/1177731118
http://dx.doi.org/10.1007/978-1-4612-0919-5_18

A Survey of Statistical Model Checking 6:39

[124] D. J. White. 1993. A survey of applications of markov decision processes. J. Oper. Res. Soc. 44, 11 (1993), 1073–1096.

DOI:http://dx.doi.org/10.2307/2583870

[125] Ymer. 2015. Ymer tool. Retrieved from http://www.tempastic.org/ymer/.

[126] Håkan L. S. Younes. 2005. Probabilistic verification for “black-box” systems. In Computer Aided Verification, Kousha

Etessami and Sriram K. Rajamani (Eds.). Lecture Notes in Computer Science, Vol. 3576. Springer, Berlin, Germany,

253–265. DOI:http://dx.doi.org/10.1007/11513988_25

[127] Håkan L. S. Younes. 2005. Ymer: A statistical model checker. In Computer Aided Verification, Kousha Etessami

and Sriram K. Rajamani (Eds.). Lecture Notes in Computer Science, Vol. 3576. Springer, Berlin, Germany, 429–433.

DOI:http://dx.doi.org/10.1007/11513988_43

[128] Håkan L. S. Younes. 2006. Error control for probabilistic model checking. In Proceedings of the 7th International

Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’06), E. Allen Emerson and Kedar S.

Namjoshi (Eds.). Springer, Berlin, Germany, 142–156. DOI:http://dx.doi.org/10.1007/11609773_10

[129] Håkan L. S. Younes, Edmund M. Clarke, and Paolo Zuliani. 2011. Statistical verification of probabilistic properties

with unbounded until. In Proceedings of the 13th Brazilian Symposium on Formal Methods: Foundations and Applica-

tions (SBMF’10). Springer, Berlin, Germany, 144–160. DOI:http://dx.doi.org/10.1007/978-3-642-19829-8_10

[130] Håkan L. S. Younes, Marta Kwiatkowska, Gethin Norman, and David Parker. 2006. Numerical vs. statistical prob-

abilistic model checking. Int. J. Softw. Tools Technol. Transfer 8, 3 (2006), 216–228. DOI:http://dx.doi.org/10.1007/

s10009-005-0187-8

[131] Håkan L. S. Younes and Reid G. Simmons. 2002. Probabilistic verification of discrete event systems using acceptance

sampling. In Computer Aided Verification, Ed Brinksma and Kim Guldstrand Larsen (Eds.). Lecture Notes in Computer

Science, Vol. 2404. Springer, Berlin, Germany, 223–235. DOI:http://dx.doi.org/10.1007/3-540-45657-0_17

[132] Håkan L. S. Younes and Reid G. Simmons. 2006. Statistical probabilistic model checking with a focus on time-bounded

properties. Info. Comput. 204, 9 (2006), 1368–1409. DOI:http://dx.doi.org/10.1016/j.ic.2006.05.002

[133] Paolo Zuliani. 2015. Statistical model checking for biological applications. Int. J. Softw. Tools Technol. Transfer 17, 4

(2015), 527–536. DOI:http://dx.doi.org/10.1007/s10009-014-0343-0

[134] Paolo Zuliani, André Platzer, and Edmund M. Clarke. 2013. Bayesian statistical model checking with application

to stateflow/simulink verification. Formal Methods Syst. Design 43, 2 (2013), 338–367. DOI:http://dx.doi.org/10.1007/

s10703-013-0195-3

Received February 2017; revised September 2017; accepted November 2017

ACM Transactions on Modeling and Computer Simulation, Vol. 28, No. 1, Article 6. Publication date: January 2018.

http://dx.doi.org/10.2307/2583870
http://www.tempastic.org/ymer/
http://dx.doi.org/10.1007/11513988_25
http://dx.doi.org/10.1007/11513988_43
http://dx.doi.org/10.1007/11609773_10
http://dx.doi.org/10.1007/978-3-642-19829-8_10
http://dx.doi.org/10.1007/s10009-005-0187-8
http://dx.doi.org/10.1007/3-540-45657-0_17
http://dx.doi.org/10.1016/j.ic.2006.05.002
http://dx.doi.org/10.1007/s10009-014-0343-0
http://dx.doi.org/10.1007/s10703-013-0195-3

