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Abstract

Robot control for tasks such as moving around obstacles or grasping ob-
jects has advanced significantly in the last few decades. However, control-
ling robots to perform complex tasks is still accomplished largely by highly
trained programmers in a manual, time-consuming, and error-prone process
that is typically validated only through extensive testing. Formal methods are
mathematical techniques for reasoning about systems, their requirements,
and their guarantees. Formal synthesis for robotics refers to frameworks
for specifying tasks in a mathematically precise language and automatically
transforming these specifications into correct-by-construction robot con-
trollers or into a proof that the task cannot be done. Synthesis allows users
to reason about the task specification rather than its implementation, re-
duces implementation error, and provides behavioral guarantees for the re-
sulting controller. This article reviews the current state of formal synthesis
for robotics and surveys the landscape of abstractions, specifications, and
synthesis algorithms that enable it.
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1. INTRODUCTION

Formal methods are mathematical tools and techniques used in several engineering domains to
reason about systems, their requirements, and their guarantees (1). Typically, formal methods
address two questions: verification (given a set of requirements or specifications and a system
model, does the system satisfy the specifications?) and synthesis (given a set of specifications, can
one generate a system that is correct by construction, i.e., built in a way that is guaranteed to
satisfy the requirements?).

The state of the art in robot control for tasks such as moving around obstacles or grasping
objects has advanced significantly in the last few decades through the development of motion
planners and learning algorithms. However, getting robots to perform complex tasks such as
completing the DARPA Robotics Challenge (2) is still accomplished largely by a team of highly
trained programmers who manually compose the different system components together. This
manual process is time consuming, error prone, and typically validated only through extensive
testing.

Formal synthesis for robotics provides a framework for specifying complex robot tasks in a
mathematically precise language and automatically transforming these specifications into correct-
by-construction robot controllers when feasible. This approach allows a user to reason about
the task specification rather than the actual implementation, reduces implementation errors, and
provides guarantees for the overall robot behavior. Furthermore, the formal description of the
task enables feedback to be provided regarding the specifications themselves, such as whether they
can be implemented by a physical robot in the possibly unknown environment. The synthesis
approach to robot control, depicted in Figure 1, takes as input a specification and a model of the
robot, potentially also with the initial state of the robot, a model of the environment, and/or a
cost function, and outputs either a controller or a proof that the specification is not feasible (i.e.,
is unrealizable). Roughly speaking, the synthesis techniques can be grouped into three types:

Controller

Specification and robot model
(can also be an initial state, environment

model, and/or cost function)

Synthesis Robot

Environment

Reactive synthesis

Iterative synthesis

Specification

(realizable)

Specification

(unrealizable)

RUNTIME

Figure 1
Synthesis for robot control. The input here is a specification and a robot model; some approaches also take as input the initial state of
the robot, a model of the environment, and/or a cost function. The result of the synthesis algorithm is either a controller to be executed
by the robot or a proof that the specification is not feasible (i.e., is unrealizable). The black elements in the figure are common to all
synthesis approaches, while the blue elements are present only in some of them.
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� Open loop (nonreactive): Given a robot model and a specification, find a sequence of states
or actions that will guarantee that the robot satisfies the specification. In this approach, the
environment is static and is typically not modeled.

� Iterative: Given a robot model, a prediction of the environment at each iteration, and a
specification, find a sequence of states or actions at each iteration such that the robot satisfies
the specification over the full execution horizon. Synthesis is performed repeatedly, either
periodically (in a receding horizon or model predictive control manner) or when the expected
environment changes.

� Reactive: Given a robot model, an environment model, and a specification, find a strategy
(i.e., a function from states to actions or other states) that will guarantee that the robot
satisfies the specification under any modeled environment behavior. The environment is
typically modeled as uncertain or adversarial.

As described in Section 3, researchers have explored a wide range of specification formalisms
with different expressive power. These include discrete temporal logics, which are defined over
symbolic abstractions of the continuous system; probabilistic temporal logics, where the task
definition includes constraints on the probability of success; and metric and signal temporal logics,
which can express constraints on continuous time and state, respectively.

This article reviews the state of the art in formal synthesis of controllers for robots from tem-
poral logic. It discusses the algorithms used to transform the continuous problem of robot motion
and action to and from the symbolic structures used for synthesis (Section 2), the specification for-
malisms used to capture requirements for robot behavior and assumptions about the environment
(Section 3), and algorithmic approaches to synthesis (Section 4). It focuses on single-robot systems
and temporal logic specifications; multirobot systems (e.g., 3–13) and recent approaches such as
synthesis through satisfiability modulo theories (e.g., 14–16) are beyond the scope of the review.

1.1. Guarantees and Feedback

One of the main advantages of a formal synthesis framework for controlling robots is the ability
to provide both guarantees and feedback regarding task feasibility.

1.1.1. Guarantees. The synthesis approach takes a set of specifications and a system model and
generates a controller that achieves the specifications, if one exists. The algorithms are sound (if
a controller is found, it is correct), and most are complete (if a controller exists, it will be found).
Correctness here means that the system, at the level of abstraction of the model, will satisfy its
specification in any modeled environment. This does not mean that a robot will never fail; the
fidelity of the model with respect to reality will govern the success of the actual physical execution.
The correct-by-construction guarantees with respect to the specification and abstraction of the
synthesized controller, together with the ability to refine the abstraction, eliminate human error
in implementation and are a strong indicator of success, especially compared with the manual
composition of controllers.

1.1.2. Feedback and suggestions. Owing to the formal problem description, if synthesis fails
and no controller is produced, then the specification cannot be fully realized by the models of
the system and the environment. This means that there exists a counterexample that shows under
what conditions the robot will fail. Leveraging these counterexamples, synthesis frameworks are
able to produce explanations for what can go wrong and suggestions for how to modify the task to
make it achievable. Furthermore, they can provide feedback about inconsistencies, redundancies,
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and vacuity in the specifications themselves, which are often written by humans and are therefore
error prone.

Methods for enabling feedback on such unrealizable specifications cover logical inconsistencies
and environment behaviors that can prevent robot success at the specified abstraction level (17, 18),
physical constraints that prohibit the robot from following the symbolic solution (19), and specifi-
cations that are vacuous or tautological (17, 20), i.e., where a controller can be created that may not
do anything. In the context of suggesting changes, References 21–26 explore minimum-distance
revisions for linear temporal logic (LTL) and automata-based specifications. References 27 and 28
explore methods for generating additional symbolic environment assumptions that would make
the specification realizable. Automatic revisions to the abstractions based on the dynamics of the
robot are presented in References 29 and 30, and suggested revisions owing to probabilistic anal-
ysis of a synthesized controller are discussed in References 26 and 31. Specification diagnosis and
revision have also been explored for optimization-based synthesis approaches that do not involve
a discrete abstraction (32).

1.2. Relation to Other Communities

Synthesis, as discussed in this review, is used to automate the creation of robot controllers from
high-level specifications, thereby enabling users to reason about properties of robot behavior
and automatically generate a correct implementation of the behavior for the physical system. The
process of automating high-level behavior is the major focus of related communities, most notably
the artificial intelligence planning community and the discrete event systems community.

In artificial intelligence, the planning problem is typically represented as a set of actions,
each with preconditions and postconditions, an initial state, and a goal state expressed using the
Planning Domain Definition Language (PDDL) (33) or one of its variants. Generally, planning
algorithms search for a sequence of actions that will lead the system from the initial state to the
goal state. Variants that are closer to the work described in this review are those that handle
temporally extended goals (e.g., 34, 35), i.e., goals that are more complex than a single state;
universal planners (e.g., 36), which synthesize reaction rules for possible environment behaviors;
and contingency planners (e.g., 37, 38), which create branching plans where the system makes a
decision based on the environment. Some work has also explored temporal logic for specifying
goals and leveraged model-checking techniques for planning (39, 40). The differences between
synthesis approaches and those pursued in the planning community span the way the problem is
formulated, the complexity of the algorithms, the expressiveness of the specifications and system
models, and the type of feedback that is possible when the synthesis or planning problem can and
cannot be solved.

In discrete event systems, the system (plant) is a transition system with states and transitions.
The main difference between the system model in discrete event systems and in synthesis is that in
the former, the transitions are separated into controlled and uncontrolled transitions. The main
problem addressed by the discrete event systems community is finding a supervisory controller
that chooses which controlled transitions to take so that the system achieves a high-level behavior.
Reference 41 presents a comparison of supervisory control in discrete event systems and reactive
synthesis.

1.3. Example

The following example illustrates the concepts discussed in this review. Consider a mobile robot
moving in the workspace depicted in Figure 2. This workspace contains areas of interest, such as
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Mail room

Office A Office B Office C

Office D Lounge

Figure 2
An example workspace for mail delivery by a robot.

Trajectory ξ :
the execution of the
system dynamics
model

a mail room and offices, that may be used as part of the specification describing the robot’s desired
behavior.

In addition to actuation, the robot is equipped with exteroceptive sensors, such as cameras
and range finders. We assume that the rich information from these sensors is abstracted into
discrete symbols, such as “person detected” or “alarm is on,” that can be either true or false. These
symbols can be the output of classifiers or other perception algorithms. The task used throughout
this review is a mail-delivery task, where the robot is instructed to deliver letters and packages to
rooms and/or people.

2. ABSTRACTIONS: SYSTEM REPRESENTATIONS

The synthesis algorithms described in this review require abstractions of the task, the environ-
ment, and the physical robot behavior (i.e., its dynamics). These abstractions map the physical,
continuous problem of robot motion and action into sets of symbols that can be reasoned about and
mapped back to sensing and control for the robot. This section describes robot dynamics models
(Section 2.1), symbolic structures used in the synthesis algorithms (Section 2.2), and techniques
for mapping the physical to the symbolic and back (Section 2.3).

2.1. Robot Models

All approaches to robot controller synthesis assume a robot dynamics model; the model can be
either continuous or discrete time and with or without disturbances. The continuous and logical
states of the robot are denoted with x ∈ X ⊆ (Rnc × {0, 1}nl ), the continuous and logical control
inputs with u ∈ U ⊆ (Rmc × {0, 1}ml ), and the (possibly adversarial) external inputs in the form of
noise or disturbances w ∈ W ⊆ (Rec × {0, 1}el ). The system model for each approach is one of

ẋ = f (x, u), ẋ = f (x, u,w),

and is in some cases assumed to admit a discrete-time approximation of the form

x(tk+1) = fd (x(tk), u(tk)), x(tk+1) = fd (x(tk), u(tk),w(tk)),

where for all k > 0, tk+1 − tk = �t.
A system trajectory ξ is an execution of the system dynamics from an initial state x0. In the

discrete-time model, ξ = (x0u0w0) (x1u1w1) (x2u2w2) . . . becomes a sequence of states, control
actions, and external inputs.
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Path ω: a path in
symbolic structure

Trace (word) σ :
a sequence of labels

Paths : the set of all
infinite paths starting
at state s

Path f in
s : the set of all

finite paths starting at
state s

Control policy μ:
a function mapping
finite paths to actions

2.2. Symbolic Representations

The synthesis techniques covered in this review are based on deterministic, nondeterministic, and
probabilistic discrete structures. Each structure is assumed to be defined with respect to a set of
symbols, referred to as the set of atomic propositions AP.

2.2.1. Kripke structure. Given a set of atomic propositions AP, a Kripke structure over AP is a
tuple K = (S, S0, R, L) (42), where

� S is a finite set of states;
� S0 ⊆ S is the set of initial states;
� R ⊆ S × S is a transition relation where for all s ∈ S there exists a state s ′ ∈ S such that

(s , s ′) ∈ R; and
� L : S → 2AP is the labeling function such that L(s ) ⊆ AP is the set of atomic propositions

that are true in state s .

A path ω in K is an infinite sequence ω = ω0 → ω1 → ω2 · · ·, where ω0 ∈ S0, ωi ∈ S,
and (ωi ,ωi+1) ∈ R for all i � 0. Given a path ω, a trace (word) σ over ω is defined as
σ = L(ω0)L(ω1)L(ω2) · · ·, where L(ωi ) ∈ 2AP is the label of state ωi .

2.2.2. Labeled Markov decision processes. A labeled Markov decision process (MDP) (adapted
from 43) is a tuple M = (S, s0, Act, Steps, AP, L) where

� S is a finite set of states;
� s0 ∈ S is the initial state;
� Act = ⋃

s ∈S A(s ) is the set of actions, where A(s ) denotes the set of available actions at state
s ;

� Steps : S × Act → Dist(S) is a (partial) probabilistic transition function that maps each
state–action pair (s , a), s ∈ S, and a ∈ A(s ) to a discrete probability distribution over S;

� AP is a set of atomic propositions used to label the states; and
� L : S → 2AP is the labeling function such that L(s ) ⊆ AP is the set of atomic propositions

that are true in state s .

A path ω in M is a sequence ω = ω0
a1−→ω1

a2−→ω2 · · ·, where ω0 = s0, and for all i � 0, ωi ∈ S,
ai+1 ∈ A(ωi ), and Steps(ωi , ai+1)(ωi+1) > 0; ω is used to indicate an infinite path, ω f in to denote
a finite path, and las t(ω f in) to denote the last state of a finite path. Paths and Path f in

s are used
to indicate the set of all infinite paths ω and the set of all finite paths ω f in starting at state s ,
respectively.

A control policy μ is a function mapping finite paths ω f in ∈ Path f in
s of M to an action a ∈ Act

such that a ∈ A(las t(ω f in)). If policy μ depends only on las t(ω f in), then it is history independent
and is called a stationary policy.

2.3. Physical Interpretation

As mentioned in Section 2.2, synthesis is performed on symbolic structures; however, the resulting
controller is implemented on the physical system. Crucial to the success of the robot’s behavior
is its ability to continuously implement all of the symbolic transitions in the controller. This is
formally defined as a simulation relation (44) where one system can mimic all of the behaviors of
the second system. For robots, ideally, the continuous physical system simulates the symbolic one.

The following sections describe methods and algorithms for mapping states and controls of
the continuous system to labels and transitions of the symbolic structures. These processes of
abstraction create symbols and assign physical meaning to them. This section describes the creation
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of abstractions relating to the robot motion and action in the workspace. To abstract sensor
information or (more generally) the environment state, one can use classifiers or other perception
algorithms, which are beyond the scope of this review.

The abstraction algorithms fall into three categories: partitions (Section 2.3.1), where the
labels are mutually exclusive and the continuous system simulates the symbolic; motion primitives
(Section 2.3.2), where the labels may overlap and the continuous system simulates the symbolic;
and motion planners (Section 2.3.3), where the labels are typically mutually exclusive but the
transitions are probabilistically complete, meaning that the continuous system might not be able
to simulate the symbolic one.

For the following, consider the workspace of the robotW that contains nonoverlapping regions
of interest Regi such that Regi ∩ Regj = ∅ for all i �= j . The regions do not necessarily cover the
entire workspace.

2.3.1. Partitions. In this approach, the continuous state space of the robot X ⊆ R
nc is partitioned

into a set {ri } such that ri ⊆ X , ∪i ri = X , and ri ∩ rj = ∅ for all i �= j . Overloading the notation,
we use the symbol ri as a label in the symbolic structure to mean that when a node is labeled with
ri , the physical system’s state x ∈ ri ⊆ X . Because of the partition, the ri symbols are mutually
exclusive; that is, no more than one symbol can be true at any time. Transitions in the discrete
structure correspond to possible actions of the system and are related to the adjacency relationship
of the cells in the partition. If a transition exists, then the cells are adjacent and the system can
move from one cell to the other, but the reverse does not hold; that is, if cells are adjacent, there
may not be a transition in the symbolic structure. Figure 3 depicts a possible partition for a subset
of the workspace of the mail-delivery example (Figure 3a, subpanel i ) and the corresponding
symbolic structure (Figure 3b, subpanel i ).

There are different approaches to creating such partitions depending on the dynamics of the
robot. For a holonomic robot ẋ = u moving in a two- or three-dimensional workspace partitioned
into polytopes, approaches such as those described in References 45–47 create vector fields that
are used as a feedback controller to drive the robot from any state in a region to an adjacent region.
There, the workspace regions Regi and a convex decomposition of the rest of the workspace W
are the cells and labels. By considering points on boundaries as the goal set, one can use other
potential field-based controllers, such as navigation functions (48), to create the symbolic structure.
For multirobot tasks, similar decompositions can be created (49).

For robots with more complex, possibly nonlinear dynamics, other approaches discretize the
nc -dimensional state space of the system together with the set of control inputs into a high-
dimensional grid and create a nondeterministic structure that takes into account the effects of
discretization. These approaches typically compute, for each cell in the grid, an overapproximation
of the set of cells reachable under a control action. Different techniques exist that vary in their
assumptions regarding the underlying dynamics and the fidelity of the abstraction with respect
to the full model (e.g., 50, 51). Reference 52 discusses the robustness of such abstractions to
phenomena such as delays, measurement errors, and model uncertainties. Based on these ideas,
the hybrid systems community has created different tools that automatically create the abstraction
given the system model and the environment (53–55).

2.3.2. Motion primitives. Similar to the partition approach, the physical meaning of the symbols
in the abstraction using motion primitives is related to regions of the state space. The main
differences are that the state space is no longer divided into a grid, the regions representing
motion primitives are usually not disjoint, and the set of regions does not have to cover the whole
state space. Formally, the state space of the robot X ⊆ R

nc contains a set {ri } such that ri ⊆ X .
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Office COffice C

LoungeLounge

…

rC3 rC2 rC1

rH1rH2rH3

rL1rL2rL3

Office COffice C

LoungeLounge

…

mpC1

mpC2

mpH1

mpL1

mpL2

mpL3

Office COffice C

LoungeLounge

…

rC3 rC2 rC1

rH3 rH2 rH1

rL3 rL2 rL1

RegC

RegH

RegL

mpC2 mpC1

mpH1

mpL2 mpL1mpL3

a

b

i ii iii

i ii iii

Figure 3
Abstractions and symbolic structures for the mail-delivery example. (a) Abstraction techniques. (i ) Partition. The blue arrows represent
the vector fields that would drive the robot from rL1 to rL2. (ii ) Motion primitives. The blue outlines of motion primitives mpi
represent their invariant sets ri , and the blue regions represent their goal sets gi . (iii ) Motion planner. The blue graph represents the
output of a motion planner that is searching for a path from office C to the hall. (b) Symbolic structures. (i ) Partition. The arrows are
bidirectional only if there exist controllers that can drive the robot between any adjacent regions [e.g., for holonomic robots (45–47)].
Depending on the partition algorithm, these arrows may become one-directional, and the symbolic structure may become
nondeterministic. (ii ) Motion primitives. An arrow exists between mpi and mpj if and only if gi ⊆ rj. (iii ) Motion planner. The
symbolic structure is initially fully connected (i.e., includes bidirectional arrows between adjacent regions). If the motion planner fails
to find a path between regions i and j , then the arrow connecting Regi and Regj is removed.
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For each motion primitive mpi , ri is the domain of the primitive and gi ⊆ ri is the goal set that
should be reached by activating mpi . As before, overloading the notation, we use the symbol ri as
a label in the symbolic structure to mean that when a node is labeled with ri , the physical system’s
state x ∈ ri ⊆ X . Transitions in the discrete structure correspond to set inclusions of goals and
domains of motion primitives; if gi ⊆ rj, then there exists a transition from ri to rj. If a transition
exists, then motion primitive j can be activated after the completion of motion primitive i , but
the reverse does not hold. Figure 3 depicts a possible set of motion primitives for part of the
workspace of the mail-delivery example (Figure 3a, subpanel ii ) and the corresponding symbolic
structure (Figure 3b, subpanel ii ).

Note that with motion primitives, as opposed to partitions, the symbols are not mutually
exclusive, nor do they always cover the workspace. If the specification is given over regions of
the workspace, care must be taken to make sure those regions of space are fully covered by the
motion primitives, and if no set of motion primitives can cover a region, the specification and
region abstraction must be refined (30).

The notion of motion primitives is pervasive in robotics, and there are many different ap-
proaches to generating them, including reinforcement learning, learning by demonstration, and
control theory. Enabling guarantees for the robot’s physical behavior requires a simulation re-
lation between the physical system and the abstraction. This means that the motion primitives
that are suitable for synthesis must have two properties: invariance and liveness (or reachability).
Invariance is the property that, when activating motion primitive mpi , the state remains in the
domain x(t) ∈ ri ; that is, the state will not exit the domain of the primitive. Liveness (or reacha-
bility) is the property that the state of the system will reach the goal set gi in finite time from all
states in the domain ri . Approaches for generating motion primitives that satisfy the invariance
and liveness properties include using the Hamilton–Jacobi formulation (56–58), creating vector
fields over regions in the environment (46, 59), and sums-of-squares optimization for generating
funnels around trajectories (60–64).

In the case of reactive synthesis, where the behavior of the robot might change owing to changes
in the environment, to ensure correct execution with motion primitives, the abstraction must be
reactively composable (30, 65). This means that there exists a set of motion primitives that enable
the robot to “change its mind” and switch from one motion primitive to another before reaching its
goal set. Moreover, designing abstractions for robots with multiple actuation capabilities requires
special care with respect to timing semantics (66).

2.3.3. Motion planners and trajectories. In the previous two sections, the abstraction is created
a priori based on the dynamics of the robot and the symbolic structure. Another approach is to
start with a partition of the workspace and then, through iterative synthesis, search for robot
trajectories that enable the selected transitions in the symbolic structure. This search can be done
using motion planners such as sampling-based ones (67), optimization-based techniques such as
model predictive control, and reachability computations similar to those discussed in Section 2.3.1.

Similar to the partition approach, the workspace is discretized into cells; however, in contrast to
the partition approach, the cells do not have to observe dynamic constraints on the robot, and they
typically correspond to regions that are semantically meaningful for the specifications. Formally,
the workspace of the robot W is partitioned into regions Regi such that Regi ∩Regj = ∅ for all i �= j
and ∪i Regi = W . Again overloading the notation, we use Regi as the symbol that is true when the
robot is in region i of the partition. The transitions correspond to the adjacency of the regions;
that is, if regions share a boundary, then there exists a bidirectional transition between these
regions unless such a transition was removed during the iterative synthesis procedure. Figure 3
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depicts a motion planner searching for a transition (Figure 3a, subpanel iii ) and the corresponding
symbolic structure (Figure 3b, subpanel iii ).

This approach bypasses the need for detailed abstractions and is especially powerful for high-
dimensional systems. The main consequence of this abstraction approach is relaxed or no guar-
antees. In open-loop synthesis, the synthesized controller is not guaranteed to be implementable
on the physical system owing to a lack of simulation relation between the symbolic and physical
systems—there might be a symbolic transition that is impossible to physically implement. In it-
erative synthesis, the guarantees are determined by the underlying motion planner. For instance,
with sampling-based motion planners, probabilistic guarantees can be obtained.

3. SPECIFICATIONS

Synthesis is the process of transforming a specification (what the robot needs to do) into an
implementation (how the robot will do it). Specifications can be roughly grouped into two types:
safety specifications, which describe how the robot should always behave (e.g., “never collide with
an obstacle” or “always maintain a line of sight from a base station”) and liveness specifications,
which describe goals or tasks/states that the robot must eventually achieve (e.g., “eventually go back
to the recharge station” or “once in a while, send your location”). Safety and liveness specifications
can be bounded over finite or infinite horizons, can be deterministic or probabilistic, and can be
defined over different types of abstractions.

The majority of the work on synthesis for robots utilizes temporal logic to express desired robot
behavior and assumptions about the behavior of the dynamic environment. Roughly speaking,
temporal logic contains, in addition to Boolean operators, temporal operators that allow one to
reason about the change in the truth value of propositions over time.

This section describes several specification formalisms that have emerged in recent years owing
to developments in synthesis engines that make the synthesis process possible. To illustrate the
expressive power of each formalism, Section 3.4 provides example specifications related to the mail-
delivery example. The abstraction used is a partition of the workspace shown in Figure 2, where
the nodes in the symbolic structure are the seven regions representing the rooms and the hallway.

3.1. Discrete Logics

There are different variants of discrete temporal logic (42); most of the work in synthesis for robots
utilizes LTL, described below. It is worth noting that there are two notation conventions in the
literature for the temporal operator: ©, �, �, and U , or X , G, F , and U . In this review, we follow
the former convention.

3.1.1. Linear temporal logic syntax. Let AP be a set of atomic propositions where π ∈ AP is a
Boolean variable. LTL formulas are constructed from atomic propositions π ∈ AP according to
the following grammar:

ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ,

where ¬ (“not”) and ∨ (“or”) are Boolean operators, and © (“next”) and U (“until”) are temporal
operators. The Boolean constants true and false are defined as True = ϕ ∨¬ϕ and False = ¬True,
respectively. Given negation (“not,” ¬) and disjunction (“or,” ∨), one can define conjunction
(“and”) ϕ ∧ ϕ = ¬(¬ϕ ∨ ¬ϕ), implication (“if ”) ϕ1 ⇒ ϕ2 = ¬ϕ1 ∨ ϕ2, and equivalence (“iff ”)
ϕ1 ⇔ ϕ2 = (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1).
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Given the “next” (©) and “until” (U ) temporal operators, additional temporal operators can
be derived, such as “eventually” (�ϕ = TrueU ϕ) and “always” (�ϕ = ¬�¬ϕ).

3.1.2. Linear temporal logic semantics. The semantics of an LTL formula ϕ are defined on
an infinite sequence σ = σ1σ2 . . . of truth assignments to the atomic propositions π ∈ AP, where
σi denotes the set of atomic propositions that are true at position i . The recursive definition of
whether σ satisfies LTL formula ϕ at position i (denoted σ , i |= ϕ) is as follows:

� σ , i |= π iff π ∈ σi ;
� σ , i |= ¬ϕ iff σ , i �|= ϕ;
� σ , i |= ϕ1 ∨ ϕ2 iff σ , i |= ϕ1, or σ , i |= ϕ2;
� σ , i |= ©ϕ iff σ , i + 1 |= ϕ; and
� σ , i |= ϕ1 U ϕ2 iff there exists k � i such that σ , k |= ϕ2, and for all i � j < k, σ , j |= ϕ1.

Intuitively, the formula ©ϕ expresses that ϕ is true in the next step (the next position in the
sequence), and the formula ϕ1 U ϕ2 expresses the property that ϕ1 is true until ϕ2 becomes true.
The sequence σ satisfies formula ϕ if σ , 0 |= ϕ. The sequence σ satisfies the formula �ϕ if ϕ is
true in every position of the sequence, and it satisfies the formula �ϕ if ϕ is true at some position
of the sequence.

3.1.3. Fragments of linear temporal logic. As described in Section 4, reactive synthesis for full
LTL is computationally prohibitive (68). Therefore, researchers have explored several fragments
of LTL that, while not as expressive as full LTL, are amenable to more tractable synthesis algo-
rithms. Two fragments used by several researchers are the GR(1) (general reactivity of rank 1)
fragment (69) and co-safe LTL (70).

3.1.3.1. The GR(1) fragment. Let the set AP = X ∪Y be composed of X , the set of propositions
corresponding to the environment state as observed by sensors, and Y , the set of propositions
corresponding to the robot state, e.g., its position and actions.

LTL formulas in the GR(1) fragment (69) are of the form ϕ = (ϕe ⇒ ϕs ). The subformula ϕe

is an assumption about the sensor propositions and thus about the behavior of the environment.
An environment is considered admissible if it always satisfies the assumptions made about it in
ϕe . Note that one does not have to make any assumptions about the environment; specifying
ϕe = T rue means that no assumptions are made. The formula ϕs represents the desired behavior
of the robot.

The formula ϕ is true if ϕs is true (i.e., the desired robot behavior is satisfied) or ϕe is false (i.e.,
the environment did not behave as expected). This means that when the environment does not
satisfy ϕe and is thus not admissible, there is no guarantee for the robot behavior.

Both ϕe and ϕs have the structure

ϕe = ϕe
i ∧ ϕe

t ∧ ϕe
g , ϕs = ϕs

i ∧ ϕs
t ∧ ϕs

g ,

with the following:

� ϕe
i and ϕs

i are nontemporal Boolean formulas constraining (if at all) the initial value(s) of the
sensor propositions X and robot propositions Y , respectively.

� ϕe
t and ϕs

t represent safety assumptions and requirements (i.e., constraints that must always
hold) for the environment and robot, respectively. For example, the assumption that a
package will never be sensed when the robot is in the lounge belongs to ϕe

t , and motion
constraints (e.g., if the robot is in office A, then in the next state it can be only in either office
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A or the hallway) and behavior requirements (e.g., if the robot is carrying a package, then it
may not go into the lounge) belong to ϕs

t .
� ϕe

g andϕs
g represent liveness assumptions and requirements that must become true sometimes

(or eventually) for the environment and robot, respectively. For example, an assumption that
a package will eventually arrive can be part of ϕe

g , and a requirement that the robot eventually
go to the lounge can be part of ϕs

g .

3.1.3.2. Co-safe linear temporal logic. This fragment includes LTL formulas whose truth value
can be determined based on a finite sequence of truth assignments (70). The syntax is defined as

ϕ ::= π | ¬π | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | ϕ U ϕ.

Note that negation is allowed only on propositions, not on formulas. This means that the operator
“always” (�) is not part of the fragment (the truth value of a formula with � can be evaluated only
over infinite traces of a system), whereas “eventually” (�) is part of the fragment.

3.2. Probabilistic Logics

In robotics, it is natural to consider specifications that have a probabilistic nature. Rather than
a deterministic set of requirements from the robot, the specification can include probabilities
attached to the different task components. Probabilistic computation tree logic (PCTL) (adapted
from 43) can capture these desired probabilities.

3.2.1. Probabilistic computation tree logic syntax. As with LTL, formulas are defined over a
set of atomic propositions AP. PCTL formulas are state formulas defined recursively as follows:

state formulas: ϕ ::= π | ¬ϕ | ϕ ∨ ϕ | P�p [ψ],

path formulas: ψ ::= ©ϕ | ϕ U�k ϕ | ϕ U ϕ,

where P is the probabilistic operator, � ∈ {<, �, �,>}, p ∈ [0, 1], and k ∈ N. State formulas ϕ
are evaluated over the states of an MDP, while the path formulas ψ are assessed over paths and
are allowed only as the parameter of the P operator.

As in LTL, conjunction (“and,” ∧), implication (“if,” ⇒), and equivalence (“iff,” ⇔) can be
derived from negation (“not,” ¬) and disjunction (“or,” ∨), and “eventually” (�) can be derived
from “until” (U ). By using �, the “always” (�) operator can be defined as P�p [�ϕ] ≡ P�̄p [�¬ϕ],
where �̄ ≡�, <̄ ≡>, >̄ ≡<, and �̄ ≡� (71). Similarly, the bounded operators ��k and ��k

can be defined using U�k.

3.2.2. Probabilistic computation tree logic semantics. PCTL formulas can be evaluated over
either discrete-time Markov chains or MDPs. In this review, the underlying system model for
probabilistic systems in an MDP M = (S, s0, Act, Steps, AP, L); therefore, the semantics are intro-
duced over MDPs. A state formula ϕ is satisfied in state s ∈ S under policy μ as follows:

� s |= π iff π ∈ L(s );
� s |= ¬ϕ iff s �|= ϕ;
� s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2; and
� s |= P�p [ψ] iff pμs (ψ)�p ,

where pμs (ψ) is the probability of all (infinite) paths that satisfy ψ starting at state s under control
policy μ.

A path formula ψ is satisfied over path ω ∈ Paths as follows:
� ω |= ©ϕ iff ω1 |= ϕ;
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� ω |= ϕ1 U�k ϕ2 iff there exists i � k such that ωi |= ϕ2 and for all j < i , ωj |= ϕ1; and
� ω |= ϕ1 U ϕ2 iff there exists k � 0 such that ω |= ϕ1 U�k ϕ2.

3.3. Metric Logics

The logics described above are defined over propositions that are Boolean variables that can
be either true or false. Other logics, such as signal temporal logic (STL) (72), enable a richer
specification language by allowing discrete-time continuous signals xi and predicates over them
to define the building blocks of the language.

3.3.1. Signal temporal logic syntax. Let APγ be a set of atomic predicates where πγ ∈ APγ is
a predicate X → {0, 1} whose truth value corresponds to the sign of the function γ : R

nc → R.
STL formulas are constructed from atomic predicates πγ according to the following grammar:

ϕ ::= πγ | ¬ϕ | ϕ ∨ ϕ | ϕ U〈a ,b〉 ϕ,

where 〈∈ {[, (}, 〉 ∈ {], )} and a , b ∈ R�0. As for LTL, conjunction (∧), implication (⇒), and
equivalence (⇔) can be derived from negation (¬) and disjunction (∨), and timed “eventually”
(�〈a ,b〉) and timed “always” (�〈a ,b〉) can be derived from timed “until” (U〈a ,b〉). The main differences
with respect to LTL are the notion of a predicate that replaces propositions (i.e., the continuous
signal is explicitly abstracted through the function γ ) and the notion of continuous intervals of
time [which also renders the notion of “next” (©) meaningless].

3.3.2. Signal temporal logic semantics. The satisfaction of an STL formulaϕ at time t is defined
as follows:

� (x, tk) |= πγ iff γ (x(tk)) > 0;
� (x, tk) |= ¬ϕ iff (x, tk) �|= ϕ;
� (x, tk) |= ϕ1 ∨ ϕ2 iff (x, tk) |= ϕ1 or (x, tk) |= ϕ2; and
� (x, tk) |= ϕ1 U〈a ,b〉 ϕ2 iff there exists tk′ ∈ 〈tk + a , tk + b〉 such that (x, tk′ ) |= ϕ2, and for all

tk′′ ∈ [tk, tk′ ], (x, tk′′ ) |= ϕ1.

A projection of ξ onto the state space, x = x0x1x2 . . . , satisfiesϕ, denoted by x |= ϕ, if (x, t0) |= ϕ.
Informally, (a) x |= �[a ,b]ϕ if ϕ holds for all time between a and b and (b) x |= ϕ1 U[a, b] ϕ2 if ϕ1 holds
at every time step before ϕ2 holds and if ϕ2 holds at some time step between a and b . Additionally,
�[a ,b]ϕ = TrueU[a ,b]ϕ, which is true if ϕ holds at some time step between a and b .

An STL formula ϕ is bounded-time if it contains no unbounded operators; the bound of ϕ is
the maximum over the sums of all nested upper bounds on the temporal operators and provides
a conservative maximum trajectory length required to decide its satisfiability. For example, for
�[0,10]�[1,6]ϕ, a trajectory of length N ≥ 10 + 6 = 16 is sufficient to determine whether the
formula is true.

A unique property of STL is that the formalism admits a quantitative semantics that, in addi-
tion to the yes/no answer to the satisfaction question, provides a real number ρϕ(x, t), called the
robustness of satisfaction, that grades the quality of the satisfaction or violation (73). The robust-
ness score ρϕ(x, t) is computed recursively on the structure of the formula just like the Boolean
semantics and is defined such that (x, t) |= ϕ ⇐⇒ ρϕ(x, t) > 0. The robustness score should be
interpreted as how much the model satisfies ϕ; its absolute value corresponds to the distance of
x from the set of trajectories satisfying or violating ϕ. Such semantics have also been defined for
other timed logics, including metric temporal logic (MTL) (74), to assess the robustness of the
systems to parameter or timing variations.
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3.4. Example Specifications for the Mail-Delivery Scenario

Given the abstraction, the set of propositions AP = {OfficeA, OfficeB, OfficeC, OfficeD, Lounge,
Mailroom, Hallway, Pickup, Deliver, SensePackage} includes the regions, the pick-up and deliver ac-
tions, and the sensor that detects when a package is available. The set of functions γRegi return true
when the position of the robot is in region i . The following are example encodings of specifications
in the different logics:

� Co-safe LTL (nonreactive): (¬Deliver) U (Deliver ∧ (OfficeB ∨ OfficeC)) expresses “deliver a
package to one of offices B or C but not anywhere else.”

� GR(1) fragment (reactive): ��(SensePackage → (Deliver ∧ (OfficeB ∨ OfficeC))) ∧
��(¬SensePackage → Mailroom) expresses “if you sense a package, then deliver it to of-
fice B or office C; otherwise, go to the mail room” (only part of the formula is shown).

� PCTL: P>0.95(�(Deliver ∧ (OfficeB ∨ OfficeC))) expresses “the robot should deliver the pack-
age to office B or office C with a probability greater than 0.95.”

� STL: �[0,5](Deliver ∧ (OfficeB ∨OfficeC)) expresses “deliver the package to office B or office C
within 5 time units.”

4. SYNTHESIS ALGORITHMS

Having described different abstractions and specification formalisms in the previous sections, we
now provide an overview of the synthesis algorithms used to synthesize controllers. Table 1
summarizes the abstraction, specification formalism, and structure of the resulting controller for
each algorithm.

4.1. Automata-Based Synthesis Algorithms

Automata-based synthesis algorithms are defined for systems that are abstracted as a Kripke struc-
ture K. The specifications are given as LTL formulas, and the abstraction K is deterministic; that
is, there is a unique initial state S0 = {s0}, and every transition (s , s ′) ∈ R can be chosen by the
robot. The algorithms for probabilistic and nondeterministic systems are discussed in Sections 4.2
and 4.3.

Automata-based synthesis methods generally include three main steps: translation of the spec-
ification into an automaton, composition of the system abstraction with the automaton, and

Table 1 Abstractions, specifications, and synthesis products for different algorithms

Algorithm Abstraction Specification Synthesis product

Automata-based algorithms Deterministic Kripke structure LTL Sequence of states

PCTL for MDPs MDP PCTL Policy mapping finite paths
to an action

LTL for MDPs MDP LTL Policy mapping finite paths
to an action

Game-based algorithms Robot and environment transitions
are part of the specification

LTL, GR(1) fragment of
LTL

Finite state controller

Optimization-based
algorithms

Difference equation, polytopic
regions of interest

LTL, MTL, or STL, and a
cost function J

Control sequence

Abbreviations: LTL, linear temporal logic; MDP, Markov decision process; MTL, metric temporal logic; PCTL, probabilistic computation tree logic;
STL, signal temporal logic.
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computation of an accepting path or policy over the composed system. For example, an LTL
formula can be automatically transformed into a nondeterministic Büchi automaton (NBA) that
accepts precisely those traces that satisfy the formula (42, 71). Given an abstraction K over AP
and an LTL formula ϕ also defined over AP, the automata-based algorithms generate the product
structure KP = K×A, where A is an NBA constructed from ϕ with a set of state Z, a set of input
alphabets � = 2AP, a transition function δ : Z ×� → 2Z, and a set of accepting states F NBA ⊆ Z.
In KP , the set of states is S × Z, and a transition exists from state (s , z) to (s ′, z′) if (s , s ′) ∈ R
and z′ ∈ δ(z, L(s ′)), where s , s ′ ∈ S and z, z′ ∈ Z. Let ωP denote an infinite path of KP that visits
the states in FP = S × F NBA infinitely often. The projection of ωP onto A is an accepting run
satisfying ϕ, and the projection of ωP onto K is an abstraction path that also satisfies ϕ. Therefore,
the synthesis problem is reduced to finding ωP over KP . This computation boils down to two
graph search steps: (a) identifying the cycles in KP that contain at least one accepting state in FP

and (b) finding a path from an initial state to one of the cycles. This results in a path ωP = ωPωP ,
where ωP is a finite path, known as the prefix, and ωP is an infinite repeat of a cycle, known as the
suffix.

Similarly, from a co-safe LTL formula ϕ, a deterministic finite automaton (DFA) can be
constructed that accepts only the finite traces that satisfy ϕ (70). For DFAs, in the synthesis
algorithm, after obtaining the product KP = K × A, it is enough to find a finite path (i.e.,
ωP = ωP ) to an accepting state in FP = S × F DFA from the initial state. The computational
bottleneck for automata-based synthesis algorithms lies in the translation of the formula to the
automaton. The complexity of this translation is exponential in the size of the formula for LTL
to NBA and doubly exponential for co-safe LTL to DFA.

Most work on automata-based synthesis for robot control follows the general steps of the algo-
rithm described above (e.g., 75–82). The differences typically lie in the abstraction step (underlying
dynamical system) or the generation of ωP with a desired property. For example, Reference 76
introduced an end-to-end LTL synthesis framework for linear dynamical systems through an au-
tomated construction of a bisimilar (equivalent) abstraction using a simplex-based discretization.
Techniques for path optimization have been studied, where the costs are typically defined over
the transitions of the abstraction (79). In some work, to avoid the complexity of abstraction (for
nonlinear systems), a coarse abstraction and the specification automaton are used to guide the
search for a feasible trajectory by reducing the problem to a series of constrained reachability
problems (80). In Reference 75, instead of explicitly constructing the specification automaton,
model checkers were used to find a path that satisfies the specification.

To deal with complex and/or high-dimensional dynamical systems, sampling-based motion
planning has been introduced (e.g., 81–87). With these techniques, however, it is difficult (if not
impossible) to obtain a cyclic behavior for the robot. Therefore, these frameworks focus on co-safe
LTL formulas, which allow the expression of tasks that can be achieved in finite time. Furthermore,
these approaches typically consist of layers of planners. At the highest level, the DFA A and the
abstraction K are employed to guide (suggest finite paths for) the exploration of the state space for
feasible solutions by the low-level sampling-based planner. Depending on whether the low-level
motion planner found a path, the feasibility of the transitions in K are learned during the planning
procedure, leading to ever-improving high-level plans (guidance).

4.2. Markov Decision Process–Based Synthesis Algorithms

MDP-based synthesis focuses on generating a policy that maximizes (or in some cases mini-
mizes) the probability of satisfying the specification. The first work in MDP-based synthesis
(88–91) focused on specifications given as probabilistic logic formulas, namely PCTL (43). These
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Table 2 Probability optimization formulations for Markov decision process–based synthesis

PCTL formula Optimization formulation

Pmax=?[©ϕ1] p∗
s = maxa∈A(s )

∑
s ′∈Sat(ϕ1) Steps(s , a)(s ′)

Pmax=?[ϕ1U�kϕ2] pk
s = maxa∈A(s )(

∑
s ′∈S? Steps(s , a)(s ′) · pk−1

s ′ + ∑
s ′∈Syes Steps(s , a)(s ′))

Pmax=?[ϕ1Uϕ2] min
∑

s ∈S? ps subject to ps � ∑
s ′∈S? Steps(s , a)(s ′) · ps ′ + ∑

s ′∈Syes Steps(s , a)(s ′)

Abbreviation: PCTL, probabilistic computation tree logic.

specifications are natural for probabilistic systems, and their synthesis algorithms have polyno-
mial complexity. Nevertheless, the syntax of PCTL is constrained to one temporal operator per
path formula, whereas in LTL, temporal operators can be combined and nested to specify com-
plex tasks. The major challenge in LTL synthesis for probabilistic (noisy) systems is dealing with
infinite runs, which usually result in a zero probability of satisfaction if a transition probability
between two recurring states in the path is less than 1. Therefore, the initial work in LTL syn-
thesis for MDPs focused on low-level controllers to reduce the stochastic nature of the system
(92). By exploiting the end components of MDPs, later work introduced full LTL synthesis algo-
rithms for MDPs (93–96), which involve solving an optimization problem over a structure whose
size is doubly exponential in the length of the LTL formula. To overcome the computational
burden for high-dimensional systems in large environments, the use of learning algorithms has
been explored in both PCTL and LTL synthesis (97–101). In recent years, synthesis methods
for uncertain MDPs have been studied to relax the single-valued transition probability of MDPs
(102–104). By allowing uncertainty over the transition probabilities, these models arguably pro-
vide a better modeling framework for physical systems with noise than classical MDPs because it
is typically difficult to compute an exact transition probability for such systems.

4.2.1. Probabilistic computation tree logic synthesis for Markov decision processes. The
PCTL control synthesis algorithm for MDPs takes a PCTL formula ϕ and an MDP M and
returns both the optimal probability of satisfying ϕ and the corresponding control policy (88, 89,
91). The basic algorithm proceeds by constructing the parse tree for ϕ and treating each operator
in the formula separately.

For the formula Pmax=?[©ϕ1], the objective is to determine the action that produces the max-
imum probability of satisfying ©ϕ1 at each MDP state. Thus, only the immediate transitions at
each state need to be considered, which reduces the optimization problem to the one shown in
Table 2, where p∗

s denotes the optimal probability of satisfying ϕ at the state s ∈ S, and Sat(ϕ1) ⊆ S
is the set of states that satisfy ϕ1. This optimization problem can be solved by a matrix-vector mul-
tiplication (91).

For formulas Pmax=?[ϕ1U�kϕ2] and Pmax=?[ϕ1Uϕ2], first the MDP states are grouped into three
subsets: states that always satisfy the specification Syes, states that never satisfy the specification
Sno, and the remaining states S?. Trivially, the probabilities of the states in Syes and in Sno are 1 and
0, respectively. For U�k, the probabilities of the remaining states s ∈ S? are defined recursively as
shown in Table 2, which can be computed by k matrix-vector multiplications. This results in a
time-dependent policy; that is, for each time index k, an action is assigned to each satisfying state.
ForU , the computation for the states in S? is known as the maximal reachability probability problem
(MRPP) (105), which can be solved by the linear programming problem shown in Table 2. The
complexity of this method is polynomial in the size of the MDP M, which is |M| = ∑

s ∈S |A(s )|,
and the obtained control policy is stationary. The MRPP can also be solved by using value iteration,
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which is essentially solving for U�k with the termination rule of convergence of the probability
values, i.e., pmax

s (ϕ1U�kϕ2) ≈ pmax
s (ϕ1U�k−1ϕ2) for all s ∈ S.

4.2.2. Linear temporal logic synthesis for Markov decision processes. The LTL control
synthesis algorithm for MDPs takes an LTL formula ϕ and an MDP M and returns both the
optimal probability of satisfying ϕ and the corresponding control policy (93, 95). The algorithm
follows the general method of automata-based synthesis (Section 4.1). That is, first an automaton
is constructed from ϕ, and then a control policy is computed on the product of the automaton
with the MDP.

In LTL synthesis for MDPs, instead of an NBA, a deterministic Rabin automaton (71) is
generated from the LTL formula ϕ. The product MP = M×A is then generated similarly to the
deterministic case (Section 4.1). Product MP is an MDP whose transition probability function
StepsP is defined in accordance to Steps as follows: StepsP ((s , z), aP )((s ′, z′)) = Steps(s , a)(s ′) if z′ =
δ(z, L(s ′)); 0 otherwise. Next, a graph search is performed on MP to identify the end components
that enable the satisfaction of the deterministic Rabin automaton–accepting condition, which
requires infinite visits of some accepting states, while some particular states need to be visited
finitely often. The synthesis problem is then reduced to the computation of the optimal policy that
maximizes the probability of reaching these accepting end components over MP . This problem
is equivalent to solving the MRPP, whose linear programming formulation in shown Table 2.
For the case that ϕ is co-safe LTL, the MRPP is set up to maximize the probability of reaching
the MP states that correspond to the accepting states of the DFA.

For both co-safe and full LTL formulas, the obtained optimal policy is stationary (history
independent) on MP . The policy can be mapped to the states and actions of M, in which case
it becomes history dependent. Therefore, during the execution of the policy by the robot, it is
necessary to keep track of the robot’s evolution over the states of MP . The complexity of this
LTL synthesis algorithm for MDPs is polynomial in the size of the product MDP, which itself is
doubly exponential in the size of the LTL formula ϕ.

4.3. Game-Based Synthesis Algorithms

Recall from Section 3 that in reactive synthesis of robot controllers, the set of propositions AP is
divided into two sets: sensor propositions (X ) and robot propositions (Y). An LTL formula ϕ is
realizable if there exists a finite state strategy that, for every finite sequence of truth assignments to
the sensor propositions, provides an assignment to the robot propositions such that every infinite
sequence of truth assignments to both sets of propositions generated in this manner satisfies ϕ. The
synthesis problem is to find a finite state controller (if one exists) that encodes this strategy, i.e.,
whose executions correspond to sequences of truth assignments that satisfy ϕ. Synthesis of reactive
systems has high computational complexity for many specification languages. For an arbitrary LTL
formula, the complexity of the synthesis algorithm is doubly exponential in the size of the formula
(68). However, when restricted to formulas of the GR(1) fragment, the algorithm in Reference 69
permits synthesis in time polynomial in the size of the abstracted state space. The question of
realizability is viewed as a two-player game between the robot and the environment, who have
to play according to the transition rules defined by ϕi

e , ϕ
t
e , ϕ

i
s , and ϕt

e . The winning condition—
referred to as the GR(1) condition—is provided by ϕg

e ⇒ ϕg
s . The utility of specifications of this

form has been demonstrated in a variety of robotic contexts (e.g., 106–108).
Synthesis from GR(1) specifications reduces to solving a μ-calculus fixed-point equation with

three nested fixed points on a game structure that is built from the specification. The transi-
tions in the game structure are given by the safety assumptions and guarantees (in contrast to
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automata-based approaches, wherein the transition system is usually provided separately), and the
liveness properties are translated to environment and robot goals, which the robot and environ-
ment players try to satisfy infinitely often.

The semantics of μ-calculus formulas can be found in References 69 and 109; an informal
summary of the relevant portions is as follows:

� Q is the set of game states, and [[ϕ]] is the set of states that satisfy ϕ.
� [[�©ϕ]] is the set of states Q′ ⊆ Q from which the robot can enforce that the next state will

be in [[ϕ]], regardless of what the environment does next (i.e., for every x ∈ 2X ).
� [[μQ.ψ(Q)]] is a least fixed-point operation, computing the smallest set of states Q satisfying

Q = ψ(Q).
� [[νQ.ψ(Q)]] is a greatest fixed-point operation, computing the largest set of states Q satisfying

Q = ψ(Q).

In Reference 69, the set of winning states for the robot is characterized by the μ-calculus
formula

ϕwin = ν

⎡
⎢⎢⎢⎢⎣

Z1

Z2
...

Zn

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

μY .
(∨m

i=1 νX .(J1
s ∧ �©Z2 ∨ �©Y ∨ ¬Ji

e ∧ �©X )
)

μY .
(∨m

i=1 νX .(J2
s ∧ �©Z3 ∨ �©Y ∨ ¬Ji

e ∧ �©X )
)

...

μY .
(∨m

i=1 νX .(Jn
s ∧ �©Z1 ∨ �©Y ∨ ¬Ji

e ∧ �©X )
)

⎤
⎥⎥⎥⎥⎥⎥⎦

, 1.

where Ji
e is the ith environment liveness from ϕg

e (i ∈ {1, . . . , m}), and J j
s is the j th robot liveness

from ϕg
s ( j ∈ {1, . . . , n}). Let ⊕ denote summation modulo n. For i ∈ {1, . . . , m} and j ∈ {1, . . . , n},

the greatest fixed point νX .(J j
s ∧ �©Zj⊕1 ∨ �©Y ∨ ¬Ji

e ∧ �©X ) characterizes the set of states from
which the robot can force the game to stay infinitely in states satisfying ¬Ji

e, thus falsifying the
left-hand side of the implication ϕe ⇒ ϕs , or in a finite number of steps reach a state in the set
Qwin = [[J j

s ∧ �©Zj⊕1 ∨ �©Y ]]. The two outer fixed points ensure that the robot wins from the set
Qwin: μY ensures that the play reaches a J j

s ∧ �©Zj⊕1 state in a finite number of steps, and νZ
ensures that the robot can loop through the livenesses in cyclic order. From the intermediate steps
of the above computation, a state machine that realizes the specification is extracted, provided that
every initial state is winning (69).

The GR(1) synthesis problem corresponds to solving Equation 1 and has complexity quadratic
in the size of the game structure, i.e., O(|Q|2), which is still exponential in the number of atomic
propositions in the specification. This synthesis algorithm has been extended to efficiently ac-
commodate several fragments of LTL (66, 110, 111). Moreover, open source tools such as JTLV
( Java Temporal Logic Verifier) (112) and Slugs (Small but Complete GR One Synthesizer) (111)
do not build the game structure explicitly but use binary decision diagrams as a symbolic data
structure to efficiently solve Equation 1. Robotics and control-specific tools such as LTLMoP
(Linear Temporal Logic Mission Planning) (113) and TuLiP (Temporal Logic Planner) (114)
have leveraged these implementations to provide domain-specific interfaces for operating in the
real world. These tools take care of all phases of synthesis other than the discrete logical synthesis,
i.e., specification (via a graphical user interface), abstraction (through the use of robot-specific
controllers), and execution (in simulation or on a physical platform).

4.4. Optimization-Based Synthesis Algorithms

Optimization-based approaches consider difference equations (Section 2.1) and take as input an
LTL, MTL, or STL formulaϕ; a cost function of the form J(x0, u,w,ϕ) ∈ R; an initial state x0 ∈ X ;
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Table 3 Optimization-based synthesis formulations

Nonreactive Receding horizon Reactive

Find argmin
u∈UN

J(x0, u, w,ϕ) argmin
uL

K ∈UL
J(xk , uL

k , wk ,ϕ) argmin
uN ∈UN

max
wN ∈WN ,w|=ϕe

J(ξ (x0, uN , wN ))

s.t. ξ (x0, u, w) |= ϕ ξ (x0, u, w) |= ϕ ∀wN ∈ W N , ξ (x0, uN , wN ) |= ϕ

a horizon L; and, optionally, an external environmental input signal of length N , w ∈ WN . The
three types of problems described in Section 1 are encoded and solved as follows (see the formal
summary in Table 3):

� Open loop (nonreactive): Find a control signal u of length N given a nominal environment
w (73, 115–118). The state of the robot is assumed to be fully observable, and the environ-
ment inputs are known in advance. To allow the interpretation of specifications over infinite
sequences of states, a prefix–suffix trajectory parameterization is usually used.

� Iterative: Find a control signal u over a finite horizon L assuming that the environment can
change at each iteration k, but there exists a reliable prediction of it wk over the horizon L.
Such receding-horizon or model predictive control problems are solved iteratively online: At
each time step, only the first control input in the sequence is implemented, and the problem
is solved again (73, 119, 120). In References 73 and 120, a control input was synthesized
for infinite sequences satisfying ϕ = Gψ for formulas ψ with bound H by repeatedly
synthesizing control for sequences of length L = 2H.

� Reactive: Find a control signal u of length N given a possibly adversarial, a priori uncertain
environment w. As in the game-based synthesis approach (Section 4.3), the environment
is assumed to satisfy the temporal logic formula ϕe (120), and the controllers produced
provide guarantees for specifications of the form ϕe ⇒ ϕs . For specification logics such as
STL that admit quantitative semantics, this problem is solved as a two-player game, where
the environment tries to minimize the quantitative satisfaction of the specification, while
the robot simultaneously tries to maximize it. In Reference 120, counterexamples are used
to inductively refine the synthesized controller until convergence or a maximum number of
iterations is reached.

Additional treatments for systems with uncertainty have also been proposed (121, 122) but are
beyond the scope of this review.

All of the above problem formulations include constraints on system evolution, based on the
modeled dynamics, and desired robot behavior encoded as temporal logic formulas (which may
be reactive, i.e., implications). Temporal logic constraints are encoded in various ways, exploiting
properties of the underlying logic. For example, Reference 73 showed how the robustness of
an STL specification ϕ can be recursively encoded using mixed integer–linear program (MILP)
constraints, and enforcing ρϕ(x, t) > 0 ensures the satisfaction of the formula. In Reference 117,
reach–avoid-type LTL specifications over regions of interest that correspond to unions of convex
polytopes are encoded as MILP as well. Other approaches (115, 116, 122) are tailored to specific
fragments of temporal logic.

In all of the above approaches, the union of temporal logic constraints and robot constraints
yields a single mathematical program (which is an MILP for linear or piecewise-linear robot
dynamics), which can be checked for feasibility and solved when possible using an off-the-shelf
(MILP) solver. Given an objective function on runs of the system, it is also possible to find an op-
timal trajectory that satisfies the logical specification. The robustness provides a natural objective,
either in the absence of or as a complement to domain-specific objectives on runs of the system.
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MILPs are NP hard, but the computational costs of an MILP encoding can be described in
terms of the number of variables and constraints. In optimization-based approaches to synthesis,
if N is the length of the desired control signal, P is the set of predicates used in the formula, and
|ϕ| is the length (i.e., the number of operators), then O(N · |P |) + O(N · |ϕ|) continuous variables
are introduced. In addition, O(N ) binary variables are introduced for every instance of a Boolean
operator, i.e., O(N · |ϕ|) Boolean variables. The dimensionality of the discrete-time system also
affects the size of the constructed MILP linearly via the constraints encoding system evolution
(more precisely, through the size of the set of predicates P ).

5. CONCLUSION

This article has described formal synthesis for robot control: the models used to define the problem;
the specification formalisms used to capture complex, high-level tasks; and the main algorithms
used to automatically transform the specifications into implementations that can be used to control
physical robots. Synthesis is a powerful technique for increasing robot reliability because it pro-
vides guarantees with respect to the model and feedback regarding the specifications and model.
Furthermore, by allowing a person to reason about the specification and not the implementation,
synthesis reduces the time to deployment of a new task while eliminating human error in the im-
plementation. Its main advantages are manifested when considering complex tasks with different
constraints, reactions to events in the environment, and goals, and also when a robot needs to
quickly change tasks and/or environment.

Synthesis for robotics is a growing field with a high potential impact, but the techniques are
not yet widely used. Some robotic tasks of high interest in the community, such as going to a goal
location in a cluttered workspace (for motion or manipulation), are better served using motion
planners or learned controllers. Complex robotic systems, such as humanoid robots, are difficult
to model and abstract—the size of the resulting symbolic structure is either too large to synthesize
over or too small (meaning that the abstraction is too coarse) to enable a simulation relation with
the continuous physical system. Existing software for the control and actuation of robots is not
typically written in a way that can be easily abstracted into a symbolic model. Writing specifications
instead of implementations requires both a paradigm shift in how robotic systems are deployed
and expertise in the specification formalisms. As synthesis techniques mature and symbolic models
are developed for different robot platforms, we expect synthesis to become an important tool in
the robust and reliable deployment of robotic systems.

FUTURE ISSUES

1. Abstractions: The choice of abstraction level affects both the scalability of synthesis and
the guarantees it can provide. Too fine grained an abstraction causes synthesis to becomes
intractable, and too coarse an abstraction causes the models to lose fidelity with respect
to the physical system, in which case synthesis can no longer provide realistic guarantees.
Techniques for developing abstractions that are task, robot, and environment dependent
are an active area of research.

2. Synthesis and learning: There is great potential in combining formal synthesis and learn-
ing to scale up synthesis, create abstractions that can be used for synthesis, and create
explainable artificial intelligence. The challenge is maintaining the guarantees while
leveraging data-driven approaches to control.
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3. Synthesis and human–robot interaction: Formalizing models and creating abstractions
and specifications for human–robot interaction will enable the synthesis of robot con-
trollers and feedback that are task, environment, and interaction dependent, thus creating
robots that can explain and guarantee their behavior in a human–robot interaction setting.
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